Skip to main content
Erschienen in: Artificial Intelligence Review 12/2023

19.06.2023

An effective conflict management method based on belief similarity measure and entropy for multi-sensor data fusion

verfasst von: Zhe Liu

Erschienen in: Artificial Intelligence Review | Ausgabe 12/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multi-sensor data fusion has received substantial attention thanks to its ability to integrate information from distinct sources efficiently. Nevertheless, the information collected from multi-sensors may be uncertain and imprecise, even conflicting in real applications. As a distinguished theory to handle uncertain and imprecise information, belief functions theory (BFT) is prevalent in the various fields of multi-sensor data fusion. Unfortunately, counter-intuitive behaviors may generate once facing highly conflicting pieces of evidence. To deal with the above-mentioned issue, in this paper, we study a novel belief Sørensen coefficient (\(\mathcal {BSC}\)) to measure the conflict between the pieces of evidence based on BFT. On the top of \(\mathcal {BSC}\), we propose a new belief conflict coefficient, and prove some important properties, namely, non-negativity, symmetry, non-degeneracy, bounded, extreme consistency and insensitivity to refinement. In parallel, some numerical examples are employed to demonstrate the superiority of the belief conflict coefficient in quantifying the degree of conflict between the pieces of evidence. Finally, we design a new multi-sensor data fusion method based on the proposed \(\mathcal {BSC}\) and the improved belief entropy, and verify the effectiveness and practicability of the proposed method with respect to other methods through several application cases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aggarwal M (2017) Rough information set and its applications in decision making. IEEE Trans Fuzzy Syst 25(2):265–276CrossRef Aggarwal M (2017) Rough information set and its applications in decision making. IEEE Trans Fuzzy Syst 25(2):265–276CrossRef
Zurück zum Zitat Bhat S, Koundal D (2021) Multi-focus image fusion techniques: a survey. Artif Intell Rev 54:5735–5787CrossRef Bhat S, Koundal D (2021) Multi-focus image fusion techniques: a survey. Artif Intell Rev 54:5735–5787CrossRef
Zurück zum Zitat Cha S-H (2007) Comprehensive survey on distance/similarity measures between probability density functions. City 1(2):1 Cha S-H (2007) Comprehensive survey on distance/similarity measures between probability density functions. City 1(2):1
Zurück zum Zitat Deng Y (2015) Generalized evidence theory. Appl Intell 43(3):530–543CrossRef Deng Y (2015) Generalized evidence theory. Appl Intell 43(3):530–543CrossRef
Zurück zum Zitat Deng Y, Shi W, Zhu Z, Liu Q (2004) Combining belief functions based on distance of evidence. Decis Support Syst 38(3):489–493CrossRef Deng Y, Shi W, Zhu Z, Liu Q (2004) Combining belief functions based on distance of evidence. Decis Support Syst 38(3):489–493CrossRef
Zurück zum Zitat Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRef Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRef
Zurück zum Zitat Dubois D, Prade H (1988) Representation and combination of uncertainty with belief functions and possibility measures. Comput Intell 4(3):244–264CrossRef Dubois D, Prade H (1988) Representation and combination of uncertainty with belief functions and possibility measures. Comput Intell 4(3):244–264CrossRef
Zurück zum Zitat Gao X, Xiao F (2022) A generalized \(\chi\)2 divergence for multisource information fusion and its application in fault diagnosis. Int J Intell Syst 37(1):5–29CrossRef Gao X, Xiao F (2022) A generalized \(\chi\)2 divergence for multisource information fusion and its application in fault diagnosis. Int J Intell Syst 37(1):5–29CrossRef
Zurück zum Zitat Gawde S, Patil S, Kumar S, Kotecha K (2022) A scoping review on multi-fault diagnosis of industrial rotating machines using multi-sensor data fusion. Artif Intell Rev 56:4711–4764CrossRef Gawde S, Patil S, Kumar S, Kotecha K (2022) A scoping review on multi-fault diagnosis of industrial rotating machines using multi-sensor data fusion. Artif Intell Rev 56:4711–4764CrossRef
