Skip to main content
Erschienen in: Applied Composite Materials 3/2022

08.02.2022

Advanced Thin-walled Composite Structures for Energy Absorption Applications

verfasst von: Marwa A. Abd El-baky, Dalia A. Hegazy, Mohamad A. Hassan

Erschienen in: Applied Composite Materials | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article investigates the influence of adding halloysite nanoclay (HNC), montmorillonite clay (MC), alumina (Al2O3), silica (SiO2), and silicon carbide (SiC) nanofillers on the crashworthiness performance of glass/epoxy energy absorbent composite tubes. The abovementioned nanofillers were used separately at 1,2,3, and 4 wt.%. Nanofilled glass/epoxy composite specimens were fabricated using wet-wrapping process by hand lay-up. The fabricated specimens were tested under quasi-static axial compression loadings at 10 mm/min crosshead speed. Unfilled tubes (0 wt. % of nanofillers) were fabricated and tested for comparison purpose. The crush load–displacement response, initial crushing failure load \(\left({P}_{\mathrm{ip}}\right)\), average crushing load (\({P}_{\mathrm{avg}}\)), absorbed energy (U), specific energy absorption (SEA), crushing force efficiency (CFE), and spring back (SB) were determined, and the progressive crushing behavior was traced. Results indicated that the failure modes and U are highly dominated by the type and wt. % of the embedded nanofillers. The addition of HNC, MC, and Al2O3 enhances U of glass/epoxy composites during crushing process. Composites filled with 4 wt. % of HNC has the highest load carrying capacity and U compared to other tubes so they seem to be the best appropriate choice for energy absorbing elements. The addition of nano-SiO2 or nano-SiC negatively affects the crashworthiness characteristics. The overall outcomes revealed that glass/epoxy composite tubes filled with HNC, MC, and Al2O3 show outstanding energy absorption characteristics. However, specimens filled with SiO2 and SiC nanofillers are ineffective in the crashworthiness applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kurtaran, H., Eskandarian, A., Marzougui, D., Bedewi, N.E.: Crashworthiness design optimization using successive response surface approximations. Comput. Mech. 29(4), 409–421 (2002)CrossRef Kurtaran, H., Eskandarian, A., Marzougui, D., Bedewi, N.E.: Crashworthiness design optimization using successive response surface approximations. Comput. Mech. 29(4), 409–421 (2002)CrossRef
2.
Zurück zum Zitat Sun, L., Gibson, R.F., Gordaninejad, F., Suhr, J.: Energy absorption capability of nanocomposites: a review. Compos. Sci. Technol. 69(14), 2392–2409 (2009)CrossRef Sun, L., Gibson, R.F., Gordaninejad, F., Suhr, J.: Energy absorption capability of nanocomposites: a review. Compos. Sci. Technol. 69(14), 2392–2409 (2009)CrossRef
3.
Zurück zum Zitat Qiu, N., Gao, Y., Fang, J., Feng, Z., Sun, G., Li, Q.: Theoretical prediction and optimization of multi-cell hexagonal tubes under axial crashing. Thin-Walled Struct. 102, 111–121 (2016)CrossRef Qiu, N., Gao, Y., Fang, J., Feng, Z., Sun, G., Li, Q.: Theoretical prediction and optimization of multi-cell hexagonal tubes under axial crashing. Thin-Walled Struct. 102, 111–121 (2016)CrossRef
4.
Zurück zum Zitat Duan, L., Du, Z., Jiang, H., Xu, W., Li, Z.: Theoretical prediction and crashworthiness optimization of top-hat thin-walled structures under transverse loading. Thin-Walled Struct. 144, 106261 (2019)CrossRef Duan, L., Du, Z., Jiang, H., Xu, W., Li, Z.: Theoretical prediction and crashworthiness optimization of top-hat thin-walled structures under transverse loading. Thin-Walled Struct. 144, 106261 (2019)CrossRef
5.
Zurück zum Zitat Chen, T., Zhang, Y., Lin, J., Lu, Y.: Theoretical analysis and crashworthiness optimization of hybrid multi-cell structures. Thin-Walled Struct. 142, 116–131 (2019)CrossRef Chen, T., Zhang, Y., Lin, J., Lu, Y.: Theoretical analysis and crashworthiness optimization of hybrid multi-cell structures. Thin-Walled Struct. 142, 116–131 (2019)CrossRef
6.
Zurück zum Zitat Sarkabiri, B., Jahan, A., Rezvani, M.J.: Crashworthiness multi-objective optimization of the thin-walled grooved conical tubes filled with polyurethane foam. J. Braz. Soc. Mech. Sci. Eng. 39(7), 2721–2734 (2017)CrossRef Sarkabiri, B., Jahan, A., Rezvani, M.J.: Crashworthiness multi-objective optimization of the thin-walled grooved conical tubes filled with polyurethane foam. J. Braz. Soc. Mech. Sci. Eng. 39(7), 2721–2734 (2017)CrossRef
7.
Zurück zum Zitat Demirci, E., Yıldız, A.R.: An experimental and numerical investigation of the effects of geometry and spot welds on the crashworthiness of vehicle thin-walled structures. Mater. Test. 60(6), 553–561 (2018)CrossRef Demirci, E., Yıldız, A.R.: An experimental and numerical investigation of the effects of geometry and spot welds on the crashworthiness of vehicle thin-walled structures. Mater. Test. 60(6), 553–561 (2018)CrossRef
8.
Zurück zum Zitat Ferdynus, M., Kotełko, M., Urbaniak, M.: Crashworthiness performance of thin-walled prismatic tubes with corner dents under axial impact-Numerical and experimental study. Thin-Walled Struct. 144, 106239 (2019)CrossRef Ferdynus, M., Kotełko, M., Urbaniak, M.: Crashworthiness performance of thin-walled prismatic tubes with corner dents under axial impact-Numerical and experimental study. Thin-Walled Struct. 144, 106239 (2019)CrossRef
9.
Zurück zum Zitat Xu, F., Tian, X., Li, G.: Experimental study on crashworthiness of functionally graded thickness thin-walled tubular structures. Exp. Mech. 55(7), 1339–1352 (2015)CrossRef Xu, F., Tian, X., Li, G.: Experimental study on crashworthiness of functionally graded thickness thin-walled tubular structures. Exp. Mech. 55(7), 1339–1352 (2015)CrossRef
10.
Zurück zum Zitat Özbek, Ö., Doğan, N.F., Bozkurt, Ö.Y.: An experimental investigation on lateral crushing response of glass/carbon intraply hybrid filament wound composite pipes. J. Braz. Soc. Mech. Sci. Eng. 42(7), 1–13 (2020)CrossRef Özbek, Ö., Doğan, N.F., Bozkurt, Ö.Y.: An experimental investigation on lateral crushing response of glass/carbon intraply hybrid filament wound composite pipes. J. Braz. Soc. Mech. Sci. Eng. 42(7), 1–13 (2020)CrossRef
11.
Zurück zum Zitat Attia, M.A., Abd El–Baky, M.A., Hassan, M.A., Sebaey, T.A., Mahdi, E.: Crashworthiness characteristics of carbon–jute–glass reinforced epoxy composite circular tubes. Polym. Compos. 39(S4), E2245–E2261 (2018)CrossRef Attia, M.A., Abd El–Baky, M.A., Hassan, M.A., Sebaey, T.A., Mahdi, E.: Crashworthiness characteristics of carbon–jute–glass reinforced epoxy composite circular tubes. Polym. Compos. 39(S4), E2245–E2261 (2018)CrossRef
12.
Zurück zum Zitat Mou, H.L., Xie, J., Su, X., Feng, Z.Y.: Crashworthiness experiment and simulation analysis of composite thin-walled circular tubes under axial crushing. Mech. Compos. Mater. 55(1), 121–134 (2019)CrossRef Mou, H.L., Xie, J., Su, X., Feng, Z.Y.: Crashworthiness experiment and simulation analysis of composite thin-walled circular tubes under axial crushing. Mech. Compos. Mater. 55(1), 121–134 (2019)CrossRef
13.
Zurück zum Zitat Sun, G., Li, S., Li, G., Li, Q.: On crashing behaviors of aluminium/CFRP tubes subjected to axial and oblique loading: an experimental study. Compos. B Eng. 145, 47–56 (2018)CrossRef Sun, G., Li, S., Li, G., Li, Q.: On crashing behaviors of aluminium/CFRP tubes subjected to axial and oblique loading: an experimental study. Compos. B Eng. 145, 47–56 (2018)CrossRef
14.
Zurück zum Zitat Jiang, H., Ren, Y.: Crashworthiness and failure analysis of steeple-triggered hat-shaped composite structure under the axial and oblique crushing load. Compos. Struct. 229, 111375 (2019)CrossRef Jiang, H., Ren, Y.: Crashworthiness and failure analysis of steeple-triggered hat-shaped composite structure under the axial and oblique crushing load. Compos. Struct. 229, 111375 (2019)CrossRef
15.
Zurück zum Zitat Zhu, G., Zhao, X., Shi, P., Yu, Q.: Crashworthiness analysis and design of metal/CFRP hybrid structures under lateral loading. IEEE Access 7, 64558–64570 (2019)CrossRef Zhu, G., Zhao, X., Shi, P., Yu, Q.: Crashworthiness analysis and design of metal/CFRP hybrid structures under lateral loading. IEEE Access 7, 64558–64570 (2019)CrossRef
16.
Zurück zum Zitat Li, S., Guo, X., Li, Q., Sun, G.: On lateral crashworthiness of aluminum/composite hybrid structures. Compos. Struct. 245, 112334 (2020)CrossRef Li, S., Guo, X., Li, Q., Sun, G.: On lateral crashworthiness of aluminum/composite hybrid structures. Compos. Struct. 245, 112334 (2020)CrossRef
17.
