Skip to main content
Erschienen in: Autonomous Robots 4/2012

01.11.2012

A momentum-based balance controller for humanoid robots on non-level and non-stationary ground

verfasst von: Sung-Hee Lee, Ambarish Goswami

Erschienen in: Autonomous Robots | Ausgabe 4/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent research suggests the importance of controlling rotational dynamics of a humanoid robot in balance maintenance and gait. In this paper, we present a novel balance strategy that controls both linear and angular momentum of the robot. The controller’s objective is defined in terms of the desired momenta, allowing intuitive control of the balancing behavior of the robot. By directly determining the ground reaction force (GRF) and the center of pressure (CoP) at each support foot to realize the desired momenta, this strategy can deal with non-level and non-stationary grounds, as well as different frictional properties at each foot-ground contact. When the robot cannot realize the desired values of linear and angular momenta simultaneously, the controller attributes higher priority to linear momentum at the cost of compromising angular momentum. This creates a large rotation of the upper body, reminiscent of the balancing behavior of humans. We develop a computationally efficient method to optimize GRFs and CoPs at individual foot by sequentially solving two small-scale constrained linear least-squares problems. The balance strategy is demonstrated on a simulated humanoid robot under experiments such as recovery from unknown external pushes and balancing on non-level and moving supports.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The normal torque τ n also affects \(\boldsymbol {\dot {k}}\) in the transverse plane. Actually f, p, and τ n together constitute the 6 variables that correspond to the 6 variables of the spatial momentum. Usually τ n is omitted in the discussion for simplicity because its magnitude is small.
 
2
During single support, the support base is identical to the foot contact area, whereas during double support on level ground, the support base is equivalent to the convex hull of the support areas of the two feet.
 
3
\(\boldsymbol {\dot {q}}\) is a slight abuse of notation because we do not define nor use a vector q. However, since \(\mathsf {se(3)}\), the Lie algebra of \(\mathsf {SE(3)}\), is isomorphic to ℝ6, we will use a single vector form of \(\boldsymbol {\dot {q}}\in \mathbb {R}^{6+n}\) for convenience. [ω 0]× represents a skew-symmetric matrix of a vector ω 0.
 
4
The vector δ i expresses angular momentum rate change (16) in terms of ρ i as follows:
https://static-content.springer.com/image/art%3A10.1007%2Fs10514-012-9294-z/MediaObjects/10514_2012_9294_Equa_HTML.gif
 
5
Specifically, \(\boldsymbol {\varPsi }_{k} = [\boldsymbol {\varPsi }_{k}^{0} \ldots \boldsymbol {\varPsi }_{k}^{5}]\) where
https://static-content.springer.com/image/art%3A10.1007%2Fs10514-012-9294-z/MediaObjects/10514_2012_9294_Equb_HTML.gif
and \(\boldsymbol {\kappa }_{k} = \boldsymbol {\dot {k}}_{\tau,d} + h ( {\boldsymbol{R}}_{r}^{1} {\boldsymbol{f}}^{b}_{r,X} - {\boldsymbol{R}}_{r}^{0} {\boldsymbol{f}}^{b}_{r,Y} + {\boldsymbol{R}}_{l}^{1} {\boldsymbol{f}}^{b}_{l,X} - {\boldsymbol{R}}_{l}^{0} {\boldsymbol{f}}^{b}_{l,Y} )\). \({\boldsymbol{R}}_{i}^{j}\) is j-th column vector of R i (i=r,l), \({\boldsymbol{f}}^{b}_{i}= {\boldsymbol{R}}_{i}^{T} {\boldsymbol{f}}_{i}\), and h is the height of foot frame from the foot sole.
 
