Skip to main content
Erschienen in: Flow, Turbulence and Combustion 1/2023

29.07.2022

A coupled phase-invariant POD and DMD analysis for the characterization of in-cylinder cycle-to-cycle flow variations under different swirl conditions

verfasst von: Mengqi Liu, Fengnian Zhao, David L. S. Hung

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The cycle-to-cycle variations (CCV) of in-cylinder flow make critical impact on internal combustion engine performance. The flow structure evolution and its cyclic variations need to be fully understood. In this study, a novel approach which couples proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) is proposed to identify the CCV features of in-cylinder flow under various swirl conditions. The methodology is applied to a time-resolved high-speed particle image velocimetry (PIV) dataset which measures the crank angle resolved flow field on a swirl plane 30 mm below the injector tip in the cylinder. Phase-invariant POD and DMD analyses are conducted on 121 phase angles which cover the majority of in-cylinder flow evolution stroke from -300 crank angle degree (CAD) after top dead center (TDC) to -60 CAD after TDC with a 2-CAD resolution. The modal decomposition analyses are applied on 100 engine cycles individually to investigate the cyclic variation. Phase-invariant POD identifies the steady structure and coherent structure of the in-cycle engine flow evolution features. A novel stepwise traversal correlation search method (STCSM) is proposed to connect the DMD modes with POD decomposed coherent structure. This analysis approach is capable of identifying the characteristic frequencies and correlating them with the dynamical decay rates of underlying flow coherent structures with regards to CCV. In summary, the CCV of dynamical features for all swirl ratio conditions show similar variation level at intake stroke. Inducing a higher swirl ratio can minimize the effect of intake flow dynamics and suppress the cyclic variability of engine flow at compression stroke.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Brunton, S.L., Kutz, J.N.: Data-driven science and engineering: machine learning, dynamical systems, and control. Cambridge University Press, Cambridge (2019)CrossRefMATH Brunton, S.L., Kutz, J.N.: Data-driven science and engineering: machine learning, dynamical systems, and control. Cambridge University Press, Cambridge (2019)CrossRefMATH
Zurück zum Zitat Chen, H., Xu, M., Hung, D.L.S.: Analyzing in-cylinder flow evolution and variations in a spark-ignition direct-injection engine using phase-invariant proper orthogonal decomposition technique. In: WCX World Congress Experience, pp. 01–1174. SAE International, Detroit, MI (2014). https://doi.org/10.4271/2014-01-1174 Chen, H., Xu, M., Hung, D.L.S.: Analyzing in-cylinder flow evolution and variations in a spark-ignition direct-injection engine using phase-invariant proper orthogonal decomposition technique. In: WCX World Congress Experience, pp. 01–1174. SAE International, Detroit, MI (2014). https://​doi.​org/​10.​4271/​2014-01-1174
Zurück zum Zitat Dreher, D., Schmidt, M., Welch, C., Ourza, S., Zündorf, S., Maucher, J., Peters, S., Dreizler, A., Böhm, B., Hanuschkin, A.: Deep feature learning of in-cylinder flow fields to analyze cycle-to-cycle variations in an SI engine. Int. J. Engine Res. 22(11), 3263–3285 (2021). https://doi.org/10.1177/1468087420974148CrossRef Dreher, D., Schmidt, M., Welch, C., Ourza, S., Zündorf, S., Maucher, J., Peters, S., Dreizler, A., Böhm, B., Hanuschkin, A.: Deep feature learning of in-cylinder flow fields to analyze cycle-to-cycle variations in an SI engine. Int. J. Engine Res. 22(11), 3263–3285 (2021). https://​doi.​org/​10.​1177/​1468087420974148​CrossRef
Zurück zum Zitat Li, W., Li, Y., Wang, T., Jia, M., Che, Z., Liu, D.: Investigation of the effect of the in-cylinder tumble motion on cycle-to-cycle variations in a direct injection spark ignition (DISI) engine using large eddy simulation (LES). Flow Turbul. Combust. 98(2), 601–631 (2017). https://doi.org/10.1007/s10494-016-9773-yCrossRef Li, W., Li, Y., Wang, T., Jia, M., Che, Z., Liu, D.: Investigation of the effect of the in-cylinder tumble motion on cycle-to-cycle variations in a direct injection spark ignition (DISI) engine using large eddy simulation (LES). Flow Turbul. Combust. 98(2), 601–631 (2017). https://​doi.​org/​10.​1007/​s10494-016-9773-yCrossRef
Zurück zum Zitat Liu, M., Zhao, F., Li, X., Xu, M., Hung, D.L.S.: Dynamic mode decomposition for extracting cycle-to-cycle variation of sidi engine in-cylinder flow under motoring condition. In: Proceedings of the ASME 2020 Internal Combustion Engine Division Fall Technical Conference. Virtual, Online. November 4–6, 2020. V001T06A003. ASME. https://doi.org/10.1115/ICEF2020-2917 Liu, M., Zhao, F., Li, X., Xu, M., Hung, D.L.S.: Dynamic mode decomposition for extracting cycle-to-cycle variation of sidi engine in-cylinder flow under motoring condition. In: Proceedings of the ASME 2020 Internal Combustion Engine Division Fall Technical Conference. Virtual, Online. November 4–6, 2020. V001T06A003. ASME. https://​doi.​org/​10.​1115/​ICEF2020-2917