Zurück zum Zitat Zhang, X., Wen, Z., Zhang, H.: Axial crushing and optimal design of square tubes with graded thickness. Thin-Walled Struct. 84, 263–274 (2014)CrossRef Zhang, X., Wen, Z., Zhang, H.: Axial crushing and optimal design of square tubes with graded thickness. Thin-Walled Struct. 84, 263–274 (2014)CrossRef
18.
Zurück zum Zitat Altin, M., Kılınçkaya, Ü., Acar, E., Güler, M.A.: Investigation of combined effects of cross section, taper angle and cell structure on crashworthiness of multi-cell thin-walled tubes. Int. J. Crashworthiness 24(2), 121–136 (2019)CrossRef Altin, M., Kılınçkaya, Ü., Acar, E., Güler, M.A.: Investigation of combined effects of cross section, taper angle and cell structure on crashworthiness of multi-cell thin-walled tubes. Int. J. Crashworthiness 24(2), 121–136 (2019)CrossRef
19.
Zurück zum Zitat Hou, S., Li, Q., Long, S., Yang, X., Li, W.: Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria. Finite Elem. Anal. Des. 43(6–7), 555–565 (2007)CrossRef Hou, S., Li, Q., Long, S., Yang, X., Li, W.: Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria. Finite Elem. Anal. Des. 43(6–7), 555–565 (2007)CrossRef
20.
Zurück zum Zitat Fan, Z., Lu, G., Liu, K.J.E.S.: Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Eng. Struct. 55, 80–89 (2013)CrossRef Fan, Z., Lu, G., Liu, K.J.E.S.: Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Eng. Struct. 55, 80–89 (2013)CrossRef
21.
Zurück zum Zitat Meran, A.P.: Solidity effect on crashworthiness characteristics of thin-walled tubes having various cross-sectional shapes. Int. J. Crashworthiness 21(2), 135–147 (2016)CrossRef Meran, A.P.: Solidity effect on crashworthiness characteristics of thin-walled tubes having various cross-sectional shapes. Int. J. Crashworthiness 21(2), 135–147 (2016)CrossRef
22.
Zurück zum Zitat Ma, J., Yan, Y.: Quasi-static and dynamic experiment investigations on the crashworthiness response of composite tubes. Polym. Compos. 34(7), 1099–1109 (2013)CrossRef Ma, J., Yan, Y.: Quasi-static and dynamic experiment investigations on the crashworthiness response of composite tubes. Polym. Compos. 34(7), 1099–1109 (2013)CrossRef
23.
Zurück zum Zitat Li, Z., Chen, R., Lu, F.: Comparative analysis of crashworthiness of empty and foam-filled thin-walled tubes. Thin-Walled Struct. 124, 343–349 (2018)CrossRef Li, Z., Chen, R., Lu, F.: Comparative analysis of crashworthiness of empty and foam-filled thin-walled tubes. Thin-Walled Struct. 124, 343–349 (2018)CrossRef
24.
Zurück zum Zitat Ramakrishna, S.: Microstructural design of composite materials for crashworthy structural applications. Mater. Des. 18(3), 167–173 (1997)CrossRef Ramakrishna, S.: Microstructural design of composite materials for crashworthy structural applications. Mater. Des. 18(3), 167–173 (1997)CrossRef
25.
Zurück zum Zitat Langseth, M., Hopperstad, O.S., Hanssen, A.G.: Crash behaviour of thin-walled aluminium members. Thin-Walled Struct. 32(1–3), 127–150 (1998)CrossRef Langseth, M., Hopperstad, O.S., Hanssen, A.G.: Crash behaviour of thin-walled aluminium members. Thin-Walled Struct. 32(1–3), 127–150 (1998)CrossRef
26.
Zurück zum Zitat Khan, Z. I., Habib, U., Mohamad, Z. B., Rahmat, A. R. B., & Abdullah, N. A. S. B.: Mechanical and thermal properties of sepiolite strengthened thermoplastic polymer nanocomposites: a comprehensive review. Alexandria Eng. J. 61(2), 975–990 (2022) Khan, Z. I., Habib, U., Mohamad, Z. B., Rahmat, A. R. B., & Abdullah, N. A. S. B.: Mechanical and thermal properties of sepiolite strengthened thermoplastic polymer nanocomposites: a comprehensive review. Alexandria Eng. J. 61(2), 975–990 (2022)
27.
Zurück zum Zitat Khan, Z.I., Mohamad, Z., Rahmat, A.R., Habib, U.: Synthesis and characterization of composite materials with enhanced thermo-mechanical properties for unmanned aerial vehicles (Uavs) and aerospace technologies. Pertanika J. Sci. Technol. 29(3), (2021) Khan, Z.I., Mohamad, Z., Rahmat, A.R., Habib, U.: Synthesis and characterization of composite materials with enhanced thermo-mechanical properties for unmanned aerial vehicles (Uavs) and aerospace technologies. Pertanika J. Sci. Technol. 29(3), (2021)
28.
Zurück zum Zitat Khan, Z.I., Mohamad, Z.B., Rahmat, A.R.B., Habib, U., Abdullah, N.A.S.B.: A novel recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) thermoplastic blend. Prog. Rubber Plast. Recycl. Technol. 14777606211001074 (2021) Khan, Z.I., Mohamad, Z.B., Rahmat, A.R.B., Habib, U., Abdullah, N.A.S.B.: A novel recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) thermoplastic blend. Prog. Rubber Plast. Recycl. Technol. 14777606211001074 (2021)
29.
Zurück zum Zitat Khan, Z.I., Habib, U., Mohamad, Z.B., Raji, A.M.: Enhanced mechanical properties of a novel compatibilized recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) blends. Express Polym. Lett. 15(12), (2021) Khan, Z.I., Habib, U., Mohamad, Z.B., Raji, A.M.: Enhanced mechanical properties of a novel compatibilized recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) blends. Express Polym. Lett. 15(12), (2021)
30.
Zurück zum Zitat Khan, Z.I., Arsad, A., Mohamad, Z., Habib, U., Zaini, M.A.A.: Comparative study on the enhancement of thermo-mechanical properties of carbon fiber and glass fiber reinforced epoxy composites. Mater. Today Proc. 39, 956–958 (2021)CrossRef Khan, Z.I., Arsad, A., Mohamad, Z., Habib, U., Zaini, M.A.A.: Comparative study on the enhancement of thermo-mechanical properties of carbon fiber and glass fiber reinforced epoxy composites. Mater. Today Proc. 39, 956–958 (2021)CrossRef
31.
Zurück zum Zitat Liu, Y., Kumar, S.: Polymer/carbon nanotube nano composite fibers–a review. ACS Appl. Mater. Interfaces. 6(9), 6069–6087 (2014)CrossRef Liu, Y., Kumar, S.: Polymer/carbon nanotube nano composite fibers–a review. ACS Appl. Mater. Interfaces. 6(9), 6069–6087 (2014)CrossRef
32.
Zurück zum Zitat Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int. J. Mech. Sci. 115, 45–55 (2016)CrossRef Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int. J. Mech. Sci. 115, 45–55 (2016)CrossRef
33.
Zurück zum Zitat Wei, B., Song, S., Cao, H.: Strengthening of basalt fibers with nano-SiO2–epoxy composite coating. Mater. Des. 32(8–9), 4180–4186 (2011)CrossRef Wei, B., Song, S., Cao, H.: Strengthening of basalt fibers with nano-SiO2–epoxy composite coating. Mater. Des. 32(8–9), 4180–4186 (2011)CrossRef
34.
Zurück zum Zitat Zhou, Y., Pervin, F., Rangari, V.K., Jeelani, S.: Influence of montmorillonite clay on the thermal and mechanical properties of conventional carbon fiber reinforced composites. J. Mater. Process. Technol. 191(1–3), 347–351 (2007)CrossRef Zhou, Y., Pervin, F., Rangari, V.K., Jeelani, S.: Influence of montmorillonite clay on the thermal and mechanical properties of conventional carbon fiber reinforced composites. J. Mater. Process. Technol. 191(1–3), 347–351 (2007)CrossRef
35.
Zurück zum Zitat Wu, H., Yang, J., Kitipornchai, S.: Parametric instability of thermo-mechanically loaded functionally graded graphene reinforced nanocomposite plates. Int. J. Mech. Sci. 135, 431–440 (2018)CrossRef Wu, H., Yang, J., Kitipornchai, S.: Parametric instability of thermo-mechanically loaded functionally graded graphene reinforced nanocomposite plates. Int. J. Mech. Sci. 135, 431–440 (2018)CrossRef
36.
Zurück zum Zitat Feng, Y., He, C., Wen, Y., Zhou, X., Xie, X., Ye, Y., Mai, Y.W.: Multi-functional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al2O3 composites. Compos. Sci. Technol. 160, 42–49 (2018)CrossRef Feng, Y., He, C., Wen, Y., Zhou, X., Xie, X., Ye, Y., Mai, Y.W.: Multi-functional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al2O3 composites. Compos. Sci. Technol. 160, 42–49 (2018)CrossRef
37.
Zurück zum Zitat Sternitzke, M., Derby, B., Brook, R.J.: Alumina/silicon carbide nanocomposites by hybrid polymer/powder processing: microstructures and mechanical properties. J. Am. Ceram. Soc. 81(1), 41–48 (1998)CrossRef Sternitzke, M., Derby, B., Brook, R.J.: Alumina/silicon carbide nanocomposites by hybrid polymer/powder processing: microstructures and mechanical properties. J. Am. Ceram. Soc. 81(1), 41–48 (1998)CrossRef
38.
