Skip to main content
Erschienen in: Flow, Turbulence and Combustion 1/2022

29.03.2022

Combustion of a Powder Layer of Methane Hydrate: The Influence of Layer Height and Air Velocity Above the Layer

verfasst von: Sergey Y. Misyura, Igor G. Donskoy, Andrey Yu. Manakov, Vladimir S. Morozov, Pavel A. Strizhak, Sergey S. Skiba, Aleksey K. Sagidullin

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper studies the dissociation and combustion of a layer of methane hydrate powder at a forced air flow over the upper surface of the layer (the air velocity is directed parallel to the upper surface of the layer). The influence of the layer thickness and air velocity on the combustion of gas hydrate is investigated. The calculated curves for the effect of the heat transfer coefficient, external convection and vapor concentration on the combustion temperature are obtained. The layer thickness and the air velocity significantly affect the dissociation rate of methane hydrate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aerov, M.E., Todes, O.M., Narinsky, D.A.: Apparatuses with the Steady Grain Layer: Hydraulic and Thermal Fundamentals of Operation. Khimiya, Leningrad (1979) Aerov, M.E., Todes, O.M., Narinsky, D.A.: Apparatuses with the Steady Grain Layer: Hydraulic and Thermal Fundamentals of Operation. Khimiya, Leningrad (1979)
Zurück zum Zitat Bar-Kohany, T., Sirignano, W.A.: Transient combustion of methane-hydrate sphere. Combust. Flame 163, 284–330 (2016)CrossRef Bar-Kohany, T., Sirignano, W.A.: Transient combustion of methane-hydrate sphere. Combust. Flame 163, 284–330 (2016)CrossRef
Zurück zum Zitat Cai, L., Pethica, B.A., Debeneedetti, P.G., Sundaresan, S.: Formation of cyclopentane methane binary clathrate hydrate in brine solutions. Cam. Eng. Sci. 141, 125–132 (2016)CrossRef Cai, L., Pethica, B.A., Debeneedetti, P.G., Sundaresan, S.: Formation of cyclopentane methane binary clathrate hydrate in brine solutions. Cam. Eng. Sci. 141, 125–132 (2016)CrossRef
Zurück zum Zitat Chen, X.R., Li, X.S., Chen, Z.Y., Zhang, Y., Yan, K.F., Lv, Q.-N.: Experimental investigation into the combustion characteristics of propane hydrates in porous media. Energies 8, 1242–1255 (2015)CrossRef Chen, X.R., Li, X.S., Chen, Z.Y., Zhang, Y., Yan, K.F., Lv, Q.-N.: Experimental investigation into the combustion characteristics of propane hydrates in porous media. Energies 8, 1242–1255 (2015)CrossRef
Zurück zum Zitat Chien, Y.-C., Dunn-Rankin, D.: Combustion characteristics of methane hydrate flames. Energies 12(10), 1939 (2019)CrossRef Chien, Y.-C., Dunn-Rankin, D.: Combustion characteristics of methane hydrate flames. Energies 12(10), 1939 (2019)CrossRef
Zurück zum Zitat Chong, Z.R., Yang, S.H.B., Babu, P., Linga, P., Li, X.-S.: Review of natural gas hydrates as an energy resource: prospects and challenges. Appl. Energy 162, 1633–1652 (2016)CrossRef Chong, Z.R., Yang, S.H.B., Babu, P., Linga, P., Li, X.-S.: Review of natural gas hydrates as an energy resource: prospects and challenges. Appl. Energy 162, 1633–1652 (2016)CrossRef
Zurück zum Zitat Clarke, M., Bishnoi, P.R.: Determination of the activation energy and intrinsic rate constant of methane gas hydrate dissociation. Can. J. Chem. Eng. 79, 143–147 (2001)CrossRef Clarke, M., Bishnoi, P.R.: Determination of the activation energy and intrinsic rate constant of methane gas hydrate dissociation. Can. J. Chem. Eng. 79, 143–147 (2001)CrossRef