Literatur
Zurück zum Zitat Abdallah, M., & Goswami, A. (2005). A biomechanically motivated two-phase strategy for biped robot upright balance control. In IEEE international conference on robotics and automation (ICRA) (pp. 3707–3713). Barcelona, Spain. Abdallah, M., & Goswami, A. (2005). A biomechanically motivated two-phase strategy for biped robot upright balance control. In IEEE international conference on robotics and automation (ICRA) (pp. 3707–3713). Barcelona, Spain.
Zurück zum Zitat Abe, Y., da Silva, M., & Popović, J. (2007). Multiobjective control with frictional contacts. In Eurographics/ACM SIGGRAPH symposium on computer animation (pp. 249–258). Abe, Y., da Silva, M., & Popović, J. (2007). Multiobjective control with frictional contacts. In Eurographics/ACM SIGGRAPH symposium on computer animation (pp. 249–258).
Zurück zum Zitat Ahn, K. H., & Oh, Y. (2006). Walking control of a humanoid robot via explicit and stable CoM manipulation with the angular momentum resolution. In IEEE/RSJ international conference on intelligent robots and systems (IROS). Ahn, K. H., & Oh, Y. (2006). Walking control of a humanoid robot via explicit and stable CoM manipulation with the angular momentum resolution. In IEEE/RSJ international conference on intelligent robots and systems (IROS).
Zurück zum Zitat Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., & Murray, R. M. (1996). Nonholonomic mechanical systems with symmetry. Archive for Rational Mechanics and Analysis, 136(1), 21–99. MathSciNetMATHCrossRef Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., & Murray, R. M. (1996). Nonholonomic mechanical systems with symmetry. Archive for Rational Mechanics and Analysis, 136(1), 21–99. MathSciNetMATHCrossRef
Zurück zum Zitat Choi, Y., Kim, D., Oh, Y., & You, B. J. (2007). Posture/walking control for humanoid robot based on kinematic resolution of CoM Jacobian with embedded motion. IEEE Transactions on Robotics, 23(6), 1285–1293. CrossRef Choi, Y., Kim, D., Oh, Y., & You, B. J. (2007). Posture/walking control for humanoid robot based on kinematic resolution of CoM Jacobian with embedded motion. IEEE Transactions on Robotics, 23(6), 1285–1293. CrossRef
Zurück zum Zitat de Lasa, M., Mordatch, I., & Hertzmann, A. (2010). Feature-based locomotion controllers. ACM Transactions on Graphics, 29(3). de Lasa, M., Mordatch, I., & Hertzmann, A. (2010). Feature-based locomotion controllers. ACM Transactions on Graphics, 29(3).
Zurück zum Zitat Featherstone, R. (1987). Robot dynamics algorithms. Dordrecht: Kluwer Academic. Featherstone, R. (1987). Robot dynamics algorithms. Dordrecht: Kluwer Academic.
Zurück zum Zitat Fujimoto, Y. (1998). Study on biped walking robot with environmental force interaction. Ph.D. Thesis, Yokohama National University. Fujimoto, Y. (1998). Study on biped walking robot with environmental force interaction. Ph.D. Thesis, Yokohama National University.
Zurück zum Zitat Fujimoto, Y., & Kawamura, A. (1998). Simulation of an autonomous biped walking robot including environmental force interaction. IEEE Robotics & Automation Magazine, 5(2), 33–41. CrossRef Fujimoto, Y., & Kawamura, A. (1998). Simulation of an autonomous biped walking robot including environmental force interaction. IEEE Robotics & Automation Magazine, 5(2), 33–41. CrossRef
Zurück zum Zitat Fujimoto, Y., Obata, S., & Kawamura, A. (1998). Robust biped walking with active interaction control between foot and ground. In IEEE international conference on robotics and automation (ICRA) (pp. 2030–2035). Fujimoto, Y., Obata, S., & Kawamura, A. (1998). Robust biped walking with active interaction control between foot and ground. In IEEE international conference on robotics and automation (ICRA) (pp. 2030–2035).