Zurück zum Zitat Mishra, R., Tiwari, R., Marsalkova, M., Behera, B.K., Militky, J.: Effect of TiO2 nanoparticles on basalt/polysiloxane composites: mechanical and thermal characterization. J. Text. Inst. 103(12), 1361–1368 (2012)CrossRef Mishra, R., Tiwari, R., Marsalkova, M., Behera, B.K., Militky, J.: Effect of TiO2 nanoparticles on basalt/polysiloxane composites: mechanical and thermal characterization. J. Text. Inst. 103(12), 1361–1368 (2012)CrossRef
39.
Zurück zum Zitat Kumar, A., Saha, A., & Kumar, S.: Structural Analysis of Sol-Gel Derived TiO2 Nanoparticles: A Critical Impact of TiO2 Nanoparticles on Thermo-Mechanical Mechanism of Glass Fiber Polymer Composites. J. Polym. Research 28, 441–456 (2021) Kumar, A., Saha, A., & Kumar, S.: Structural Analysis of Sol-Gel Derived TiO2 Nanoparticles: A Critical Impact of TiO2 Nanoparticles on Thermo-Mechanical Mechanism of Glass Fiber Polymer Composites. J. Polym. Research 28, 441–456 (2021)
40.
Zurück zum Zitat Ravichandran, G., Rathnakar, G., Santhosh, N., Chennakeshava, R., Hashmi, M.A.: Enhancement of mechanical properties of epoxy/halloysite nanotube (HNT) nanocomposites. SN Appl. Sci. 1(4), 1–8 (2019) Ravichandran, G., Rathnakar, G., Santhosh, N., Chennakeshava, R., Hashmi, M.A.: Enhancement of mechanical properties of epoxy/halloysite nanotube (HNT) nanocomposites. SN Appl. Sci. 1(4), 1–8 (2019)
41.
Zurück zum Zitat Lvov, Y., Abdullayev, E.: Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog. Polym. Sci. 38(10–11), 1690–1719 (2013)CrossRef Lvov, Y., Abdullayev, E.: Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog. Polym. Sci. 38(10–11), 1690–1719 (2013)CrossRef
42.
Zurück zum Zitat Sangeetha, V., Gopinath, D., Prithivirajan, R., Chandran, V.G., Kumar, R.M.: Investigating the mechanical, thermal and melt flow index properties of HNC–LLDPE nano composites for the applications of rotational moulding. Polym. Test. 89, 106595 (2020)CrossRef Sangeetha, V., Gopinath, D., Prithivirajan, R., Chandran, V.G., Kumar, R.M.: Investigating the mechanical, thermal and melt flow index properties of HNC–LLDPE nano composites for the applications of rotational moulding. Polym. Test. 89, 106595 (2020)CrossRef
43.
Zurück zum Zitat Detellier, C., Letaief, S.: Kaolinite–polymer nanocomposites. Dev. Clay Sci. 5, 707–719 (2013)CrossRef Detellier, C., Letaief, S.: Kaolinite–polymer nanocomposites. Dev. Clay Sci. 5, 707–719 (2013)CrossRef
44.
Zurück zum Zitat Schoonheydt, R.A., Johnston, C.T.: Surface and interface chemistry of clay minerals. In Developments in clay science (Vol. 5, pp. 139–172). Elsevier (2013) Schoonheydt, R.A., Johnston, C.T.: Surface and interface chemistry of clay minerals. In Developments in clay science (Vol. 5, pp. 139–172). Elsevier (2013)
45.
Zurück zum Zitat Ruiz-Hitzky, E., Aranda, P., Darder, M., Fernandes, F.M.: Fibrous clay mineral–polymer nanocomposites. Dev. Clay Sci. 5, 721–741 (2013)CrossRef Ruiz-Hitzky, E., Aranda, P., Darder, M., Fernandes, F.M.: Fibrous clay mineral–polymer nanocomposites. Dev. Clay Sci. 5, 721–741 (2013)CrossRef
46.
Zurück zum Zitat Huang, J., Tang, Z.H., Zhang, X.H., Guo, B.C.: Halloysite polymer nanocomposites. In Developments in clay science (Vol. 7, pp. 509–553). Elsevier (2016) Huang, J., Tang, Z.H., Zhang, X.H., Guo, B.C.: Halloysite polymer nanocomposites. In Developments in clay science (Vol. 7, pp. 509–553). Elsevier (2016)
47.
Zurück zum Zitat Tan, D., Yuan, P., Liu, D., Du, P.: Surface modifications of halloysite. In Developments in clay science (Vol. 7, pp. 167–201). Elsevier (2016) Tan, D., Yuan, P., Liu, D., Du, P.: Surface modifications of halloysite. In Developments in clay science (Vol. 7, pp. 167–201). Elsevier (2016)
48.
Zurück zum Zitat Young, R.J., Kinloch, I.A., Gong, L., Novoselov, K.S.: The mechanics of graphene nanocomposites: a review. Compos. Sci. Technol. 72(12), 1459–1476 (2012)CrossRef Young, R.J., Kinloch, I.A., Gong, L., Novoselov, K.S.: The mechanics of graphene nanocomposites: a review. Compos. Sci. Technol. 72(12), 1459–1476 (2012)CrossRef
49.
Zurück zum Zitat Yousefi, S.R., Ghanbari, M., Amiri, O., Marzhoseyni, Z., Mehdizadeh, P., Hajizadeh-Oghaz, M., Salavati-Niasari, M.: Dy2BaCuO5/Ba4DyCu3O9. 09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104(7), 2952–2965 (2021)CrossRef Yousefi, S.R., Ghanbari, M., Amiri, O., Marzhoseyni, Z., Mehdizadeh, P., Hajizadeh-Oghaz, M., Salavati-Niasari, M.: Dy2BaCuO5/Ba4DyCu3O9. 09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104(7), 2952–2965 (2021)CrossRef
50.
Zurück zum Zitat Yousefi, S.R., Alshamsi, H.A., Amiri, O., Salavati-Niasari, M.: Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021)CrossRef Yousefi, S.R., Alshamsi, H.A., Amiri, O., Salavati-Niasari, M.: Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021)CrossRef
51.
Zurück zum Zitat Yousefi, S.R., Sobhani, A., Alshamsi, H.A., Salavati-Niasari, M.: Green sonochemical synthesis of BaDy 2 NiO 5/Dy 2 O 3 and BaDy 2 NiO 5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11(19), 11500–11512 (2021)CrossRef Yousefi, S.R., Sobhani, A., Alshamsi, H.A., Salavati-Niasari, M.: Green sonochemical synthesis of BaDy 2 NiO 5/Dy 2 O 3 and BaDy 2 NiO 5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11(19), 11500–11512 (2021)CrossRef
52.
Zurück zum Zitat Yousefi, S.R., Amiri, O., Salavati-Niasari, M.: Control sonochemical parameter to prepare pure Zn0. 35Fe2. 65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. 58, 104619 (2019)CrossRef Yousefi, S.R., Amiri, O., Salavati-Niasari, M.: Control sonochemical parameter to prepare pure Zn0. 35Fe2. 65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. 58, 104619 (2019)CrossRef
53.
Zurück zum Zitat Yousefi, S.R., Masjedi-Arani, M., Morassaei, M.S., Salavati-Niasari, M., Moayedi, H.: Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrogen Energy 44(43), 24005–24016 (2019)CrossRef Yousefi, S.R., Masjedi-Arani, M., Morassaei, M.S., Salavati-Niasari, M., Moayedi, H.: Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrogen Energy 44(43), 24005–24016 (2019)CrossRef
54.
Zurück zum Zitat Yousefi, S.R., Sobhani, A., Salavati-Niasari, M.: A new nanocomposite superionic system (CdHgI4/HgI2): Synthesis, characterization and experimental investigation. Adv. Powder Technol. 28(4), 1258–1262 (2017)CrossRef Yousefi, S.R., Sobhani, A., Salavati-Niasari, M.: A new nanocomposite superionic system (CdHgI4/HgI2): Synthesis, characterization and experimental investigation. Adv. Powder Technol. 28(4), 1258–1262 (2017)CrossRef
55.
Zurück zum Zitat Yousefi, S.R., Ghanbari, D., Salavati-Niasari, M., Hassanpour, M.: Photo-degradation of organic dyes: simple chemical synthesis of Ni (OH) 2 nanoparticles, Ni/Ni (OH) 2 and Ni/NiO magnetic nanocomposites. J. Mater. Sci. Mater. Electron. 27(2), 1244–1253 (2016)CrossRef Yousefi, S.R., Ghanbari, D., Salavati-Niasari, M., Hassanpour, M.: Photo-degradation of organic dyes: simple chemical synthesis of Ni (OH) 2 nanoparticles, Ni/Ni (OH) 2 and Ni/NiO magnetic nanocomposites. J. Mater. Sci. Mater. Electron. 27(2), 1244–1253 (2016)CrossRef
56.
Zurück zum Zitat Yousefi, S. R., Ghanbari, D., & Salavati, N. M.: Hydrothermal synthesis of nickel hydroxide nanostructures and flame retardant poly vinyl alcohol and cellulose acetate nanocomposites. J. Nanostruct. 6 (1), 77–82 (2016). Yousefi, S. R., Ghanbari, D., & Salavati, N. M.: Hydrothermal synthesis of nickel hydroxide nanostructures and flame retardant poly vinyl alcohol and cellulose acetate nanocomposites. J. Nanostruct. 6 (1), 77–82 (2016).
57.
Zurück zum Zitat Bratovčić, A., Odobašić, A., Ćatić, S., Šestan, I.: Application of polymer nanocomposite materials in food packaging. Croatian J. Food Sci. Technol. 7(2), 86–94 (2015)CrossRef Bratovčić, A., Odobašić, A., Ćatić, S., Šestan, I.: Application of polymer nanocomposite materials in food packaging. Croatian J. Food Sci. Technol. 7(2), 86–94 (2015)CrossRef
58.