Zurück zum Zitat Crank, J.: The Mathematics of Diffusion, 2nd edn., pp. 89–103. Oxford University Press, Oxford (1975) Crank, J.: The Mathematics of Diffusion, 2nd edn., pp. 89–103. Oxford University Press, Oxford (1975)
Zurück zum Zitat Cui, Y., Lu, C., Wu, M., Peng, Y., Yao, Y., Luo, W.: Review of exploration and production technology of natural gas hydrate. Adv. Geo-Energy Res. 2(1), 53–62 (2018)CrossRef Cui, Y., Lu, C., Wu, M., Peng, Y., Yao, Y., Luo, W.: Review of exploration and production technology of natural gas hydrate. Adv. Geo-Energy Res. 2(1), 53–62 (2018)CrossRef
Zurück zum Zitat Cui, G., Wang, S., Dong, Z., Xing, X., Shan, T., Li, Z.: Effects of the diameter and the initial center temperature on the combustion characteristics of methane hydrate spheres. Appl. Energy 257, 114058 (2020a)CrossRef Cui, G., Wang, S., Dong, Z., Xing, X., Shan, T., Li, Z.: Effects of the diameter and the initial center temperature on the combustion characteristics of methane hydrate spheres. Appl. Energy 257, 114058 (2020a)CrossRef
Zurück zum Zitat Cui, G., Dong, Z., Wang, S., Xing, X., Shan, T., Li, Z.: Effect of the water on the flame characteristics of methane hydrate combustion. Appl. Energy 259, 114205 (2020b)CrossRef Cui, G., Dong, Z., Wang, S., Xing, X., Shan, T., Li, Z.: Effect of the water on the flame characteristics of methane hydrate combustion. Appl. Energy 259, 114205 (2020b)CrossRef
Zurück zum Zitat Dagan, Y., Bar-Kohany, T.: Flame propagation through three-phase methane-hydrate particles. Combust. Flame 193, 25–35 (2018)CrossRef Dagan, Y., Bar-Kohany, T.: Flame propagation through three-phase methane-hydrate particles. Combust. Flame 193, 25–35 (2018)CrossRef
Zurück zum Zitat Falenty, A., Kuhs, W.F.: Self-preservation of CO2 gas hydrates-surface microstructure and ice perfection. J. Phys. Chem. B 113, 5975–15988 (2009)CrossRef Falenty, A., Kuhs, W.F.: Self-preservation of CO2 gas hydrates-surface microstructure and ice perfection. J. Phys. Chem. B 113, 5975–15988 (2009)CrossRef
Zurück zum Zitat Grigoriev V.A., Zorin V.M.: Theoretical Bases of Heat Engineering. Thermal Engineering Experiment, Energoatomizdat, Moscow (1988) Grigoriev V.A., Zorin V.M.: Theoretical Bases of Heat Engineering. Thermal Engineering Experiment, Energoatomizdat, Moscow (1988)
Zurück zum Zitat Hu, C.G., Li, X.-S.: Research progress of hydrate-based CO2 separation and capture from gas mixture. RSC Adv. 4, 18301–18316 (2014)CrossRef Hu, C.G., Li, X.-S.: Research progress of hydrate-based CO2 separation and capture from gas mixture. RSC Adv. 4, 18301–18316 (2014)CrossRef
Zurück zum Zitat Istomin V.A., Yakushev V.S.: Gas hydrates in nature. M.: Nedra (1992) Istomin V.A., Yakushev V.S.: Gas hydrates in nature. M.: Nedra (1992)
Zurück zum Zitat Javanmardi, J., Nasrifar, K., Najibi, S.H., Moshfeghian, M.: Economic evaluation of natural gas hydrate as an alternative for natural gas transportation. Appl. Therm. Eng. 25, 1708–1723 (2005)CrossRef Javanmardi, J., Nasrifar, K., Najibi, S.H., Moshfeghian, M.: Economic evaluation of natural gas hydrate as an alternative for natural gas transportation. Appl. Therm. Eng. 25, 1708–1723 (2005)CrossRef