Zurück zum Zitat Goswami, A., & Kallem, V. (2004). Rate of change of angular momentum and balance maintenance of biped robots. In IEEE international conference on robotics and automation (ICRA) (pp. 3785–3790). Goswami, A., & Kallem, V. (2004). Rate of change of angular momentum and balance maintenance of biped robots. In IEEE international conference on robotics and automation (ICRA) (pp. 3785–3790).
Zurück zum Zitat Hofmann, A., Popovic, M., & Herr, H. (2009). Exploiting angular momentum to enhance bipedal center-of-mass control. In IEEE international conference on robotics and automation (ICRA) (pp. 4423–4429). CrossRef Hofmann, A., Popovic, M., & Herr, H. (2009). Exploiting angular momentum to enhance bipedal center-of-mass control. In IEEE international conference on robotics and automation (ICRA) (pp. 4423–4429). CrossRef
Zurück zum Zitat Huang, Q., & Nakamura, Y. (2005). Sensory reflex control for humanoid walking. IEEE Transactions on Robotics, 21(5), 977–984. CrossRef Huang, Q., & Nakamura, Y. (2005). Sensory reflex control for humanoid walking. IEEE Transactions on Robotics, 21(5), 977–984. CrossRef
Zurück zum Zitat Hyon, S. H. (2009). Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces. IEEE Transactions on Robotics, 25(1), 171–178. CrossRef Hyon, S. H. (2009). Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces. IEEE Transactions on Robotics, 25(1), 171–178. CrossRef
Zurück zum Zitat Hyon, S. H., Hale, J., & Cheng, G. (2007). Full-body compliant human–humanoid interaction: balancing in the presence of unknown external forces. IEEE Transactions on Robotics, 23(5), 884–898. CrossRef Hyon, S. H., Hale, J., & Cheng, G. (2007). Full-body compliant human–humanoid interaction: balancing in the presence of unknown external forces. IEEE Transactions on Robotics, 23(5), 884–898. CrossRef
Zurück zum Zitat Kagami, S., Kanehiro, F., Tamiya, Y., Inaba, M., & Inoue, H. (2000). AutoBalancer: an online dynamic balance compensation scheme for humanoid robots. In Proc. of the 4th international workshop on algorithmic foundation on robotics. Kagami, S., Kanehiro, F., Tamiya, Y., Inaba, M., & Inoue, H. (2000). AutoBalancer: an online dynamic balance compensation scheme for humanoid robots. In Proc. of the 4th international workshop on algorithmic foundation on robotics.
Zurück zum Zitat Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Resolved momentum control: humanoid motion planning based on the linear and angular momentum. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (Vol. 2, pp. 1644–1650). Las Vegas, NV, USA. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Resolved momentum control: humanoid motion planning based on the linear and angular momentum. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (Vol. 2, pp. 1644–1650). Las Vegas, NV, USA.
Zurück zum Zitat Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., & Hirukawa, H. (2001). The 3D linear inverted pendulum model: a simple modeling for a biped walking pattern generator. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 239–246). Maui, Hawaii. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., & Hirukawa, H. (2001). The 3D linear inverted pendulum model: a simple modeling for a biped walking pattern generator. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 239–246). Maui, Hawaii.
Zurück zum Zitat Komura, T., Leung, H., Kudoh, S., & Kuffner, J. (2005). A feedback controller for biped humanoids that can counteract large perturbations during gait. In IEEE international conference on robotics and automation (ICRA) (pp. 2001–2007). Barcelona, Spain. Komura, T., Leung, H., Kudoh, S., & Kuffner, J. (2005). A feedback controller for biped humanoids that can counteract large perturbations during gait. In IEEE international conference on robotics and automation (ICRA) (pp. 2001–2007). Barcelona, Spain.
