Skip to main content
Erschienen in: Flow, Turbulence and Combustion 1/2017

22.05.2017

Perspectives on the Phenomenology and Modeling of Boundary Layer Transition

verfasst von: Paul A. Durbin

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article is a perspective review of boundary layer transition. Both orderly and bypass transition are discussed, but with a decided emphasis on bypass routes. The focus is on transition in a natural, perturbed environment. Then orderly transition occurs through Λ vortices, that develop locally on instability waves. The precursors to bypass transition are boundary layer ‘streaks’. Transition proceeds through inner and outer mode secondary instability, leading to patches of turbulence: in zero pressure gradient, bypass transition develops through local, undulatory, outer mode breakdown; in sufficiently adverse pressure gradient, bypass transition proceeds through inner mode instability, which may be of varicose or of helical form. Phenomenology of the creation, growth and breakdown of streaks is surveyed. Theories of shear sheltering, transient and optimal growth, and Orr-Sommerfeld continuous mode resonance are summarized. Recent developments in predictive modeling are summarized. These include laminar fluctuation, and intermittency models. Some open questions are discussed, as are needs for further research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
modulo Squire’s transformation
 
Literatur
4.
Zurück zum Zitat Drazin, P.G.: Introduction to Hydrodynamic Stability. Cambridge University Press (2002) Drazin, P.G.: Introduction to Hydrodynamic Stability. Cambridge University Press (2002)
5.
Zurück zum Zitat White, F.M.: Viscous Fluid Flow, 2nd edn. McGraw-Hill, Inc (1991) White, F.M.: Viscous Fluid Flow, 2nd edn. McGraw-Hill, Inc (1991)
6.
Zurück zum Zitat Grosch, C.E., Salwen, H.: The continuous spectrum of the Orr-Sommerfeld equation. Part 1. The spectrum and the eigenfunctions. J. Fluid Mech. 68, 33–54 (1978)CrossRefMATH Grosch, C.E., Salwen, H.: The continuous spectrum of the Orr-Sommerfeld equation. Part 1. The spectrum and the eigenfunctions. J. Fluid Mech. 68, 33–54 (1978)CrossRefMATH
11.
Zurück zum Zitat Schlatter, P., Li, Q., Brethouwer, G., Johansson, A.V., Henningson, D.S.: Structure of a turbulent boundary layer studied by DNS. In: Kuerten, H., Geurts, B., Armenio, V., Fröhlich, J. (eds.) Direct and Large-Eddy Simulation VIII, pp. 9–14. Springer Netherlands, Dordrecht (2011). doi:10.1007/978-94-007-2482-2_2 CrossRef Schlatter, P., Li, Q., Brethouwer, G., Johansson, A.V., Henningson, D.S.: Structure of a turbulent boundary layer studied by DNS. In: Kuerten, H., Geurts, B., Armenio, V., Fröhlich, J. (eds.) Direct and Large-Eddy Simulation VIII, pp. 9–14. Springer Netherlands, Dordrecht (2011). doi:10.​1007/​978-94-007-2482-2_​2 CrossRef
13.
Zurück zum Zitat Reshotko, E.A.: Boundary layer stability and transition. Annu. Rev. Fluid Mech. 8, 311–349 (1976)CrossRef Reshotko, E.A.: Boundary layer stability and transition. Annu. Rev. Fluid Mech. 8, 311–349 (1976)CrossRef
17.
Zurück zum Zitat Moffatt, H.K.: In: Proceedings URSI-IUGG International Colloquium on Atmospheric Turbulence and Radio Wave Propagation, Moscow: Nauka, pp. 139–154 (1967) Moffatt, H.K.: In: Proceedings URSI-IUGG International Colloquium on Atmospheric Turbulence and Radio Wave Propagation, Moscow: Nauka, pp. 139–154 (1967)
19.
Zurück zum Zitat Butler, K.M., Farrell, B.F.: Three-dimensional optimal perturbations in viscous flow. Phys. Fluids 4(8), 1637–1650 (1992)CrossRef Butler, K.M., Farrell, B.F.: Three-dimensional optimal perturbations in viscous flow. Phys. Fluids 4(8), 1637–1650 (1992)CrossRef
20.
22.