Zurück zum Zitat Kim, H.C., Bishnoi, P.R., Heidemann, R.A., Rizvi, S.S.H.: Kinetics of methane hydrate dissociation. Chem. Eng. Sci. 42, 1645–1653 (1987)CrossRef Kim, H.C., Bishnoi, P.R., Heidemann, R.A., Rizvi, S.S.H.: Kinetics of methane hydrate dissociation. Chem. Eng. Sci. 42, 1645–1653 (1987)CrossRef
Zurück zum Zitat Kuhs, W.F., Genov, G., Staykova, D.K., Hansen, T.: Ice perfection and onset of anomalous preservation of gas hydrates. Phys. Chem. Chem. Phys. 6, 4917–4920 (2004)CrossRef Kuhs, W.F., Genov, G., Staykova, D.K., Hansen, T.: Ice perfection and onset of anomalous preservation of gas hydrates. Phys. Chem. Chem. Phys. 6, 4917–4920 (2004)CrossRef
Zurück zum Zitat Kutateladze, S.S., Leont’ev, A.I.: Heat Transfer, Mass Transfer, and Friction in Turbulent Boundary Layers. Hemisphere Publishing Corporation, New York (1989) Kutateladze, S.S., Leont’ev, A.I.: Heat Transfer, Mass Transfer, and Friction in Turbulent Boundary Layers. Hemisphere Publishing Corporation, New York (1989)
Zurück zum Zitat Lee, Y., Seo, Y.-J., Ahn, T., Lee, J., Lee, J.X., Kim, S.-J., Seo, Y.: CH4-Flue gas replacement occurring in sH hydrates and its significance for CH4 recovery and CO2 sequestration. Chem. Eng. J. 308, 50–58 (2017)CrossRef Lee, Y., Seo, Y.-J., Ahn, T., Lee, J., Lee, J.X., Kim, S.-J., Seo, Y.: CH4-Flue gas replacement occurring in sH hydrates and its significance for CH4 recovery and CO2 sequestration. Chem. Eng. J. 308, 50–58 (2017)CrossRef
Zurück zum Zitat Li, X.-S., Xu, C.G., Chen, Z.-Y., Wu, H.-Y.: Tetra-n-butyl ammonium bromide semiclathrate hydrate process for post-combustion capture carbon dioxide in the presence of dodecyl trimethyl ammonium chloride. Energy 35, 3902–3908 (2010)CrossRef Li, X.-S., Xu, C.G., Chen, Z.-Y., Wu, H.-Y.: Tetra-n-butyl ammonium bromide semiclathrate hydrate process for post-combustion capture carbon dioxide in the presence of dodecyl trimethyl ammonium chloride. Energy 35, 3902–3908 (2010)CrossRef
Zurück zum Zitat Li, G., Li, X.-C., Yang, B., Duan, L.-P., Huang, N.-S., Zhang, Y., et al.: The use of dual horizontal wells in gas production from hydrate accumulations. Appl. Energy 112, 1303–1310 (2013)CrossRef Li, G., Li, X.-C., Yang, B., Duan, L.-P., Huang, N.-S., Zhang, Y., et al.: The use of dual horizontal wells in gas production from hydrate accumulations. Appl. Energy 112, 1303–1310 (2013)CrossRef
Zurück zum Zitat Lu, S.M.: A global survey of gas hydrate development and reserves: Specifically in the marine field. Renew. Sustain. Energy Rev. 41, 884–900 (2015)CrossRef Lu, S.M.: A global survey of gas hydrate development and reserves: Specifically in the marine field. Renew. Sustain. Energy Rev. 41, 884–900 (2015)CrossRef
Zurück zum Zitat Maruyama, Y., Yokomori, T., Ohmura, R., Ueda, T.: Flame spreading over combustible hydrate in a laminar boundary layer. In: Proceeding of the 7th International Conference on Gas Hydrate, Edinburgh, Scotland, UK (2011) Maruyama, Y., Yokomori, T., Ohmura, R., Ueda, T.: Flame spreading over combustible hydrate in a laminar boundary layer. In: Proceeding of the 7th International Conference on Gas Hydrate, Edinburgh, Scotland, UK (2011)
Zurück zum Zitat Maruyama, Y., Fuse, M.J., Yokomori, T., Ohmura, R., Watanabe, S., Iwasaki, T., Iwabuchi, W., Ueda, T.: Experimental investigation of flame spreading over pure methane hydrate in a laminar boundary layer. Proc. Combust. Inst. 34, 2131–2138 (2013)CrossRef Maruyama, Y., Fuse, M.J., Yokomori, T., Ohmura, R., Watanabe, S., Iwasaki, T., Iwabuchi, W., Ueda, T.: Experimental investigation of flame spreading over pure methane hydrate in a laminar boundary layer. Proc. Combust. Inst. 34, 2131–2138 (2013)CrossRef