Zurück zum Zitat Ahmed, E.M., Saber, D., Abd ElAziz, K., Alghtani, A.H., Felemban, B.F., Ali, H.T., Megahed, M.: Chitosan-based nanocomposites: preparation and characterization for food packing industry. Mater. Res. Express 8(2), 0250–0317 (2021)CrossRef Ahmed, E.M., Saber, D., Abd ElAziz, K., Alghtani, A.H., Felemban, B.F., Ali, H.T., Megahed, M.: Chitosan-based nanocomposites: preparation and characterization for food packing industry. Mater. Res. Express 8(2), 0250–0317 (2021)CrossRef
59.
Zurück zum Zitat Hule, R.A., Pochan, D.J.: Polymer nanocomposites for biomedical applications. MRS Bull. 32(4), 354–358 (2007)CrossRef Hule, R.A., Pochan, D.J.: Polymer nanocomposites for biomedical applications. MRS Bull. 32(4), 354–358 (2007)CrossRef
60.
Zurück zum Zitat Zakaria, A.Z., Shelesh-nezhad, K.: Introduction of nanoclay-modified fiber metal laminates. Eng. Fract. Mech. 186, 436–448 (2017)CrossRef Zakaria, A.Z., Shelesh-nezhad, K.: Introduction of nanoclay-modified fiber metal laminates. Eng. Fract. Mech. 186, 436–448 (2017)CrossRef
61.
Zurück zum Zitat Shifa, M., Tariq, F., Baloch, R.A.: Influence of carbon nanotubes on the interlaminar properties of carbon fiber aluminum metal laminates. In Key Engineering Materials (Vol. 778, pp. 100–110). Trans Tech Publications Ltd. (2018) Shifa, M., Tariq, F., Baloch, R.A.: Influence of carbon nanotubes on the interlaminar properties of carbon fiber aluminum metal laminates. In Key Engineering Materials (Vol. 778, pp. 100–110). Trans Tech Publications Ltd. (2018)
62.
Zurück zum Zitat Abd El-baky, M.A., Attia, M.A.: The mechanical performance of the laminated aluminum-epoxy/glass fiber composites containing halloysite nanotubes: An experimental investigation. J. Ind. Text. 1528083720960735 (2020) Abd El-baky, M.A., Attia, M.A.: The mechanical performance of the laminated aluminum-epoxy/glass fiber composites containing halloysite nanotubes: An experimental investigation. J. Ind. Text. 1528083720960735 (2020)
63.
Zurück zum Zitat Kathiresan, M., Manisekar, K., Manikandan, V.: Crashworthiness analysis of glass fibre/epoxy laminated thin-walled composite conical frusta under axial compression. Compos. Struct. 108, 584–599 (2014)CrossRef Kathiresan, M., Manisekar, K., Manikandan, V.: Crashworthiness analysis of glass fibre/epoxy laminated thin-walled composite conical frusta under axial compression. Compos. Struct. 108, 584–599 (2014)CrossRef
64.
Zurück zum Zitat Eshkoor, R.A., Ude, A.U., Sulong, A.B., Zulkifli, R., Ariffin, A.K., Azhari, C.H.: Energy absorption and load carrying capability of woven natural silk epoxy–triggered composite tubes. Compos. B Eng. 77, 10–18 (2015)CrossRef Eshkoor, R.A., Ude, A.U., Sulong, A.B., Zulkifli, R., Ariffin, A.K., Azhari, C.H.: Energy absorption and load carrying capability of woven natural silk epoxy–triggered composite tubes. Compos. B Eng. 77, 10–18 (2015)CrossRef
65.
Zurück zum Zitat Zhang, Z., Sun, W., Zhao, Y., Hou, S.: Crashworthiness of different composite tubes by experiments and simulations. Compos. B Eng. 143, 86–95 (2018)CrossRef Zhang, Z., Sun, W., Zhao, Y., Hou, S.: Crashworthiness of different composite tubes by experiments and simulations. Compos. B Eng. 143, 86–95 (2018)CrossRef
66.
Zurück zum Zitat Bakar, M.S.A., Salit, M.S., Yusoff, M.Z.M., Zainudin, E.S., Ya, H.H.: The crashworthiness performance of stacking sequence on filament wound hybrid composite energy absorption tube subjected to quasi-static compression load. J. Market. Res. 9(1), 654–666 (2020) Bakar, M.S.A., Salit, M.S., Yusoff, M.Z.M., Zainudin, E.S., Ya, H.H.: The crashworthiness performance of stacking sequence on filament wound hybrid composite energy absorption tube subjected to quasi-static compression load. J. Market. Res. 9(1), 654–666 (2020)
67.
Zurück zum Zitat Aymerich, F., Dalla Via, A., Quaresimin, M.: Energy absorption capability of nanomodified glass/epoxy laminates. Procedia Eng. 10, 780–785 (2011)CrossRef Aymerich, F., Dalla Via, A., Quaresimin, M.: Energy absorption capability of nanomodified glass/epoxy laminates. Procedia Eng. 10, 780–785 (2011)CrossRef
68.
Zurück zum Zitat Pradeep, C.: Effect of nano graphene on the energy absorbing capacity of aluminium-glass fabric reinforced composite hybrid tubes. Compos. Struct. 94, 1959–1966 (2012) Pradeep, C.: Effect of nano graphene on the energy absorbing capacity of aluminium-glass fabric reinforced composite hybrid tubes. Compos. Struct. 94, 1959–1966 (2012)
69.
Zurück zum Zitat ‏Silva, F., Sachse, S., Njuguna, J.: Energy absorption characteristics of nano-composite conical structures. In IOP Conference Series:Materials Science and Engineering (Vol. 40, No. 1, p. 012010). IOP Publishing (2012, September) ‏Silva, F., Sachse, S., Njuguna, J.: Energy absorption characteristics of nano-composite conical structures. In IOP Conference Series:Materials Science and Engineering (Vol. 40, No. 1, p. 012010). IOP Publishing (2012, September)
70.
Zurück zum Zitat Silva, F., Njuguna, J., Sachse, S., Pielichowski, K., Leszczynska, A., Giacomelli, M.: The influence of multiscale fillers reinforcement into impact resistance and energy absorption properties of polyamide 6 and polypropylene nanocomposite structures. Mater. Des. 50, 244–252 (2013)CrossRef Silva, F., Njuguna, J., Sachse, S., Pielichowski, K., Leszczynska, A., Giacomelli, M.: The influence of multiscale fillers reinforcement into impact resistance and energy absorption properties of polyamide 6 and polypropylene nanocomposite structures. Mater. Des. 50, 244–252 (2013)CrossRef
71.
Zurück zum Zitat Velmurugan, R., Balaganesan, G.: Energy absorption characteristics of glass/epoxy nano composite laminates by impact loading. Int. J. Crashworthiness 18(1), 82–92 (2013)CrossRef Velmurugan, R., Balaganesan, G.: Energy absorption characteristics of glass/epoxy nano composite laminates by impact loading. Int. J. Crashworthiness 18(1), 82–92 (2013)CrossRef
72.
Zurück zum Zitat Sachse, S., Poruri, M., Silva, F., Michalowski, S., Pielichowski, K., Njuguna, J.: Effect of nanofillers on low energy impact performance of sandwich structures with nanoreinforced polyurethane foam cores. J. Sandwich Struct. Mater. 16(2), 173–194 (2014)CrossRef Sachse, S., Poruri, M., Silva, F., Michalowski, S., Pielichowski, K., Njuguna, J.: Effect of nanofillers on low energy impact performance of sandwich structures with nanoreinforced polyurethane foam cores. J. Sandwich Struct. Mater. 16(2), 173–194 (2014)CrossRef
73.
Zurück zum Zitat Pramanik, B., Mantena, P.R., Tadepalli, T., Rajendran, A.M.: Indirect tensile characterization of graphite platelet reinforced vinyl ester nanocomposites at high-strain rate. Open J. Compos. Mater. 4(04), 201 (2014)CrossRef Pramanik, B., Mantena, P.R., Tadepalli, T., Rajendran, A.M.: Indirect tensile characterization of graphite platelet reinforced vinyl ester nanocomposites at high-strain rate. Open J. Compos. Mater. 4(04), 201 (2014)CrossRef
74.
Zurück zum Zitat Haro, E.E., Odeshi, A.G., Szpunar, J.A.: The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact. Int. J. Impact Eng. 96, 11–22 (2016)CrossRef Haro, E.E., Odeshi, A.G., Szpunar, J.A.: The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact. Int. J. Impact Eng. 96, 11–22 (2016)CrossRef
75.
Zurück zum Zitat Al-Lafi, W., Jin, J., Song, M.: Mechanical response of polycarbonate nanocomposites to high velocity impact. Eur. Polym. J. 85, 354–362 (2016)CrossRef Al-Lafi, W., Jin, J., Song, M.: Mechanical response of polycarbonate nanocomposites to high velocity impact. Eur. Polym. J. 85, 354–362 (2016)CrossRef
76.
Zurück zum Zitat Pushparaja, M., Balaganesan, G., Velmurugan, R., Gupta, N.K.: Energy absorption characteristics of carbon/epoxy nano filler dispersed composites subjected to localized impact loading. Procedia Eng. 173, 175–181 (2017)CrossRef Pushparaja, M., Balaganesan, G., Velmurugan, R., Gupta, N.K.: Energy absorption characteristics of carbon/epoxy nano filler dispersed composites subjected to localized impact loading. Procedia Eng. 173, 175–181 (2017)CrossRef
77.
Zurück zum Zitat Balaganeshan, G., Pushparaja, M., Velmurugan, R., Gupta, N.K.: Impact loading on nanocomposites in thermal environment. Procedia IUTAM 23, 210–219 (2017)CrossRef Balaganeshan, G., Pushparaja, M., Velmurugan, R., Gupta, N.K.: Impact loading on nanocomposites in thermal environment. Procedia IUTAM 23, 210–219 (2017)CrossRef
78.