Zurück zum Zitat Jiang W, Zhan J (2017) A modified combination rule in generalized evidence theory. Appl Intell 46:630–640CrossRef Jiang W, Zhan J (2017) A modified combination rule in generalized evidence theory. Appl Intell 46:630–640CrossRef
Zurück zum Zitat Jousselme A-L, Grenier D, Bossé É (2001) A new distance between two bodies of evidence. Inf Fusion 2(2):91–101CrossRef Jousselme A-L, Grenier D, Bossé É (2001) A new distance between two bodies of evidence. Inf Fusion 2(2):91–101CrossRef
Zurück zum Zitat Kang B, Deng Y, Sadiq R (2018) Total utility of Z-number. Appl Intell 48(3):703–729CrossRef Kang B, Deng Y, Sadiq R (2018) Total utility of Z-number. Appl Intell 48(3):703–729CrossRef
Zurück zum Zitat Khaleghi B, Khamis A, Karray FO, Razavi SN (2013) Multisensor data fusion: a review of the state-of-the-art. Inf Fusion 14(1):28–44CrossRef Khaleghi B, Khamis A, Karray FO, Razavi SN (2013) Multisensor data fusion: a review of the state-of-the-art. Inf Fusion 14(1):28–44CrossRef
Zurück zum Zitat Lee H, Kwon H (2021) DBF: Dynamic belief fusion for combining multiple object detectors. IEEE Trans Pattern Anal Mach Intell 43(5):1499–1514CrossRef Lee H, Kwon H (2021) DBF: Dynamic belief fusion for combining multiple object detectors. IEEE Trans Pattern Anal Mach Intell 43(5):1499–1514CrossRef
Zurück zum Zitat Lefèvre E, Elouedi Z (2013) How to preserve the conflict as an alarm in the combination of belief functions? Decis Support Syst 56:326–333CrossRef Lefèvre E, Elouedi Z (2013) How to preserve the conflict as an alarm in the combination of belief functions? Decis Support Syst 56:326–333CrossRef
Zurück zum Zitat Li H, Xiao F (2020) A method for combining conflicting evidences with improved distance function and Tsallis entropy. Int J Intell Syst 35(11):1814–1830CrossRef Li H, Xiao F (2020) A method for combining conflicting evidences with improved distance function and Tsallis entropy. Int J Intell Syst 35(11):1814–1830CrossRef
Zurück zum Zitat Lin Y, Li Y, Yin X, Dou Z (2018) Multisensor fault diagnosis modeling based on the evidence theory. IEEE Trans Reliab 67(2):513–521CrossRef Lin Y, Li Y, Yin X, Dou Z (2018) Multisensor fault diagnosis modeling based on the evidence theory. IEEE Trans Reliab 67(2):513–521CrossRef
Zurück zum Zitat Liu Z, Dezert J, Pan Q, Mercier G (2011) Combination of sources of evidence with different discounting factors based on a new dissimilarity measure. Decis Support Syst 52(1):133–141CrossRef Liu Z, Dezert J, Pan Q, Mercier G (2011) Combination of sources of evidence with different discounting factors based on a new dissimilarity measure. Decis Support Syst 52(1):133–141CrossRef
Zurück zum Zitat Ma Z, Liu Z, Luo C, Song L (2021) Evidential classification of incomplete instance based on k-nearest centroid neighbor. J Intell Fuzzy Syst 41(6):7101–7115CrossRef Ma Z, Liu Z, Luo C, Song L (2021) Evidential classification of incomplete instance based on k-nearest centroid neighbor. J Intell Fuzzy Syst 41(6):7101–7115CrossRef
Zurück zum Zitat Murphy CK (2000) Combining belief functions when evidence conflicts. Decis Support Syst 29(1):1–9CrossRef Murphy CK (2000) Combining belief functions when evidence conflicts. Decis Support Syst 29(1):1–9CrossRef
Zurück zum Zitat Redford C, Agah A (2014) Evidentialist foundationalist argumentation for multi-agent sensor fusion. Artif Intell Rev 42:211–243CrossRef Redford C, Agah A (2014) Evidentialist foundationalist argumentation for multi-agent sensor fusion. Artif Intell Rev 42:211–243CrossRef
Zurück zum Zitat Shafer G (1976) A mathematical theory of evidence, vol 42. Princeton University Press, PrincetonCrossRefMATH Shafer G (1976) A mathematical theory of evidence, vol 42. Princeton University Press, PrincetonCrossRefMATH
Zurück zum Zitat Shang Q, Li H, Deng Y, Cheong KH (2022) Compound credibility for conflicting evidence combination: an autoencoder-k-means approach. IEEE Trans Syst Man Cybern Syst 52(9):5602–5610CrossRef Shang Q, Li H, Deng Y, Cheong KH (2022) Compound credibility for conflicting evidence combination: an autoencoder-k-means approach. IEEE Trans Syst Man Cybern Syst 52(9):5602–5610CrossRef
Zurück zum Zitat Smets P (1990) The combination of evidence in the transferable belief model. IEEE Trans Pattern Anal Mach Intell 12(5):447–458CrossRef Smets P (1990) The combination of evidence in the transferable belief model. IEEE Trans Pattern Anal Mach Intell 12(5):447–458CrossRef