Zurück zum Zitat Luchini, P.: Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289–309 (2000)MathSciNetCrossRefMATH Luchini, P.: Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289–309 (2000)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Bose, R., Durbin, P.A.: Transition to turbulence by interaction of free-stream and discrete mode perturbations. Phys. Fluids 28(11), 114,105 (2016b). doi:10.1063/1.4966978 CrossRef Bose, R., Durbin, P.A.: Transition to turbulence by interaction of free-stream and discrete mode perturbations. Phys. Fluids 28(11), 114,105 (2016b). doi:10.​1063/​1.​4966978 CrossRef
24.
Zurück zum Zitat Brinkerhoff, J.R., Yaras, M.I.: Numerical investigation of transition in a boundary layer subjected to favourable and adverse streamwise pressure gradients and elevated free stream turbulence. J. Fluid Mech. 781, 52–86 (2015). doi:10.1017/jfm.2015.457 MathSciNetCrossRefMATH Brinkerhoff, J.R., Yaras, M.I.: Numerical investigation of transition in a boundary layer subjected to favourable and adverse streamwise pressure gradients and elevated free stream turbulence. J. Fluid Mech. 781, 52–86 (2015). doi:10.​1017/​jfm.​2015.​457 MathSciNetCrossRefMATH
25.
Zurück zum Zitat Rao, V.N., Jefferson-Loveday, R., Tucker, P.G., Lardeau, S.: Large eddy simulations in turbines: Influence of roughness and free-stream turbulence. Flow Turbul. Combust. 92(1-2), 543–561 (2014)CrossRef Rao, V.N., Jefferson-Loveday, R., Tucker, P.G., Lardeau, S.: Large eddy simulations in turbines: Influence of roughness and free-stream turbulence. Flow Turbul. Combust. 92(1-2), 543–561 (2014)CrossRef
26.
Zurück zum Zitat Gostelow, J.P., Blunden, A.R., Walker, G.J.: Effects of free-stream turbulence and adverse pressure gradients on boundary layer transition. J. Turbomach. 116, 392–404 (1994). doi:10.1115/1.2929426 CrossRef Gostelow, J.P., Blunden, A.R., Walker, G.J.: Effects of free-stream turbulence and adverse pressure gradients on boundary layer transition. J. Turbomach. 116, 392–404 (1994). doi:10.​1115/​1.​2929426 CrossRef
27.
Zurück zum Zitat Walker, G.J., Gostelow, J.P.: Effects of adverse pressure gradients on the nature and length of boundary layer transition. J. Turbomach. 112, 196–205 (1989)CrossRef Walker, G.J., Gostelow, J.P.: Effects of adverse pressure gradients on the nature and length of boundary layer transition. J. Turbomach. 112, 196–205 (1989)CrossRef
28.
29.
Zurück zum Zitat Bose, R.: Mixed Mode Transition to Turbulence in Boundary Layers. Iowa State University, PhD thesis (2016) Bose, R.: Mixed Mode Transition to Turbulence in Boundary Layers. Iowa State University, PhD thesis (2016)
31.
34.
Zurück zum Zitat Alfredsson, P.H., Matsubara, M.: Streaky structures in transition. In: Henkes, R.A.W.M., van Ingen, J.L. (eds.) Transitional Boundary Layers in Aeronautics, pp. 374–386. Elsevier Science Pub. (1996) Alfredsson, P.H., Matsubara, M.: Streaky structures in transition. In: Henkes, R.A.W.M., van Ingen, J.L. (eds.) Transitional Boundary Layers in Aeronautics, pp. 374–386. Elsevier Science Pub. (1996)
35.
Zurück zum Zitat Jacobs, R.G., Durbin, P.A.: Bypass transition phenomena studied by computer simulation. Report no. TF-77, Stanford University, Department of Mechanical Engineering (2000a) Jacobs, R.G., Durbin, P.A.: Bypass transition phenomena studied by computer simulation. Report no. TF-77, Stanford University, Department of Mechanical Engineering (2000a)
37.
Zurück zum Zitat Leib, S.J., Wundrow, D.W., Goldstein, M.E.: Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169–203 (1999)MathSciNetCrossRefMATH Leib, S.J., Wundrow, D.W., Goldstein, M.E.: Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169–203 (1999)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Bertolotti, F.P.: Response of the Blasius boundary layer to free-stream vorticity. Phys. Fluids 9(8), 2286–2299 (1997)CrossRef Bertolotti, F.P.: Response of the Blasius boundary layer to free-stream vorticity. Phys. Fluids 9(8), 2286–2299 (1997)CrossRef
39.