Zurück zum Zitat Rudresh, B.M., Kumar, B.R., Madhu, D.: Combined effect of micro-and nano-fillers on mechanical, thermal, and morphological behavior of glass–carbon PA66/PTFE hybrid nano-composites. Adv. Compos. Hybrid Mater. 2(1), 176–188 (2019)CrossRef Rudresh, B.M., Kumar, B.R., Madhu, D.: Combined effect of micro-and nano-fillers on mechanical, thermal, and morphological behavior of glass–carbon PA66/PTFE hybrid nano-composites. Adv. Compos. Hybrid Mater. 2(1), 176–188 (2019)CrossRef
79.
Zurück zum Zitat Kumar, A.P.: Energy absorption performance of nano filler reinforced polymer composites for crashworthiness applications. 1 & 2DM Conference and Exhibition January 28–29 (2020) Kumar, A.P.: Energy absorption performance of nano filler reinforced polymer composites for crashworthiness applications. 1 & 2DM Conference and Exhibition January 28–29 (2020)
80.
Zurück zum Zitat Kumar, P., Shunmugasundaram, M., Sivasankar, S., Baig, M.A.A., PonrajSankar, L.: An experimental analysis on the transverse crushing behaviour of Nano-filler reinforced composite cylindrical tubular elements. In IOP Conference Series: Materials Science and Engineering, 1057 (1), p. 012018. IOP Publishing (2021, February) Kumar, P., Shunmugasundaram, M., Sivasankar, S., Baig, M.A.A., PonrajSankar, L.: An experimental analysis on the transverse crushing behaviour of Nano-filler reinforced composite cylindrical tubular elements. In IOP Conference Series: Materials Science and Engineering, 1057 (1), p. 012018. IOP Publishing (2021, February)
81.
Zurück zum Zitat Kumar, A.P., Nagarjun, J., Ma, Q.: Potentiality of MWCNT fillers on the lateral crashworthiness behaviour of polymer composite cylindrical tubes under quasi-static loading. J. Ind. Text. 1528083721997927 (2021) Kumar, A.P., Nagarjun, J., Ma, Q.: Potentiality of MWCNT fillers on the lateral crashworthiness behaviour of polymer composite cylindrical tubes under quasi-static loading. J. Ind. Text. 1528083721997927 (2021)
82.
Zurück zum Zitat Abd El-baky, M.A., Attia, M.A.: Experimental study on the improvement of mechanical properties of GLARE using nanofillers. Polym. Compos. 41(10), 4130–4143 (2020)CrossRef Abd El-baky, M.A., Attia, M.A.: Experimental study on the improvement of mechanical properties of GLARE using nanofillers. Polym. Compos. 41(10), 4130–4143 (2020)CrossRef
83.
Zurück zum Zitat Megahed, M., Tobbala, D.E., El-baky, M.A.: The effect of incorporation of hybrid silica and cobalt ferrite nanofillers on the mechanical characteristics of glass fiber-reinforced polymeric composites. Polym. Compos. 42(1), 271–284 (2021)CrossRef Megahed, M., Tobbala, D.E., El-baky, M.A.: The effect of incorporation of hybrid silica and cobalt ferrite nanofillers on the mechanical characteristics of glass fiber-reinforced polymeric composites. Polym. Compos. 42(1), 271–284 (2021)CrossRef
84.
Zurück zum Zitat Gowid, S., Mahdi, E., Alabtah, F.: Modeling and optimization of the crushing behavior and energy absorption of plain weave composite hexagonal quadruple ring systems using artificial neural network. Compos. Struct. 229, 111473 (2019)CrossRef Gowid, S., Mahdi, E., Alabtah, F.: Modeling and optimization of the crushing behavior and energy absorption of plain weave composite hexagonal quadruple ring systems using artificial neural network. Compos. Struct. 229, 111473 (2019)CrossRef
85.
Zurück zum Zitat Badie, M.A., Mahdi, E., Hamouda, A.M.S.: An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft. Mater. Des. 32(3), 1485–1500 (2011)CrossRef Badie, M.A., Mahdi, E., Hamouda, A.M.S.: An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft. Mater. Des. 32(3), 1485–1500 (2011)CrossRef
86.
Zurück zum Zitat Mahdi, E., Hamouda, A.M.S.: Energy absorption capability of composite hexagonal ring systems. Mater. Des. 34, 201–210 (2012)CrossRef Mahdi, E., Hamouda, A.M.S.: Energy absorption capability of composite hexagonal ring systems. Mater. Des. 34, 201–210 (2012)CrossRef
87.
Zurück zum Zitat Saber, D., Abd El-baky, M.A., Attia, M.A.: Advanced fiber metal laminates filled with silicon dioxide nanoparticles with enhanced mechanical properties. Fibers Polym. 1–17 (2021) Saber, D., Abd El-baky, M.A., Attia, M.A.: Advanced fiber metal laminates filled with silicon dioxide nanoparticles with enhanced mechanical properties. Fibers Polym. 1–17 (2021)
88.
Zurück zum Zitat Melaibari, A.A., Attia, M.A., Abd El-baky, M.A.: Understanding the Effect of Halloysite Nanotubes Addition Upon the Mechanical Properties of Glass Fiber Aluminum Laminate. Fibers Polym. 22(5), 1416–1433 (2021)CrossRef Melaibari, A.A., Attia, M.A., Abd El-baky, M.A.: Understanding the Effect of Halloysite Nanotubes Addition Upon the Mechanical Properties of Glass Fiber Aluminum Laminate. Fibers Polym. 22(5), 1416–1433 (2021)CrossRef
89.
Zurück zum Zitat Megahed, M., Abd El-baky, M.A., Alsaeedy, A.M., Alshorbagy, A.E.: An experimental investigation on the effect of incorporation of different nanofillers on the mechanical characterization of fiber metal laminate. Compos. Part B Eng. 176, 107277 (2019)CrossRef Megahed, M., Abd El-baky, M.A., Alsaeedy, A.M., Alshorbagy, A.E.: An experimental investigation on the effect of incorporation of different nanofillers on the mechanical characterization of fiber metal laminate. Compos. Part B Eng. 176, 107277 (2019)CrossRef
90.
Zurück zum Zitat Megahed, M., Abd El-baky, M.A., Alsaeedy, A.M., Alshorbagy, A.E.: Improvement of impact and water barrier properties of GLARE by incorporation of different types of nanoparticles. Fibers Polym. 21(4), 840–848 (2020)CrossRef Megahed, M., Abd El-baky, M.A., Alsaeedy, A.M., Alshorbagy, A.E.: Improvement of impact and water barrier properties of GLARE by incorporation of different types of nanoparticles. Fibers Polym. 21(4), 840–848 (2020)CrossRef
91.
Zurück zum Zitat Kabir, M.E., Saha, M.C., Jeelani, S.: Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite. Mater. Sci. Eng. A 459(1–2), 111–116 (2007)CrossRef Kabir, M.E., Saha, M.C., Jeelani, S.: Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite. Mater. Sci. Eng. A 459(1–2), 111–116 (2007)CrossRef
92.
Zurück zum Zitat Nguyen, V.S., Rouxel, D., Hadji, R., Vincent, B., Fort, Y.: Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrason. Sonochem. 18(1), 382–388 (2011)CrossRef Nguyen, V.S., Rouxel, D., Hadji, R., Vincent, B., Fort, Y.: Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrason. Sonochem. 18(1), 382–388 (2011)CrossRef
93.
Zurück zum Zitat Sharma, B., Chhibber, R., Mehta, R.: Effect of mixing parameters, postcuring, and stoichiometry on mechanical properties of fiber reinforced epoxy–clay nanocomposites. Pro. Inst. Mech. Eng. Part L J. Mater. Design Appl. 233(7), 1363–1374 (2019) Sharma, B., Chhibber, R., Mehta, R.: Effect of mixing parameters, postcuring, and stoichiometry on mechanical properties of fiber reinforced epoxy–clay nanocomposites. Pro. Inst. Mech. Eng. Part L J. Mater. Design Appl. 233(7), 1363–1374 (2019)
94.
Zurück zum Zitat Megahed, M., Agwa, M.A., Megahed, A.A.: Effect of ultrasonic parameters on the mechanical properties of glass fiber reinforced polyester filled with nano-clay. J. Ind. Text. 1528083720918348 (2020) Megahed, M., Agwa, M.A., Megahed, A.A.: Effect of ultrasonic parameters on the mechanical properties of glass fiber reinforced polyester filled with nano-clay. J. Ind. Text. 1528083720918348 (2020)
95.
Zurück zum Zitat Megahed, A.A., Agwa, M.A., Megahed, M.: Can ultrasonic parameters affect the impact and water barrier properties of nano-clay filled glass fiber/polyester composites? J. Ind. Text. 1528083720960733 (2020) Megahed, A.A., Agwa, M.A., Megahed, M.: Can ultrasonic parameters affect the impact and water barrier properties of nano-clay filled glass fiber/polyester composites? J. Ind. Text. 1528083720960733 (2020)
96.
Zurück zum Zitat Loos, M.R., Coelho, L.A.F., Pezzin, S.H., Amico, S.C.: The effect of acetone addition on the properties of epoxy. Polímeros 18, 76–80 (2008)CrossRef Loos, M.R., Coelho, L.A.F., Pezzin, S.H., Amico, S.C.: The effect of acetone addition on the properties of epoxy. Polímeros 18, 76–80 (2008)CrossRef
97.