Zurück zum Zitat Kudoh, S., Komura, T., & Ikeuchi, K. (2002). The dynamic postural adjustment with the quadratic programming method. In IEEE/RSJ international conference on intelligent robots and systems (IROS). Kudoh, S., Komura, T., & Ikeuchi, K. (2002). The dynamic postural adjustment with the quadratic programming method. In IEEE/RSJ international conference on intelligent robots and systems (IROS).
Zurück zum Zitat Lawson, C. L., & Hanson, R. J. (1974). Solving least squares problems. Englewood: Prentice-Hall. MATH Lawson, C. L., & Hanson, R. J. (1974). Solving least squares problems. Englewood: Prentice-Hall. MATH
Zurück zum Zitat Lee, S. H., & Goswami, A. (2010). Ground reaction force control at each foot: a momentum-based humanoid balance controller for non-level and non-stationary ground. In IEEE/RSJ international conference on intelligent robots and systems (IROS). Lee, S. H., & Goswami, A. (2010). Ground reaction force control at each foot: a momentum-based humanoid balance controller for non-level and non-stationary ground. In IEEE/RSJ international conference on intelligent robots and systems (IROS).
Zurück zum Zitat Macchietto, A., Zordan, V., & Shelton, C.R. (2009). Momentum control for balance. ACM Transactions on Graphics, 28(3), 80:1–80:8. CrossRef Macchietto, A., Zordan, V., & Shelton, C.R. (2009). Momentum control for balance. ACM Transactions on Graphics, 28(3), 80:1–80:8. CrossRef
Zurück zum Zitat Michel, O. (2004). Webots: professional mobile robot simulation. International Journal of Advanced Robotic Systems, 1(1), 39–42. Michel, O. (2004). Webots: professional mobile robot simulation. International Journal of Advanced Robotic Systems, 1(1), 39–42.
Zurück zum Zitat Mitobe, K., Capi, G., & Nasu, Y. (2004). A new control method for walking robots based on angular momentum. Mechatronics, 14(2), 163–174. CrossRef Mitobe, K., Capi, G., & Nasu, Y. (2004). A new control method for walking robots based on angular momentum. Mechatronics, 14(2), 163–174. CrossRef
Zurück zum Zitat Muico, U., Lee, Y., Popović, J., & Popović, Z. (2009). Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics, 28(3). Muico, U., Lee, Y., Popović, J., & Popović, Z. (2009). Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics, 28(3).
Zurück zum Zitat Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press. MATH Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press. MATH
Zurück zum Zitat Naksuk, N., Mei, Y., & Lee, C. (2004). Humanoid trajectory generation: an iterative approach based on movement and angular momentum criteria. In IEEE/RAS international conference on humanoid robots (humanoids) (pp. 576–591). CrossRef Naksuk, N., Mei, Y., & Lee, C. (2004). Humanoid trajectory generation: an iterative approach based on movement and angular momentum criteria. In IEEE/RAS international conference on humanoid robots (humanoids) (pp. 576–591). CrossRef
Zurück zum Zitat Orin, D., & Goswami, A. (2008). Centroidal momentum matrix of a humanoid robot: Structure and properties. In IEEE/RSJ international conference on intelligent robots and systems (IROS). Nice, France. Orin, D., & Goswami, A. (2008). Centroidal momentum matrix of a humanoid robot: Structure and properties. In IEEE/RSJ international conference on intelligent robots and systems (IROS). Nice, France.
Zurück zum Zitat Park, J., Youm, Y., & Chung, W. K. (2005). Control of ground interaction at the zero-moment point for dynamic control of humanoid robots. In IEEE international conference on robotics and automation (ICRA) (pp. 1724–1729). Park, J., Youm, Y., & Chung, W. K. (2005). Control of ground interaction at the zero-moment point for dynamic control of humanoid robots. In IEEE international conference on robotics and automation (ICRA) (pp. 1724–1729).