Zurück zum Zitat Kendall, J.M.: Experiments on boundary-layer receptivity to freestream turbulence. 36th AIAA Aerospace Sciences Meeting and Exhibit AIAA-98-0530, 10.2514/6.1998-530 (1998) Kendall, J.M.: Experiments on boundary-layer receptivity to freestream turbulence. 36th AIAA Aerospace Sciences Meeting and Exhibit AIAA-98-0530, 10.​2514/​6.​1998-530 (1998)
40.
Zurück zum Zitat Westin, K.J.A., Boiko, A.V., Klingmann, B.G.B., Kozlov, V.V., Alfredsson, P.H.: Experiments in a boundary layer subjected to freestream turbulence. Part I. Boundary layer structure and receptivity. J. Fluid Mech. 281, 193–218 (1994)CrossRef Westin, K.J.A., Boiko, A.V., Klingmann, B.G.B., Kozlov, V.V., Alfredsson, P.H.: Experiments in a boundary layer subjected to freestream turbulence. Part I. Boundary layer structure and receptivity. J. Fluid Mech. 281, 193–218 (1994)CrossRef
43.
Zurück zum Zitat Bhaskaran, R., Lele, S.K.: Large eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade. J. Turbul. 11. doi:10.1080/14685241003705756 (2010) Bhaskaran, R., Lele, S.K.: Large eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade. J. Turbul. 11. doi:10.​1080/​1468524100370575​6 (2010)
44.
Zurück zum Zitat Brandt, L., Schlatter, P., Henningson, D.S.: Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167–198 (2004)MathSciNetCrossRefMATH Brandt, L., Schlatter, P., Henningson, D.S.: Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167–198 (2004)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Durbin, P.A., Pettersson Reif, B.A.: Statistical Theory and Modeling for Turbulent Flows, 2nd edn. John Wiley & Sons, Chichester, U.K.; New York, U.S.A. (2010). ISBN: 978-0-470-68931-8CrossRefMATH Durbin, P.A., Pettersson Reif, B.A.: Statistical Theory and Modeling for Turbulent Flows, 2nd edn. John Wiley & Sons, Chichester, U.K.; New York, U.S.A. (2010). ISBN: 978-0-470-68931-8CrossRefMATH
47.
48.
Zurück zum Zitat Matsubara, M., Alfredsson, P.: Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149–168 (2001)CrossRefMATH Matsubara, M., Alfredsson, P.: Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149–168 (2001)CrossRefMATH
57.
Zurück zum Zitat Liu, Y., Zaki, T.A., Durbin, P.A.: Floquet analysis of secondary instability of boundary layers distorted by Klebanoff streaks and Tollmien-Schlichting waves. Phys. Fluids 20(124102). doi:10.1017/S0022112008001201 (2008b) Liu, Y., Zaki, T.A., Durbin, P.A.: Floquet analysis of secondary instability of boundary layers distorted by Klebanoff streaks and Tollmien-Schlichting waves. Phys. Fluids 20(124102). doi:10.​1017/​S002211200800120​1 (2008b)
58.
Zurück zum Zitat Chau-Lyan, C., Choudhari, M.: Boundary-layer receptivity and integrated transition prediction. AIAA, paper 2005–0526 (2005) Chau-Lyan, C., Choudhari, M.: Boundary-layer receptivity and integrated transition prediction. AIAA, paper 2005–0526 (2005)
59.
Zurück zum Zitat Reed, H.L., Saric, W.S., Arnal, D.: Linear stability theory applied to boundary layers. Annu. Rev. Fluid Mech. 28, 389–428 (1996)MathSciNetCrossRef Reed, H.L., Saric, W.S., Arnal, D.: Linear stability theory applied to boundary layers. Annu. Rev. Fluid Mech. 28, 389–428 (1996)MathSciNetCrossRef
61.