Zurück zum Zitat Mimachi, H., Takeya, S., Yoneyama, A., Hyodo, K., Takeda, T., Gotoh, Y., Murayma, T.: Natural gas storage and transportation within gas hydrate of smaller particle: size dependence of self-preservation phenomenon of natural gas hydrate. Chem. Eng. Sci. 118, 208–213 (2014)CrossRef Mimachi, H., Takeya, S., Yoneyama, A., Hyodo, K., Takeda, T., Gotoh, Y., Murayma, T.: Natural gas storage and transportation within gas hydrate of smaller particle: size dependence of self-preservation phenomenon of natural gas hydrate. Chem. Eng. Sci. 118, 208–213 (2014)CrossRef
Zurück zum Zitat Misyura, S.Y.: Developing the environmentally friendly technologies of combustion of gas hydrates. Reducing harmful emissions during combustion. Environ. Pollut. 265, 114871 (2020a)CrossRef Misyura, S.Y.: Developing the environmentally friendly technologies of combustion of gas hydrates. Reducing harmful emissions during combustion. Environ. Pollut. 265, 114871 (2020a)CrossRef
Zurück zum Zitat Misyura, S.Y.: Dissociation of various gas hydrates (methane hydrate, double gas hydrates of methane-propane and methane-isopropanol) during combustion: assessing the combustion efficiency. Energy 206, 118120 (2020b)CrossRef Misyura, S.Y.: Dissociation of various gas hydrates (methane hydrate, double gas hydrates of methane-propane and methane-isopropanol) during combustion: assessing the combustion efficiency. Energy 206, 118120 (2020b)CrossRef
Zurück zum Zitat Misyura, S.Y., Donskoy, I.G.: Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition. Fuel 262, 116614 (2020)CrossRef Misyura, S.Y., Donskoy, I.G.: Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition. Fuel 262, 116614 (2020)CrossRef
Zurück zum Zitat Misyura, S.Y., Donskoy, I.G.: Dissociation and combustion of a layer of methane hydrate powder: ways to increase the efficiency of combustion and degassing. Energies 14, 4855 (2021)CrossRef Misyura, S.Y., Donskoy, I.G.: Dissociation and combustion of a layer of methane hydrate powder: ways to increase the efficiency of combustion and degassing. Energies 14, 4855 (2021)CrossRef
Zurück zum Zitat Misyura, S.Y., Donskoy, I.G.: Dissociation of gas hydrate for a single particle and for a thick layer of particles: the effect of self-preservation on the dissociation kinetics of the gas hydrate layer. Fuel 314, 122759 (2022a)CrossRef Misyura, S.Y., Donskoy, I.G.: Dissociation of gas hydrate for a single particle and for a thick layer of particles: the effect of self-preservation on the dissociation kinetics of the gas hydrate layer. Fuel 314, 122759 (2022a)CrossRef
Zurück zum Zitat Misyura, S.Y., Donskoy, I.G.: Co-modeling of methane hydrate dissociation and combustion in a boundary layer. Combust. Flame 238, 111912 (2022b)CrossRef Misyura, S.Y., Donskoy, I.G.: Co-modeling of methane hydrate dissociation and combustion in a boundary layer. Combust. Flame 238, 111912 (2022b)CrossRef
Zurück zum Zitat Misyura, S.Y., Manakov, A.Y., Morozov, V.S., Nyashina, G.S., Gaidukova, O.S., Skiba, S.S., Volkov, R.S., Voytkov, I.S.: The influence of key parameters on combustion of double gas hydrate. J. Nat. Gas Sci. Eng. 80, 103396 (2020)CrossRef Misyura, S.Y., Manakov, A.Y., Morozov, V.S., Nyashina, G.S., Gaidukova, O.S., Skiba, S.S., Volkov, R.S., Voytkov, I.S.: The influence of key parameters on combustion of double gas hydrate. J. Nat. Gas Sci. Eng. 80, 103396 (2020)CrossRef