Zurück zum Zitat Suave, J., Coelho, L.A., Amico, S.C., Pezzin, S.H.: Effect of sonication on thermo-mechanical properties of epoxy nanocomposites with carboxylated-SWNT. Mater. Sci. Eng. A 509(1–2), 57–62 (2009)CrossRef Suave, J., Coelho, L.A., Amico, S.C., Pezzin, S.H.: Effect of sonication on thermo-mechanical properties of epoxy nanocomposites with carboxylated-SWNT. Mater. Sci. Eng. A 509(1–2), 57–62 (2009)CrossRef
98.
Zurück zum Zitat Agwa, M.A., Megahed, M., Megahed, A.A.: Enhancement of water barrier properties and tribological performance of hybrid glass fiber/epoxy composites with inclusions of carbon and silica nanoparticles. Polym. Adv. Technol. 28(9), 1115–1124 (2017)CrossRef Agwa, M.A., Megahed, M., Megahed, A.A.: Enhancement of water barrier properties and tribological performance of hybrid glass fiber/epoxy composites with inclusions of carbon and silica nanoparticles. Polym. Adv. Technol. 28(9), 1115–1124 (2017)CrossRef
99.
Zurück zum Zitat Fathy, A., Shaker, A., Hamid, M.A., Megahed, A.A.: The effects of nano-silica/nano-alumina on fatigue behavior of glass fiber-reinforced epoxy composites. J. Compos. Mater. 51(12), 1667–1679 (2017)CrossRef Fathy, A., Shaker, A., Hamid, M.A., Megahed, A.A.: The effects of nano-silica/nano-alumina on fatigue behavior of glass fiber-reinforced epoxy composites. J. Compos. Mater. 51(12), 1667–1679 (2017)CrossRef
100.
Zurück zum Zitat Shehata, F., Fathy, A., Megahed, M., Morsy, D.: Fabrication and characterization of nano-filled polymer composites. Egyptian J. Eng. Sci. Technol. 28(EIJEST, Vol. 28, 2019), 33–38 (2019) Shehata, F., Fathy, A., Megahed, M., Morsy, D.: Fabrication and characterization of nano-filled polymer composites. Egyptian J. Eng. Sci. Technol. 28(EIJEST, Vol. 28, 2019), 33–38 (2019)
101.
Zurück zum Zitat Megahed, M., Fathy, A., Morsy, D., Shehata, F.: Mechanical performance of glass/epoxy composites enhanced by micro-and nanosized aluminum particles. J. Ind. Text. 1528083719874479 (2019) Megahed, M., Fathy, A., Morsy, D., Shehata, F.: Mechanical performance of glass/epoxy composites enhanced by micro-and nanosized aluminum particles. J. Ind. Text. 1528083719874479 (2019)
102.
Zurück zum Zitat Supian, A.B.M., Sapuan, S.M., Zuhri, M.Y.M., Zainudin, E.S., Ya, H.H.: Hybrid reinforced thermoset polymer composite in energy absorption tube application: A review. Defence Technol. 14(4), 291–305 (2018)CrossRef Supian, A.B.M., Sapuan, S.M., Zuhri, M.Y.M., Zainudin, E.S., Ya, H.H.: Hybrid reinforced thermoset polymer composite in energy absorption tube application: A review. Defence Technol. 14(4), 291–305 (2018)CrossRef
103.
Zurück zum Zitat McCrary-Dennis, M.C., Okoli, O.I.: A review of multiscale composite manufacturing and challenges. J. Reinf. Plast. Compos. 31(24), 1687–1711 (2012)CrossRef McCrary-Dennis, M.C., Okoli, O.I.: A review of multiscale composite manufacturing and challenges. J. Reinf. Plast. Compos. 31(24), 1687–1711 (2012)CrossRef
104.
Zurück zum Zitat Alkateb, M., Mahdi, E., Hamouda, A.M.S., Hamdan, M.M.: On the energy absorption capability of axially crushed composite elliptical cones. Compos. Struct. 66(1–4), 495–501 (2004)CrossRef Alkateb, M., Mahdi, E., Hamouda, A.M.S., Hamdan, M.M.: On the energy absorption capability of axially crushed composite elliptical cones. Compos. Struct. 66(1–4), 495–501 (2004)CrossRef
105.
Zurück zum Zitat Mahdi, E., Hamouda, A.A., Sebaey, T.A.: The effect of fiber orientation on the energy absorption capability of axially crushed composite tubes. Mater. Des. 1980–2015(56), 923–928 (2014)CrossRef Mahdi, E., Hamouda, A.A., Sebaey, T.A.: The effect of fiber orientation on the energy absorption capability of axially crushed composite tubes. Mater. Des. 1980–2015(56), 923–928 (2014)CrossRef
106.
Zurück zum Zitat Mahdi, E., Ochoa, D., Vaziri, A., Eltai, E.: Energy absorption capability of date palm leaf fiber reinforced epoxy composites rectangular tubes. Compos. Struct. 224, 111004 (2019)CrossRef Mahdi, E., Ochoa, D., Vaziri, A., Eltai, E.: Energy absorption capability of date palm leaf fiber reinforced epoxy composites rectangular tubes. Compos. Struct. 224, 111004 (2019)CrossRef
107.
Zurück zum Zitat Laban, O., Mahdi, E.: Energy absorption capability of cotton fiber/epoxy composite square and rectangular tubes. J. Nat. Fibers 13(6), 726–736 (2016) Laban, O., Mahdi, E.: Energy absorption capability of cotton fiber/epoxy composite square and rectangular tubes. J. Nat. Fibers 13(6), 726–736 (2016)
108.
Zurück zum Zitat Alkbir, M.F.M., Januddia, F., Ariffina, M.A.B., Kosnana, M.S.E., Bakria, A., Mohamedc, S.B.: Crashworthiness of circular tube of kenaf fiber composite for automotive applications. Biocompos. Synth. Compos. Automot. Appl. 217, (2020) Alkbir, M.F.M., Januddia, F., Ariffina, M.A.B., Kosnana, M.S.E., Bakria, A., Mohamedc, S.B.: Crashworthiness of circular tube of kenaf fiber composite for automotive applications. Biocompos. Synth. Compos. Automot. Appl. 217, (2020)
109.
Zurück zum Zitat Yang, H., Lei, H., Lu, G., Zhang, Z., Li, X., Liu, Y.: Energy absorption and failure pattern of hybrid composite tubes under quasi-static axial compression. Compos. Part B Eng. 198, 108217 (2020)CrossRef Yang, H., Lei, H., Lu, G., Zhang, Z., Li, X., Liu, Y.: Energy absorption and failure pattern of hybrid composite tubes under quasi-static axial compression. Compos. Part B Eng. 198, 108217 (2020)CrossRef
110.
Zurück zum Zitat Yan, L., Chouw, N.: Crashworthiness characteristics of flax fibre reinforced epoxy tubes for energy absorption application. Mater. Des. 51, 629–640 (2013)CrossRef Yan, L., Chouw, N.: Crashworthiness characteristics of flax fibre reinforced epoxy tubes for energy absorption application. Mater. Des. 51, 629–640 (2013)CrossRef
111.
Zurück zum Zitat Mahdi, E., Sebaey, T.A.: Crushing behavior of hybrid hexagonal/octagonal cellular composite system: Aramid/carbon hybrid composite. Mater. Des. 63, 6–13 (2014)CrossRef Mahdi, E., Sebaey, T.A.: Crushing behavior of hybrid hexagonal/octagonal cellular composite system: Aramid/carbon hybrid composite. Mater. Des. 63, 6–13 (2014)CrossRef
112.
Zurück zum Zitat Eshkoor, R.A., Oshkovr, S.A., Sulong, A.B., Zulkifli, R., Ariffin, A.K., Azhari, C.H.: Comparative research on the crashworthiness characteristics of woven natural silk/epoxy composite tubes. Mater. Des. 47, 248–257 (2013)CrossRef Eshkoor, R.A., Oshkovr, S.A., Sulong, A.B., Zulkifli, R., Ariffin, A.K., Azhari, C.H.: Comparative research on the crashworthiness characteristics of woven natural silk/epoxy composite tubes. Mater. Des. 47, 248–257 (2013)CrossRef
113.
Zurück zum Zitat Alkbir, M.F.M., Sapuan, S.M., Nuraini, A.A., Ishak, M.R.: The effect of fiber content on the crashworthiness parameters of natural kenaf fiber-reinforced hexagonal composite tubes. J. Eng. Fibers Fabr. 11(1), 155892501601100100 (2016) Alkbir, M.F.M., Sapuan, S.M., Nuraini, A.A., Ishak, M.R.: The effect of fiber content on the crashworthiness parameters of natural kenaf fiber-reinforced hexagonal composite tubes. J. Eng. Fibers Fabr. 11(1), 155892501601100100 (2016)
114.
Zurück zum Zitat Selmy, A.I., Elsesi, A.R., Azab, N.A., Abd El-baky, M.A.: Interlaminar shear behavior of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid composite laminates. Compos. B Eng. 43(4), 1714–1719 (2012)CrossRef Selmy, A.I., Elsesi, A.R., Azab, N.A., Abd El-baky, M.A.: Interlaminar shear behavior of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid composite laminates. Compos. B Eng. 43(4), 1714–1719 (2012)CrossRef
115.
Zurück zum Zitat Selmy, A.I., Azab, N.A., Abd El-baky, M.A.: Flexural fatigue characteristics of two different types of glass fiber/epoxy polymeric composite laminates with statistical analysis. Compos. B Eng. 45(1), 518–527 (2013)CrossRef Selmy, A.I., Azab, N.A., Abd El-baky, M.A.: Flexural fatigue characteristics of two different types of glass fiber/epoxy polymeric composite laminates with statistical analysis. Compos. B Eng. 45(1), 518–527 (2013)CrossRef
116.