Zurück zum Zitat Park, J., Han, J., & Park, F. (2007). Convex optimization algorithms for active balancing of humanoid robots. IEEE Transactions on Robotics, 23(4), 817–822. CrossRef Park, J., Han, J., & Park, F. (2007). Convex optimization algorithms for active balancing of humanoid robots. IEEE Transactions on Robotics, 23(4), 817–822. CrossRef
Zurück zum Zitat Pollard, N. S., & Reitsma, P. S. A. (2001). Animation of humanlike characters: dynamic motion filtering with a physically plausible contact model. In Yale workshop on adaptive and learning systems. Pollard, N. S., & Reitsma, P. S. A. (2001). Animation of humanlike characters: dynamic motion filtering with a physically plausible contact model. In Yale workshop on adaptive and learning systems.
Zurück zum Zitat Popovic, M., Hofmann, A., & Herr, H. (2004). Angular momentum regulation during human walking: biomechanics and control. In IEEE international conference on robotics and automation (ICRA) (pp. 2405–2411). Popovic, M., Hofmann, A., & Herr, H. (2004). Angular momentum regulation during human walking: biomechanics and control. In IEEE international conference on robotics and automation (ICRA) (pp. 2405–2411).
Zurück zum Zitat Pratt, J., Carff, J., Drakunov, S., & Goswami, A. (2006). Capture point: a step toward humanoid push recovery. In EEE-RAS/RSJ international conference on humanoid robots (humanoids). Pratt, J., Carff, J., Drakunov, S., & Goswami, A. (2006). Capture point: a step toward humanoid push recovery. In EEE-RAS/RSJ international conference on humanoid robots (humanoids).
Zurück zum Zitat Sano, A., & Furusho, J. (1990). Realization of natural dynamic walking using the angular momentum information. In IEEE international conference on robotics and automation (ICRA) (pp. 1476–1481). CrossRef Sano, A., & Furusho, J. (1990). Realization of natural dynamic walking using the angular momentum information. In IEEE international conference on robotics and automation (ICRA) (pp. 1476–1481). CrossRef
Zurück zum Zitat Sentis, L., Park, J., & Khatib, O. (2010). Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Transactions on Robotics, 26(3), 483–501. CrossRef Sentis, L., Park, J., & Khatib, O. (2010). Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Transactions on Robotics, 26(3), 483–501. CrossRef
Zurück zum Zitat Sian, N. E., Yokoi, K., Kajita, S., Kanehiro, F., & Tanie, K. (2003). Whole body teleoperation of a humanoid robot—a method of integrating operator’s intention and robot’s autonomy. In IEEE international conference on robotics and automation (ICRA). Sian, N. E., Yokoi, K., Kajita, S., Kanehiro, F., & Tanie, K. (2003). Whole body teleoperation of a humanoid robot—a method of integrating operator’s intention and robot’s autonomy. In IEEE international conference on robotics and automation (ICRA).
Zurück zum Zitat Stark, P. B., & Parker, R. L. (1995). Bounded-variable least-squares: an algorithm and applications. Computational Statistics, 10, 129–141. MATH Stark, P. B., & Parker, R. L. (1995). Bounded-variable least-squares: an algorithm and applications. Computational Statistics, 10, 129–141. MATH
Zurück zum Zitat Stephens, B. (2007). Integral control of humanoid balance. In IEEE/RSJ international conference on intelligent robots and systems (IROS). Stephens, B. (2007). Integral control of humanoid balance. In IEEE/RSJ international conference on intelligent robots and systems (IROS).
Zurück zum Zitat Stephens, B. J., & Atkeson, C. G. (2010). Dynamic balance force control for compliant humanoid robots. In IEEE/RSJ international conference on intelligent robots and systems (IROS). Stephens, B. J., & Atkeson, C. G. (2010). Dynamic balance force control for compliant humanoid robots. In IEEE/RSJ international conference on intelligent robots and systems (IROS).