Zurück zum Zitat Sorensen TA (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons. Kongelige Danske Videnskabernes Selskab 5:1–34 Sorensen TA (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons. Kongelige Danske Videnskabernes Selskab 5:1–34
Zurück zum Zitat Su S, Chen M, Hsueh Y (2017) A novel fuzzy modeling structure-decomposed fuzzy system. IEEE Trans Syst Man Cybern Syst 47(8):2311–2317CrossRef Su S, Chen M, Hsueh Y (2017) A novel fuzzy modeling structure-decomposed fuzzy system. IEEE Trans Syst Man Cybern Syst 47(8):2311–2317CrossRef
Zurück zum Zitat Tang S, Zhou Z, Hu C, Zhao F, Cao Y (2022) A new evidential reasoning rule-based safety assessment method with sensor reliability for complex systems. IEEE Trans Cybern 52(5):4027–4038CrossRef Tang S, Zhou Z, Hu C, Zhao F, Cao Y (2022) A new evidential reasoning rule-based safety assessment method with sensor reliability for complex systems. IEEE Trans Cybern 52(5):4027–4038CrossRef
Zurück zum Zitat Wang Y, Wang S (2023) Feature selection for set-valued data based on d-s evidence theory. Artif Intell Rev 56:2667–2696CrossRef Wang Y, Wang S (2023) Feature selection for set-valued data based on d-s evidence theory. Artif Intell Rev 56:2667–2696CrossRef
Zurück zum Zitat Wang H, Deng X, Jiang W, Geng J (2021) A new belief divergence measure for dempster-shafer theory based on belief and plausibility function and its application in multi-source data fusion. Eng Appl Artif Intell 97:104030CrossRef Wang H, Deng X, Jiang W, Geng J (2021) A new belief divergence measure for dempster-shafer theory based on belief and plausibility function and its application in multi-source data fusion. Eng Appl Artif Intell 97:104030CrossRef
Zurück zum Zitat Xiao F (2019) Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf Fusion 46:23–32CrossRef Xiao F (2019) Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf Fusion 46:23–32CrossRef
Zurück zum Zitat Xiao F, Cao Z, Jolfaei A (2021) A novel conflict measurement in decision-making and its application in fault diagnosis. IEEE Trans Fuzzy Syst 29(1):186–197CrossRef Xiao F, Cao Z, Jolfaei A (2021) A novel conflict measurement in decision-making and its application in fault diagnosis. IEEE Trans Fuzzy Syst 29(1):186–197CrossRef
Zurück zum Zitat Zhang L, Xiao F (2022) A novel belief \(\chi\)2 divergence for multisource information fusion and its application in pattern classification. Int J Intell Syst 37(10):7968–7991CrossRef Zhang L, Xiao F (2022) A novel belief \(\chi\)2 divergence for multisource information fusion and its application in pattern classification. Int J Intell Syst 37(10):7968–7991CrossRef
Zurück zum Zitat Zhang Z, Liu Z, Ma Z, Zhang Y, Wang H (2022) A new belief-based incomplete pattern unsupervised classification method. IEEE Trans Knowl Data Eng 34(11):5084–5097CrossRef Zhang Z, Liu Z, Ma Z, Zhang Y, Wang H (2022) A new belief-based incomplete pattern unsupervised classification method. IEEE Trans Knowl Data Eng 34(11):5084–5097CrossRef
Zurück zum Zitat Zhao K, Sun R, Li L, Hou M, Yuan G, Sun R (2021) An improved evidence fusion algorithm in multi-sensor systems. Appl Intell 51(11):7614–7624CrossRef Zhao K, Sun R, Li L, Hou M, Yuan G, Sun R (2021) An improved evidence fusion algorithm in multi-sensor systems. Appl Intell 51(11):7614–7624CrossRef
Zurück zum Zitat Zhu C, Xiao F (2021) A belief hellinger distance for D-S evidence theory and its application in pattern recognition. Eng Appl Artif Intell 106:104452CrossRef Zhu C, Xiao F (2021) A belief hellinger distance for D-S evidence theory and its application in pattern recognition. Eng Appl Artif Intell 106:104452CrossRef
Metadaten
Titel
An effective conflict management method based on belief similarity measure and entropy for multi-sensor data fusion
verfasst von
Zhe Liu
Publikationsdatum
19.06.2023
Verlag
Springer Netherlands
Erschienen in
Artificial Intelligence Review / Ausgabe 12/2023
Print ISSN: 0269-2821
Elektronische ISSN: 1573-7462
DOI
https://doi.org/10.1007/s10462-023-10533-0

Weitere Artikel der Ausgabe 12/2023

Artificial Intelligence Review 12/2023 Zur Ausgabe

Premium Partner