Zurück zum Zitat Misyura, S.Y., Donskoy, I.G., Manakov, A.Y., Morozov, V.S., Strizhak, P.A., Skiba, S.S., Sagidullin, A.K.: Studying the influence of key parameters on the methane hydrate dissociation in order to improve the storage efficiency. J. Energy Storage 44, 103288 (2021)CrossRef Misyura, S.Y., Donskoy, I.G., Manakov, A.Y., Morozov, V.S., Strizhak, P.A., Skiba, S.S., Sagidullin, A.K.: Studying the influence of key parameters on the methane hydrate dissociation in order to improve the storage efficiency. J. Energy Storage 44, 103288 (2021)CrossRef
Zurück zum Zitat Nakamura, Y., Katsuki, R., Yokomori, T., Ohmura, R., Takahashi, M., Iwasaki, T., Uchida, K., Ueda, T.: Combustion characteristics of methane hydrate in a laminar boundary layer. Energy Fuels 23, 1445–1449 (2009)CrossRef Nakamura, Y., Katsuki, R., Yokomori, T., Ohmura, R., Takahashi, M., Iwasaki, T., Uchida, K., Ueda, T.: Combustion characteristics of methane hydrate in a laminar boundary layer. Energy Fuels 23, 1445–1449 (2009)CrossRef
Zurück zum Zitat Nguyen, A.H., Koc, M.A., Shepherd, T.D., Molinero, V.: Structure of the ice-clathrate interface. J. Phys. Chem. C 119, 4104–4117 (2015)CrossRef Nguyen, A.H., Koc, M.A., Shepherd, T.D., Molinero, V.: Structure of the ice-clathrate interface. J. Phys. Chem. C 119, 4104–4117 (2015)CrossRef
Zurück zum Zitat Shimada, W., Takeya, S., Kamata, Y., Uchida, T., Nagao, J., Ebinuma, T., Narita, H.: Texture change of ice on anomalously preserved methane clathrate hydrate. J. Phys. Chem. B 109, 5802–5807 (2005)CrossRef Shimada, W., Takeya, S., Kamata, Y., Uchida, T., Nagao, J., Ebinuma, T., Narita, H.: Texture change of ice on anomalously preserved methane clathrate hydrate. J. Phys. Chem. B 109, 5802–5807 (2005)CrossRef
Zurück zum Zitat Sloan, E.D., Jr., Koh, C.A.: Clathrate Hydrates of Natural Gases, 3rd edn. CRC Press, Boca Raton (2008) Sloan, E.D., Jr., Koh, C.A.: Clathrate Hydrates of Natural Gases, 3rd edn. CRC Press, Boca Raton (2008)
Zurück zum Zitat Snegirev, AYu.: Perfectly stirred reactor model to evaluate extinction of diffusion flame. Combust. Flame 162, 3622–2631 (2015)CrossRef Snegirev, AYu.: Perfectly stirred reactor model to evaluate extinction of diffusion flame. Combust. Flame 162, 3622–2631 (2015)CrossRef
Zurück zum Zitat Spalding, D.B.: Combustion and Mass Transfer. Pergamon Press, Oxford (1979) Spalding, D.B.: Combustion and Mass Transfer. Pergamon Press, Oxford (1979)
Zurück zum Zitat Sum, A.K., Koh, C.A., Sloan, E.D.: Developing a comprehensive understanding and model of hydrate in multiphase flow: from laboratory measurements to field applications. Energy Fuels 26, 4046–4052 (2012)CrossRef Sum, A.K., Koh, C.A., Sloan, E.D.: Developing a comprehensive understanding and model of hydrate in multiphase flow: from laboratory measurements to field applications. Energy Fuels 26, 4046–4052 (2012)CrossRef
Zurück zum Zitat Takeya, S., Ripmeester, J.A.: Anomalous preservation of CH4 hydrate and its dependence on the morphology of ice. ChemPhysChem 11, 70–73 (2010)CrossRef Takeya, S., Ripmeester, J.A.: Anomalous preservation of CH4 hydrate and its dependence on the morphology of ice. ChemPhysChem 11, 70–73 (2010)CrossRef