Zurück zum Zitat Sugihara, T. (2003). Mobility enhancement control of humanoid robot based on reaction force manipulation via whole body motion. Ph.D. Thesis, University of Tokyo. Sugihara, T. (2003). Mobility enhancement control of humanoid robot based on reaction force manipulation via whole body motion. Ph.D. Thesis, University of Tokyo.
Zurück zum Zitat Sugihara, T., & Nakamura, Y. (2003). Variable impedant inverted pendulum model control for a seamless contact phase transition on humanoid robot. In IEEE-RAS/RSJ international conference on humanoid robots (humanoids). Sugihara, T., & Nakamura, Y. (2003). Variable impedant inverted pendulum model control for a seamless contact phase transition on humanoid robot. In IEEE-RAS/RSJ international conference on humanoid robots (humanoids).
Zurück zum Zitat Sugihara, T., Nakamura, Y., & Inoue, H. (2002). Realtime humanoid motion generation through ZMP manipulation based on inverted pendulum control. In IEEE international conference on robotics and automation (ICRA) (pp. 1404–1409). Sugihara, T., Nakamura, Y., & Inoue, H. (2002). Realtime humanoid motion generation through ZMP manipulation based on inverted pendulum control. In IEEE international conference on robotics and automation (ICRA) (pp. 1404–1409).
Zurück zum Zitat Ugurlu, B., & Kawamura, A. (2010). Eulerian ZMP resolution based bipedal walking: discussions on the rate change of angular momentum about center of mass. In IEEE international conference on robotics and automation (ICRA). Ugurlu, B., & Kawamura, A. (2010). Eulerian ZMP resolution based bipedal walking: discussions on the rate change of angular momentum about center of mass. In IEEE international conference on robotics and automation (ICRA).
Zurück zum Zitat Vukobratović, M., & Juričić, D. (1969). Contribution to the synthesis of biped gait. IEEE Transactions on Biomedical Engineering, 16, 1. CrossRef Vukobratović, M., & Juričić, D. (1969). Contribution to the synthesis of biped gait. IEEE Transactions on Biomedical Engineering, 16, 1. CrossRef
Zurück zum Zitat Wieber, P. B. (2005). Holonomy and nonholonomy in the dynamics of articulated motion. In Fast motions in biomechanics and robotics. Heidelberg, Germany. Wieber, P. B. (2005). Holonomy and nonholonomy in the dynamics of articulated motion. In Fast motions in biomechanics and robotics. Heidelberg, Germany.
Zurück zum Zitat Ye, Y., & Liu, C. K. (2010). Optimal feedback control for character animation using an abstract model. ACM Transactions on Graphics, 29, 3. CrossRef Ye, Y., & Liu, C. K. (2010). Optimal feedback control for character animation using an abstract model. ACM Transactions on Graphics, 29, 3. CrossRef
Zurück zum Zitat Yun, S. K., & Goswami, A. (2011). Momentum-based reactive stepping controller on level and non-level ground for humanoid robot push recovery. In IEEE/RSJ international conference on intelligent robots and systems (IROS). Yun, S. K., & Goswami, A. (2011). Momentum-based reactive stepping controller on level and non-level ground for humanoid robot push recovery. In IEEE/RSJ international conference on intelligent robots and systems (IROS).
Zurück zum Zitat Zhou, C., & Meng, Q. (2003). Dynamic balance of a biped robot using fuzzy reinforcement learning agents. Fuzzy Sets and Systems, 134(1), 169–187. MathSciNetMATHCrossRef Zhou, C., & Meng, Q. (2003). Dynamic balance of a biped robot using fuzzy reinforcement learning agents. Fuzzy Sets and Systems, 134(1), 169–187. MathSciNetMATHCrossRef
Metadaten
Titel
A momentum-based balance controller for humanoid robots on non-level and non-stationary ground
verfasst von
Sung-Hee Lee
Ambarish Goswami
Publikationsdatum
01.11.2012
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 4/2012
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-012-9294-z

Weitere Artikel der Ausgabe 4/2012

Autonomous Robots 4/2012 Zur Ausgabe