Zurück zum Zitat Abu-Ghannam, B.J., Shaw, R.: Natural transition of boundary layers – the effects of turbulence, pressure gradient, and flow history. J. Mech. Eng. Sci. 22, 213–228 (1980)CrossRef Abu-Ghannam, B.J., Shaw, R.: Natural transition of boundary layers – the effects of turbulence, pressure gradient, and flow history. J. Mech. Eng. Sci. 22, 213–228 (1980)CrossRef
62.
63.
Zurück zum Zitat Suzen, Y.B., Huang, P.G.: Modeling of flow transition using an intermittency transport equation. J. Fluids Eng. 122, 273–284 (1999)CrossRef Suzen, Y.B., Huang, P.G.: Modeling of flow transition using an intermittency transport equation. J. Fluids Eng. 122, 273–284 (1999)CrossRef
64.
Zurück zum Zitat Praisner, T.J., Grover, E.A., Rice, M.J., Clark, J.P.: Predicting transition in turbomachinery—part ii: Model validation and benchmarking. J. Turbomach. 129, 14–22 (2004). doi:10.1115/1.2366528 CrossRef Praisner, T.J., Grover, E.A., Rice, M.J., Clark, J.P.: Predicting transition in turbomachinery—part ii: Model validation and benchmarking. J. Turbomach. 129, 14–22 (2004). doi:10.​1115/​1.​2366528 CrossRef
65.
Zurück zum Zitat Savill, A.M.: One Point Closures Applied to Transition. In: Hallbäck, M. et al. (eds.) Turbulence and Transition, Kluwer Academic Publishers, pp. 233–268 (1999) Savill, A.M.: One Point Closures Applied to Transition. In: Hallbäck, M. et al. (eds.) Turbulence and Transition, Kluwer Academic Publishers, pp. 233–268 (1999)
66.
Zurück zum Zitat Pecnik, R., Pieringer, P., Sanz, W.: Numerical Investigation of the Secondary Flow of a Transonic Turbine Stage Using Various Turbulence Closures. Tech. Rep. GT2005-68754 ASME Turbo Expo 2005: Power for Land, Sea and Air (2005) Pecnik, R., Pieringer, P., Sanz, W.: Numerical Investigation of the Secondary Flow of a Transonic Turbine Stage Using Various Turbulence Closures. Tech. Rep. GT2005-68754 ASME Turbo Expo 2005: Power for Land, Sea and Air (2005)
67.
Zurück zum Zitat Wu, X., Durbin, P.A.: Boundary layer transition induced by periodic wakes. J. Turbomach. 122(3), 442–449 (2000)CrossRef Wu, X., Durbin, P.A.: Boundary layer transition induced by periodic wakes. J. Turbomach. 122(3), 442–449 (2000)CrossRef
68.
Zurück zum Zitat Wilcox, D.C.: Simulation of transition with a two-equation turbulence model. AIAA J. 32(2), 247–255 (1994)CrossRefMATH Wilcox, D.C.: Simulation of transition with a two-equation turbulence model. AIAA J. 32(2), 247–255 (1994)CrossRefMATH
69.
Zurück zum Zitat Lopez, M., Walters, D.K.: Prediction of transitional and fully turbulent flow using an alternative to the laminar kinetic energy approach. J. Turbul. 17(3), 253–273 (2016)MathSciNetCrossRef Lopez, M., Walters, D.K.: Prediction of transitional and fully turbulent flow using an alternative to the laminar kinetic energy approach. J. Turbul. 17(3), 253–273 (2016)MathSciNetCrossRef
70.
Zurück zum Zitat Walters, D.K., Cokljat, D.: A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow. J. Fluids Eng. 130, 121,401–1–14 (2008)CrossRef Walters, D.K., Cokljat, D.: A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow. J. Fluids Eng. 130, 121,401–1–14 (2008)CrossRef
71.
Zurück zum Zitat Walters, D.K., Leylek, J.H.: A new model for boundary layer transition using a single-point RANS approach. J. Turbomach. 126, 193–202 (2004)CrossRef Walters, D.K., Leylek, J.H.: A new model for boundary layer transition using a single-point RANS approach. J. Turbomach. 126, 193–202 (2004)CrossRef
74.