Zurück zum Zitat Selmy, A.I., Abd El-baky, M.A., Hegazy, D.A.: Mechanical properties of inter-ply hybrid composites reinforced with glass and polyamide fibers. J. Thermoplast. Compos. Mater. 32(2), 267–293 (2019)CrossRef Selmy, A.I., Abd El-baky, M.A., Hegazy, D.A.: Mechanical properties of inter-ply hybrid composites reinforced with glass and polyamide fibers. J. Thermoplast. Compos. Mater. 32(2), 267–293 (2019)CrossRef
117.
Zurück zum Zitat Abd El-baky, M.A., Attia, M.A., Abdelhaleem, M.M., Hassan, M.A.: Flax/basalt/E-glass fibers reinforced epoxy composites with enhanced mechanical properties. J. Nat. Fibers 1–15 (2020) Abd El-baky, M.A., Attia, M.A., Abdelhaleem, M.M., Hassan, M.A.: Flax/basalt/E-glass fibers reinforced epoxy composites with enhanced mechanical properties. J. Nat. Fibers 1–15 (2020)
118.
Zurück zum Zitat Abd El-Baky, M.A., Megahed, M., El-Saqqa, H.H., Alshorbagy, A.E.: Mechanical properties evaluation of sugarcane bagasse-glass/polyester composites. J. Nat. Fibers 18(8), 1163–1180 (2021)CrossRef Abd El-Baky, M.A., Megahed, M., El-Saqqa, H.H., Alshorbagy, A.E.: Mechanical properties evaluation of sugarcane bagasse-glass/polyester composites. J. Nat. Fibers 18(8), 1163–1180 (2021)CrossRef
119.
Zurück zum Zitat Kumar, S., Saha, A.: Effects of stacking sequence of pineapple leaf-flax reinforced hybrid composite laminates on mechanical characterization and moisture resistant properties. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 09544062211023105 (2021) Kumar, S., Saha, A.: Effects of stacking sequence of pineapple leaf-flax reinforced hybrid composite laminates on mechanical characterization and moisture resistant properties. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 09544062211023105 (2021)
120.
Zurück zum Zitat Sebaey, T.A., Rajak, D.K., Mehboob, H.: Internally stiffened foam-filled carbon fiber reinforced composite tubes under impact loading for energy absorption applications. Compos. Struct. 255, 112910 (2021)CrossRef Sebaey, T.A., Rajak, D.K., Mehboob, H.: Internally stiffened foam-filled carbon fiber reinforced composite tubes under impact loading for energy absorption applications. Compos. Struct. 255, 112910 (2021)CrossRef
121.
Zurück zum Zitat Tarlochan, F., Ramesh, S.: Composite sandwich structures with nested inserts for energy absorption application. Compos. Struct. 94(3), 904–916 (2012)CrossRef Tarlochan, F., Ramesh, S.: Composite sandwich structures with nested inserts for energy absorption application. Compos. Struct. 94(3), 904–916 (2012)CrossRef
123.
Zurück zum Zitat Zhang, P., Gui, L.J., Fan, Z.J., Liu, J.Y.: Experimental Investigation on the Crashworthiness of Braided Glass/Epoxy Tubes Subjected to Axial Impacting. Adv. Compos. Lett. 23(2), 096369351402300203 (2014)CrossRef Zhang, P., Gui, L.J., Fan, Z.J., Liu, J.Y.: Experimental Investigation on the Crashworthiness of Braided Glass/Epoxy Tubes Subjected to Axial Impacting. Adv. Compos. Lett. 23(2), 096369351402300203 (2014)CrossRef
124.
Zurück zum Zitat Ye, Y., Chen, H., Wu, J., Ye, L.: High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48(21), 6426–6433 (2007)CrossRef Ye, Y., Chen, H., Wu, J., Ye, L.: High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48(21), 6426–6433 (2007)CrossRef
125.
Zurück zum Zitat Megahed, M., Abd El-baky, M.A., Alsaeedy, A.M., Alshorbagy, A.E.: Synthesis effect of nano-fillers on the damage resistance of GLARE. Fibers Polym. 1–12 (2021) Megahed, M., Abd El-baky, M.A., Alsaeedy, A.M., Alshorbagy, A.E.: Synthesis effect of nano-fillers on the damage resistance of GLARE. Fibers Polym. 1–12 (2021)
126.
Zurück zum Zitat Kwon, D.J., Shin, P.S., Kim, J.H., Baek, Y.M., Park, H.S., DeVries, K.L., Park, J.M.: Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO2 nanoparticles. Compos. B Eng. 130, 46–53 (2017)CrossRef Kwon, D.J., Shin, P.S., Kim, J.H., Baek, Y.M., Park, H.S., DeVries, K.L., Park, J.M.: Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO2 nanoparticles. Compos. B Eng. 130, 46–53 (2017)CrossRef
127.
Zurück zum Zitat Zhai, L.L., Ling, G.P., Wang, Y.W.: Effect of nano-Al2O3 on adhesion strength of epoxy adhesive and steel. Int. J. Adhes. Adhes. 28(1–2), 23–28 (2008)CrossRef Zhai, L.L., Ling, G.P., Wang, Y.W.: Effect of nano-Al2O3 on adhesion strength of epoxy adhesive and steel. Int. J. Adhes. Adhes. 28(1–2), 23–28 (2008)CrossRef
128.
Zurück zum Zitat Santosa, S.P., Wierzbicki, T., Hanssen, A.G., Langseth, M.: Experimental and numerical studies of foam-filled sections. Int. J. Impact Eng 24(5), 509–534 (2000)CrossRef Santosa, S.P., Wierzbicki, T., Hanssen, A.G., Langseth, M.: Experimental and numerical studies of foam-filled sections. Int. J. Impact Eng 24(5), 509–534 (2000)CrossRef
129.
Zurück zum Zitat Alamri, H., Low, I.M.: Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Mater. Des. 42, 214–222 (2012)CrossRef Alamri, H., Low, I.M.: Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Mater. Des. 42, 214–222 (2012)CrossRef
130.
Zurück zum Zitat Ye, Y., Chen, H., Wu, J., Chan, C.M.: Evaluation on the thermal and mechanical properties of HNT-toughened epoxy/carbon fibre composites. Compos. B Eng. 42(8), 2145–2150 (2011)CrossRef Ye, Y., Chen, H., Wu, J., Chan, C.M.: Evaluation on the thermal and mechanical properties of HNT-toughened epoxy/carbon fibre composites. Compos. B Eng. 42(8), 2145–2150 (2011)CrossRef
131.
Zurück zum Zitat Farley, G.L.: The effects of crushing speed on the energy-absorption capability of composite tubes. J. Compos. Mater. 25(10), 1314–1329 (1991)CrossRef Farley, G.L.: The effects of crushing speed on the energy-absorption capability of composite tubes. J. Compos. Mater. 25(10), 1314–1329 (1991)CrossRef
132.
Zurück zum Zitat Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B., Papapostolou, D.P.: Crashworthy characteristics of axially statically compressed thin-walled square CFRP composite tubes: experimental. Compos. Struct. 63(3–4), 347–360 (2004)CrossRef Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B., Papapostolou, D.P.: Crashworthy characteristics of axially statically compressed thin-walled square CFRP composite tubes: experimental. Compos. Struct. 63(3–4), 347–360 (2004)CrossRef
133.
Zurück zum Zitat Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B., Papapostolou, D.P.: On the response of thin-walled CFRP composite tubular components subjected to static and dynamic axial compressive loading: experimental. Compos. Struct. 69(4), 407–420 (2005)CrossRef Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B., Papapostolou, D.P.: On the response of thin-walled CFRP composite tubular components subjected to static and dynamic axial compressive loading: experimental. Compos. Struct. 69(4), 407–420 (2005)CrossRef
134.
Zurück zum Zitat Zhang, H., Gn, S.W., An, J., Xiang, Y., Yang, J.L.: Impact behaviour of GLAREs with MWCNT modified epoxy resins. Exp. Mech. 54(1), 83–93 (2014)CrossRef Zhang, H., Gn, S.W., An, J., Xiang, Y., Yang, J.L.: Impact behaviour of GLAREs with MWCNT modified epoxy resins. Exp. Mech. 54(1), 83–93 (2014)CrossRef
135.
Zurück zum Zitat Saha, A., Kumar, S., Zindani, D., Bhowmik, S.: N the inclusion of pineapple leaf particulates. Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl. 235(5), 1112–1127 (2021) Saha, A., Kumar, S., Zindani, D., Bhowmik, S.: N the inclusion of pineapple leaf particulates. Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl. 235(5), 1112–1127 (2021)
136.
Zurück zum Zitat Sun, L., Boo, W.-J., Liu, J., et al.: Effect of nanoplatelets on the rheological behavior of epoxy monomers. Macromol Mater Eng 294, 103–113 (2009)CrossRef Sun, L., Boo, W.-J., Liu, J., et al.: Effect of nanoplatelets on the rheological behavior of epoxy monomers. Macromol Mater Eng 294, 103–113 (2009)CrossRef
137.
Zurück zum Zitat Pascault, J.P., Sautereau, H., Verdu, J., et al.: Thermosetting polymers, p. 389. Marcel Dekker Inc., New York (2002)CrossRef Pascault, J.P., Sautereau, H., Verdu, J., et al.: Thermosetting polymers, p. 389. Marcel Dekker Inc., New York (2002)CrossRef
138.
Zurück zum Zitat Siddiqui, N.A., Woo, R.S., Kim, J.K., Leung, C.C., Munir, A.: Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos. A Appl. Sci. Manuf. 38(2), 449–460 (2007)CrossRef Siddiqui, N.A., Woo, R.S., Kim, J.K., Leung, C.C., Munir, A.: Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos. A Appl. Sci. Manuf. 38(2), 449–460 (2007)CrossRef
139.