Zurück zum Zitat Takeya, S., Uchida, T., Nagao, J., Ohmura, R., Shimada, W., Kamata, Y., Ebinuma, T., Narita, H.: Particle size effect of CH4 hydrate for self-preservation. Chem. Eng. Sci. 60, 1383–1387 (2005)CrossRef Takeya, S., Uchida, T., Nagao, J., Ohmura, R., Shimada, W., Kamata, Y., Ebinuma, T., Narita, H.: Particle size effect of CH4 hydrate for self-preservation. Chem. Eng. Sci. 60, 1383–1387 (2005)CrossRef
Zurück zum Zitat Wang, Y., Li, X.C., Li, G., Zhang, Y., Li, B., Chen, Z.Y.: Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system. Appl. Energy 110, 90–97 (2013)CrossRef Wang, Y., Li, X.C., Li, G., Zhang, Y., Li, B., Chen, Z.Y.: Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system. Appl. Energy 110, 90–97 (2013)CrossRef
Zurück zum Zitat Windmeier, C., Oellrich, L.R.: Theoretical study of gas hydrate dissociation kinetics: model predictions. J. Phys. Chem. A. 117, 12184–12195 (2013)CrossRef Windmeier, C., Oellrich, L.R.: Theoretical study of gas hydrate dissociation kinetics: model predictions. J. Phys. Chem. A. 117, 12184–12195 (2013)CrossRef
Zurück zum Zitat Wu, F.H., Padilla, R.E., Dunn-Rankin, D., Chen, G.B., Chao, Y.C.: Thermal structure of methane hydrate fueled flames. Proc. Combust. Inst. 36, 4391–4398 (2017)CrossRef Wu, F.H., Padilla, R.E., Dunn-Rankin, D., Chen, G.B., Chao, Y.C.: Thermal structure of methane hydrate fueled flames. Proc. Combust. Inst. 36, 4391–4398 (2017)CrossRef
Zurück zum Zitat Xie, Y., Li, G., Liu, D., Liu, N., Qi, Y., Liang, D., et al.: Experimental study on a small scale of gas hydrate cold storage apparatus. Appl. Energy 87, 3340–3346 (2010)CrossRef Xie, Y., Li, G., Liu, D., Liu, N., Qi, Y., Liang, D., et al.: Experimental study on a small scale of gas hydrate cold storage apparatus. Appl. Energy 87, 3340–3346 (2010)CrossRef
Zurück zum Zitat Yoshioka, T., Yamamoto, Y., Yokomori, T., Ohmura, R., Ueda, T.: Experimental study on combustion of methane hydrate sphere. Exp. Fluids 56, 192 (2015)CrossRef Yoshioka, T., Yamamoto, Y., Yokomori, T., Ohmura, R., Ueda, T.: Experimental study on combustion of methane hydrate sphere. Exp. Fluids 56, 192 (2015)CrossRef
Zurück zum Zitat Zhang, G., Rogers, R.E.: Ultra-stability of gas hydrates at 1 atm and 268,2K. Chem. Eng. Sci. 63, 2066–2074 (2008)CrossRef Zhang, G., Rogers, R.E.: Ultra-stability of gas hydrates at 1 atm and 268,2K. Chem. Eng. Sci. 63, 2066–2074 (2008)CrossRef
Zurück zum Zitat Zhong, D., Englezos, P.: Methane separation from coal mine methane gas by tetra-n-butyl ammonium bromide semiclathrate hydrate formation. Energy Fuels 26, 2098–2106 (2012)CrossRef Zhong, D., Englezos, P.: Methane separation from coal mine methane gas by tetra-n-butyl ammonium bromide semiclathrate hydrate formation. Energy Fuels 26, 2098–2106 (2012)CrossRef
Metadaten
Titel
Combustion of a Powder Layer of Methane Hydrate: The Influence of Layer Height and Air Velocity Above the Layer
verfasst von
Sergey Y. Misyura
Igor G. Donskoy
Andrey Yu. Manakov
Vladimir S. Morozov
Pavel A. Strizhak
Sergey S. Skiba
Aleksey K. Sagidullin
Publikationsdatum
29.03.2022
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 1/2022
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-022-00325-x

Weitere Artikel der Ausgabe 1/2022

Flow, Turbulence and Combustion 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.