Zurück zum Zitat Lardeau, S., Leschziner, M.A.: Modeling of wake-induced transition in linear low-pressure turbine cascades. AIAA J. 44(8), 1854–1865 (2006). doi:10.2514/1.16470 CrossRef Lardeau, S., Leschziner, M.A.: Modeling of wake-induced transition in linear low-pressure turbine cascades. AIAA J. 44(8), 1854–1865 (2006). doi:10.​2514/​1.​16470 CrossRef
76.
Zurück zum Zitat Dhawan, S., Narasimha, R.: Some properties of boundary layer during the transition from laminar to turbulent flow motion. J. Fluid Mech. 3, 418–436 (1958)CrossRefMATH Dhawan, S., Narasimha, R.: Some properties of boundary layer during the transition from laminar to turbulent flow motion. J. Fluid Mech. 3, 418–436 (1958)CrossRefMATH
77.
Zurück zum Zitat Lodefier, K., Merci, B., DeLanghe, C., Dick, E.: Transition modelling with the k − ω turbulence model and an intermittency transport equation. J of Thermal Science pp. 220–225 (2003) Lodefier, K., Merci, B., DeLanghe, C., Dick, E.: Transition modelling with the kω turbulence model and an intermittency transport equation. J of Thermal Science pp. 220–225 (2003)
78.
Zurück zum Zitat Menter, F.R., Langtry, R.B., Völker, S.: Transition modeling for general purpose CFD codes. Flow Turbul. Combust. 77, 277–303 (2006)CrossRefMATH Menter, F.R., Langtry, R.B., Völker, S.: Transition modeling for general purpose CFD codes. Flow Turbul. Combust. 77, 277–303 (2006)CrossRefMATH
79.
Zurück zum Zitat Langtry, R.B., Menter, F.R.: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47, 2894–2906 (2009)CrossRef Langtry, R.B., Menter, F.R.: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47, 2894–2906 (2009)CrossRef
80.
Zurück zum Zitat Suluksna, K., Dechaumphai, P., Juntasaro, E.: Correlations for modeling transitional boundary layers under influences of free stream turbulence and pressure gradient. Int. J. Heat Fluid Flow 30, 66–72 (2009)CrossRef Suluksna, K., Dechaumphai, P., Juntasaro, E.: Correlations for modeling transitional boundary layers under influences of free stream turbulence and pressure gradient. Int. J. Heat Fluid Flow 30, 66–72 (2009)CrossRef
81.
Zurück zum Zitat Medida, S., Baeder, J.: Numerical Prediction of Static and Dynamic Stall Phenomena Using the Γ − R 𝜃 Transition Model American Helicopter Society 67Th Annual Forum, Virginia Beach, VA, pp. 432–454 (2011) Medida, S., Baeder, J.: Numerical Prediction of Static and Dynamic Stall Phenomena Using the Γ − R 𝜃 Transition Model American Helicopter Society 67Th Annual Forum, Virginia Beach, VA, pp. 432–454 (2011)
83.
Zurück zum Zitat Ge, X., Arolla, S., Durbin, P.A.: A bypass transition model based on the intermittency function. Flow Turbul. Combust. 93(1), 37–61 (2014)CrossRef Ge, X., Arolla, S., Durbin, P.A.: A bypass transition model based on the intermittency function. Flow Turbul. Combust. 93(1), 37–61 (2014)CrossRef
84.
Zurück zum Zitat Ge, X., Durbin, P.A.: An intermittency model for predicting roughness induced transition. Int. J. Heat Fluid Flow 54, 55–64 (2015)CrossRef Ge, X., Durbin, P.A.: An intermittency model for predicting roughness induced transition. Int. J. Heat Fluid Flow 54, 55–64 (2015)CrossRef
85.
Zurück zum Zitat Menter, F.R., Smirnov, P.E., Liu, T., Avancha, R.: A one-equation local correlation-based transition model. Flow Turbul. Combust. 95(4), 583–619 (2015)CrossRef Menter, F.R., Smirnov, P.E., Liu, T., Avancha, R.: A one-equation local correlation-based transition model. Flow Turbul. Combust. 95(4), 583–619 (2015)CrossRef
86.
Metadaten
Titel
Perspectives on the Phenomenology and Modeling of Boundary Layer Transition
verfasst von
Paul A. Durbin
Publikationsdatum
22.05.2017
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 1/2017
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9819-9

Weitere Artikel der Ausgabe 1/2017

Flow, Turbulence and Combustion 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.