Zurück zum Zitat Ameer, N., Hussein, S.I.: Enhanced thermal expansion, mechanical properties, and adhesion analysis of epoxy/ZrO2 nano composites. In Journal of Physics: Conference Series (Vol. 1279, No. 1, p. 012026). IOP Publishing (2019) Ameer, N., Hussein, S.I.: Enhanced thermal expansion, mechanical properties, and adhesion analysis of epoxy/ZrO2 nano composites. In Journal of Physics: Conference Series (Vol. 1279, No. 1, p. 012026). IOP Publishing (2019)
140.
Zurück zum Zitat Wetzel, B., Haupert, F., Zhang, M.Q.: Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63(14), 2055–2067 (2003)CrossRef Wetzel, B., Haupert, F., Zhang, M.Q.: Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63(14), 2055–2067 (2003)CrossRef
141.
Zurück zum Zitat Rafiq, A., Merah, N., Boukhili, R., Al-Qadhi, M.: Impact resistance of hybrid glass fiber reinforced epoxy/nanoclay composite. Polym. Testing 57, 1–11 (2017)CrossRef Rafiq, A., Merah, N., Boukhili, R., Al-Qadhi, M.: Impact resistance of hybrid glass fiber reinforced epoxy/nanoclay composite. Polym. Testing 57, 1–11 (2017)CrossRef
142.
Zurück zum Zitat Chee, C. Y., Song, N. L., Abdullah, L. C., Choong, T. S., Ibrahim, A., Chantara, T. R. : Characterization of mechanical properties: Low-density polyethylene nanocomposite using nanoalumina particle as filler. J. Nanomater. 215978, 6 (2012). https://doi.org/10.1155/2012/215978 Chee, C. Y., Song, N. L., Abdullah, L. C., Choong, T. S., Ibrahim, A., Chantara, T. R. : Characterization of mechanical properties: Low-density polyethylene nanocomposite using nanoalumina particle as filler. J. Nanomater. 215978, 6 (2012). https://​doi.​org/​10.​1155/​2012/​215978
143.
Zurück zum Zitat Willis, J.M., Favis, B.D., Lunt, J.: Reactive processing of polystyrene-co-maleic anhydride/elastomer blends: Processing-morphology-property relationships. Polym. Eng. Sci. 30(17), 1073–1084 (1990)CrossRef Willis, J.M., Favis, B.D., Lunt, J.: Reactive processing of polystyrene-co-maleic anhydride/elastomer blends: Processing-morphology-property relationships. Polym. Eng. Sci. 30(17), 1073–1084 (1990)CrossRef
144.
Zurück zum Zitat Willemse, R.C., De Boer, A.P., Van Dam, J., Gotsis, A.D.: Co-continuous morphologies in polymer blends: a new model. Polymer 39(24), 5879–5887 (1998)CrossRef Willemse, R.C., De Boer, A.P., Van Dam, J., Gotsis, A.D.: Co-continuous morphologies in polymer blends: a new model. Polymer 39(24), 5879–5887 (1998)CrossRef
145.
Zurück zum Zitat Gojny, F.H., Wichmann, M.H., Fiedler, B., Schulte, K.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos. Sci. Technol. 65(15–16), 2300–2313 (2005)CrossRef Gojny, F.H., Wichmann, M.H., Fiedler, B., Schulte, K.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos. Sci. Technol. 65(15–16), 2300–2313 (2005)CrossRef
146.
Zurück zum Zitat Subramani, C., Jamnik, V.S., Mhaske, S.T.: Effect of Attapulgite filler on the properties of Nylon-6. Polym. Compos. 29(8), 890–893 (2008)CrossRef Subramani, C., Jamnik, V.S., Mhaske, S.T.: Effect of Attapulgite filler on the properties of Nylon-6. Polym. Compos. 29(8), 890–893 (2008)CrossRef
147.
Zurück zum Zitat Gürgen, S.: Low-velocity impact performance of UHMWPE composites consolidated with carbide particles. Arch. Civ. Mech. Eng. 20(2), 1–12 (2020)CrossRef Gürgen, S.: Low-velocity impact performance of UHMWPE composites consolidated with carbide particles. Arch. Civ. Mech. Eng. 20(2), 1–12 (2020)CrossRef
148.
Zurück zum Zitat Hussain, M., Nakahira, A., Niihara, K.: Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion. Mater. Lett. 26(3), 185–191 (1996)CrossRef Hussain, M., Nakahira, A., Niihara, K.: Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion. Mater. Lett. 26(3), 185–191 (1996)CrossRef
149.
Zurück zum Zitat Bashar, M.T., Sundararaj, U., Mertiny, P.: Mode-I interlaminar fracture behaviour of nanoparticle modified epoxy/basalt fibre-reinforced laminates. Polym. Testing 32(2), 402–412 (2013)CrossRef Bashar, M.T., Sundararaj, U., Mertiny, P.: Mode-I interlaminar fracture behaviour of nanoparticle modified epoxy/basalt fibre-reinforced laminates. Polym. Testing 32(2), 402–412 (2013)CrossRef
150.
Zurück zum Zitat Fu, Q., Wang, G., Shen, J.: Polyethylene toughened by CaCO3 particle: Brittle-ductile transition of CaCO3-toughened HDPE. J. Appl. Polym. Sci. 49(4), 673–677 (1993)CrossRef Fu, Q., Wang, G., Shen, J.: Polyethylene toughened by CaCO3 particle: Brittle-ductile transition of CaCO3-toughened HDPE. J. Appl. Polym. Sci. 49(4), 673–677 (1993)CrossRef
151.
Zurück zum Zitat Zhang, Y., Tanner, K.E.: Effect of filler surface morphology on the impact behaviour of hydroxyapatite reinforced high density polyethylene composites. J. Mater. Sci. - Mater. Med. 19(2), 761–766 (2008)CrossRef Zhang, Y., Tanner, K.E.: Effect of filler surface morphology on the impact behaviour of hydroxyapatite reinforced high density polyethylene composites. J. Mater. Sci. - Mater. Med. 19(2), 761–766 (2008)CrossRef
152.
Zurück zum Zitat Gürgen, S., & Kuşhan, M. C.: High performance fabrics in body protective systems. Mater. Sci. Forum. 880, 132–135 (2017) Gürgen, S., & Kuşhan, M. C.: High performance fabrics in body protective systems. Mater. Sci. Forum. 880, 132–135 (2017)
153.
Zurück zum Zitat Gürgen, S., Majumdar, A.: Tuning the frictional properties of carbon fabrics using boron carbide particles. Fibers and Polym. 20(4), 725–731 (2019)CrossRef Gürgen, S., Majumdar, A.: Tuning the frictional properties of carbon fabrics using boron carbide particles. Fibers and Polym. 20(4), 725–731 (2019)CrossRef
154.
Zurück zum Zitat Hamada, H., Ramakrishna, S., Satoh, H.: Crushing mechanism of carbon fibre/PEEK composite tubes. Composites 26(11), 749–755 (1995)CrossRef Hamada, H., Ramakrishna, S., Satoh, H.: Crushing mechanism of carbon fibre/PEEK composite tubes. Composites 26(11), 749–755 (1995)CrossRef
155.
Zurück zum Zitat Mamalis, A.G., Manolakos, D.E., Demosthenous, G.A., Ioannidis, M.B.: The static and dynamic axial crumbling of thin-walled fibreglass composite square tubes. Compos. B Eng. 28(4), 439–451 (1997)CrossRef Mamalis, A.G., Manolakos, D.E., Demosthenous, G.A., Ioannidis, M.B.: The static and dynamic axial crumbling of thin-walled fibreglass composite square tubes. Compos. B Eng. 28(4), 439–451 (1997)CrossRef
156.
Zurück zum Zitat Ghasemnejad, H., Hadavinia, H., Aboutorabi, A.: Effect of delamination failure in crashworthiness analysis of hybrid composite box structures. Mater. Des. 31(3), 1105–1116 (2010)CrossRef Ghasemnejad, H., Hadavinia, H., Aboutorabi, A.: Effect of delamination failure in crashworthiness analysis of hybrid composite box structures. Mater. Des. 31(3), 1105–1116 (2010)CrossRef
157.
Zurück zum Zitat Marzbanrad, J., Ebrahimi, M.R.: Multi-objective optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks. Thin-Walled Struct. 49(12), 1605–1615 (2011)CrossRef Marzbanrad, J., Ebrahimi, M.R.: Multi-objective optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks. Thin-Walled Struct. 49(12), 1605–1615 (2011)CrossRef
158.
Zurück zum Zitat Esmaeili-Marzdashti, S., Pirmohammad, S., Esmaeili-Marzdashti, S.: Crashworthiness analysis of s-shaped structures under axial impact loading. Lat. Am. J. Solids Struct. 14, 743–764 (2017)CrossRef Esmaeili-Marzdashti, S., Pirmohammad, S., Esmaeili-Marzdashti, S.: Crashworthiness analysis of s-shaped structures under axial impact loading. Lat. Am. J. Solids Struct. 14, 743–764 (2017)CrossRef
159.
Zurück zum Zitat Heimbs, S., Strobl, F., Middendorf, P., Guimard, J.M.: Composite crash absorber for aircraft fuselage applications. WIT Trans. Built Environ. 113, 3–14 (2010)CrossRef Heimbs, S., Strobl, F., Middendorf, P., Guimard, J.M.: Composite crash absorber for aircraft fuselage applications. WIT Trans. Built Environ. 113, 3–14 (2010)CrossRef
Metadaten
Titel
Advanced Thin-walled Composite Structures for Energy Absorption Applications
verfasst von
Marwa A. Abd El-baky
Dalia A. Hegazy
Mohamad A. Hassan
Publikationsdatum
08.02.2022
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 3/2022
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-022-10016-5

Weitere Artikel der Ausgabe 3/2022

Applied Composite Materials 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.