Zurück zum Zitat Lumley, J.: The structure of inhomogeneous turbulence, atmospheric turbulence and wave propagation, pp. 166–178. AM Yaglom, VI Tatarski (1967) Lumley, J.: The structure of inhomogeneous turbulence, atmospheric turbulence and wave propagation, pp. 166–178. AM Yaglom, VI Tatarski (1967)
Zurück zum Zitat Qin, W., Zhou, L., Liu, D., Jia, M., Xie, M.: Investigation of in-cylinder engine flow quadruple decomposition dynamical behavior using proper orthogonal decomposition and dynamic mode decomposition methods. ASME. J. Eng. Gas Turbines Power. 141(8), 081004 (2019). https://doi.org/10.1115/1.4042725CrossRef Qin, W., Zhou, L., Liu, D., Jia, M., Xie, M.: Investigation of in-cylinder engine flow quadruple decomposition dynamical behavior using proper orthogonal decomposition and dynamic mode decomposition methods. ASME. J. Eng. Gas Turbines Power. 141(8), 081004 (2019). https://​doi.​org/​10.​1115/​1.​4042725CrossRef
Zurück zum Zitat Reitz, R.D., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., Agarwal, A., Arcoumanis, D., Assanis, D., Bae, C., Boulouchos, K., Canakci, M., Curran, S., Denbratt, I., Gavaises, M., Guenthner, M., Hasse, C., Huang, Z., Ishiyama, T., Johansson, B., Johnson, T.V., Kalghatgi, G., Koike, M., Kong, S.C., Leipertz, A., Miles, P., Novella, R., Onorati, A., Richter, M., Shuai, S., Siebers, D., Su, W., Trujillo, M., Uchida, N., Vaglieco, B.M., Wagner, R.M., Zhao, H.: IJER editorial: the future of the internal combustion engine. Int. J. Engine Res. 21(1), 3–10 (2020). https://doi.org/10.1177/1468087419877990CrossRef Reitz, R.D., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., Agarwal, A., Arcoumanis, D., Assanis, D., Bae, C., Boulouchos, K., Canakci, M., Curran, S., Denbratt, I., Gavaises, M., Guenthner, M., Hasse, C., Huang, Z., Ishiyama, T., Johansson, B., Johnson, T.V., Kalghatgi, G., Koike, M., Kong, S.C., Leipertz, A., Miles, P., Novella, R., Onorati, A., Richter, M., Shuai, S., Siebers, D., Su, W., Trujillo, M., Uchida, N., Vaglieco, B.M., Wagner, R.M., Zhao, H.: IJER editorial: the future of the internal combustion engine. Int. J. Engine Res. 21(1), 3–10 (2020). https://​doi.​org/​10.​1177/​1468087419877990​CrossRef
Zurück zum Zitat Rulli, F., Fontanesi, S., d’Adamo, A., Berni, F.: A critical review of flow field analysis methods involving proper orthogonal decomposition and quadruple proper orthogonal decomposition for internal combustion engines. Int. J. Engine Res. 22(1), 222–242 (2021). https://doi.org/10.1177/1468087419836178CrossRef Rulli, F., Fontanesi, S., d’Adamo, A., Berni, F.: A critical review of flow field analysis methods involving proper orthogonal decomposition and quadruple proper orthogonal decomposition for internal combustion engines. Int. J. Engine Res. 22(1), 222–242 (2021). https://​doi.​org/​10.​1177/​1468087419836178​CrossRef
Zurück zum Zitat Van Dam, N., Sjöberg, M., Som, S.: Large-eddy simulations of spray variability effects on flow variability in a direct-injection spark-ignition engine under non-combusting operating conditions. In: WCX World Congress Experience, pp. 01–0196. SAE International, Detroit, MI (2018). https://doi.org/10.4271/2018-01-0196 Van Dam, N., Sjöberg, M., Som, S.: Large-eddy simulations of spray variability effects on flow variability in a direct-injection spark-ignition engine under non-combusting operating conditions. In: WCX World Congress Experience, pp. 01–0196. SAE International, Detroit, MI (2018). https://​doi.​org/​10.​4271/​2018-01-0196
Zurück zum Zitat Wang, Y., Hung, D.L.S., Zhuang, H., Xu, M.: Cycle-to-cycle analysis of swirl flow fields inside a spark-ignition direct-injection engine cylinder using high-speed time-resolved particle image velocimetry. In: WCX World Congress Experience, pp. 01–0637. SAE International, Detroit, MI (2016). https://doi.org/10.4271/2016-01-0637 Wang, Y., Hung, D.L.S., Zhuang, H., Xu, M.: Cycle-to-cycle analysis of swirl flow fields inside a spark-ignition direct-injection engine cylinder using high-speed time-resolved particle image velocimetry. In: WCX World Congress Experience, pp. 01–0637. SAE International, Detroit, MI (2016). https://​doi.​org/​10.​4271/​2016-01-0637
Metadaten
Titel
A coupled phase-invariant POD and DMD analysis for the characterization of in-cylinder cycle-to-cycle flow variations under different swirl conditions
verfasst von
Mengqi Liu
Fengnian Zhao
David L. S. Hung
Publikationsdatum
29.07.2022
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 1/2023
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-022-00348-4

Weitere Artikel der Ausgabe 1/2023

Flow, Turbulence and Combustion 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.