Skip to main content
Erschienen in: Cellulose 4/2013

01.08.2013 | Original Paper

In situ polymerization and characterization of elastomeric polyurethane-cellulose nanocrystal nanocomposites. Cell response evaluation

verfasst von: L. Rueda, A. Saralegi, B. Fernández-d’Arlas, Q. Zhou, A. Alonso-Varona, L. A. Berglund, I. Mondragon, M. A. Corcuera, A. Eceiza

Erschienen in: Cellulose | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polyurethane/Cellulose nanocrystal (CNC) nanocomposites have been prepared by means of in situ polymerization using CNCs as precursors of polyurethane chains. Thermal, mechanical and morphological characterization has been analyzed to study the effect of CNC on the micro/nanostructure, which consisted of individualized nanocellulose crystallites covalently bonded to hard and soft segments of polyurethane. The incorporation of low CNC content led to a tough material whereas higher amount of CNC provoked an increase in soft and hard segments crystallization phenomenon. Moreover, from the viewpoint of polyurethane and polyurethane nanocomposites applications focused on biomedical devices, biocompatibility studies can be considered necessary to evaluate the influence of CNC on the biological behaviour. SEM micrographs obtained from cells seeded on top of the materials showed that L-929 fibroblasts massively colonized the materials surface giving rise to good substrates for cell adhesion and proliferation and useful as potential materials for biomedical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aneja A, Wilkes SL (2003) A systematic series of ‘model’ PTMO based segmented polyurethanes reinvestigated using atomic force microscopy. Polymer 44:7221–7228CrossRef Aneja A, Wilkes SL (2003) A systematic series of ‘model’ PTMO based segmented polyurethanes reinvestigated using atomic force microscopy. Polymer 44:7221–7228CrossRef
Zurück zum Zitat Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27CrossRef Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27CrossRef
Zurück zum Zitat Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145CrossRef Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145CrossRef
Zurück zum Zitat Chen TK, Shieh TS, Chui JY (1998) Studies on the first DSC endotherm of polyurethane hard segment based on 4,4`-diphenylmethane diisocyanate and 1,4-butanediol. Macromolecules 31:1312–1320CrossRef Chen TK, Shieh TS, Chui JY (1998) Studies on the first DSC endotherm of polyurethane hard segment based on 4,4`-diphenylmethane diisocyanate and 1,4-butanediol. Macromolecules 31:1312–1320CrossRef
Zurück zum Zitat Christenson EM, Anderson JM, Hiltner A, Baer E (2005) Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer 46:11744–11754CrossRef Christenson EM, Anderson JM, Hiltner A, Baer E (2005) Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer 46:11744–11754CrossRef
Zurück zum Zitat Cuve L, Pascault JP, Boiteux G, Seytre G (1991) Rigid polyurethanes and amorphous segmented polyurethanes prepared in polar solvents under homogeneous conditions. Polymer 32:343–352CrossRef Cuve L, Pascault JP, Boiteux G, Seytre G (1991) Rigid polyurethanes and amorphous segmented polyurethanes prepared in polar solvents under homogeneous conditions. Polymer 32:343–352CrossRef
Zurück zum Zitat Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRef Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRef
Zurück zum Zitat Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, Mondragon I (2008) Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties. Polym Eng Sci 48:297–306CrossRef Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, Mondragon I (2008) Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties. Polym Eng Sci 48:297–306CrossRef
Zurück zum Zitat Fong N, Simmons A, Poole-Warren L (2011) Recent advances in elastomeric nanocomposites. In: Mittal V, Kim JK, Pal K (eds.). Springer 9, pp 257–280 Fong N, Simmons A, Poole-Warren L (2011) Recent advances in elastomeric nanocomposites. In: Mittal V, Kim JK, Pal K (eds.). Springer 9, pp 257–280
Zurück zum Zitat Granja PL, Ribeiro CC, de Jeso B, Baquey C, Barbosa MA (2001) Mineralization of regenerated cellulose hydrogels. J Mater Sci Mater Med 12:785–791CrossRef Granja PL, Ribeiro CC, de Jeso B, Baquey C, Barbosa MA (2001) Mineralization of regenerated cellulose hydrogels. J Mater Sci Mater Med 12:785–791CrossRef
Zurück zum Zitat Granja PL, De Jéso B, Bareille R, Rouais F, Baquey Ch, Barbosa M (2006) Cellulose phosphates as biomaterials. In vitro biocompatibility studies. React Funct Polym 66:728–739CrossRef Granja PL, De Jéso B, Bareille R, Rouais F, Baquey Ch, Barbosa M (2006) Cellulose phosphates as biomaterials. In vitro biocompatibility studies. React Funct Polym 66:728–739CrossRef
Zurück zum Zitat Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010CrossRef Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010CrossRef
Zurück zum Zitat Habibi Y, Lucía LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucía LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly and applications. Chem Rev 110:3479–3500CrossRef
Zurück zum Zitat Hoenich N (2006) Cellulose for medical applications: past, present, and future. BioResources 1:270–280 Hoenich N (2006) Cellulose for medical applications: past, present, and future. BioResources 1:270–280
Zurück zum Zitat Hsu SH, Tang ChM, Tsen HJ (2008a) Gold nanoparticles induce surface morphological transformation in polyurethane and affect the cellular response. Biomacromolecules 9:241–248CrossRef Hsu SH, Tang ChM, Tsen HJ (2008a) Gold nanoparticles induce surface morphological transformation in polyurethane and affect the cellular response. Biomacromolecules 9:241–248CrossRef
Zurück zum Zitat Hsu SH, Tang ChM, Tsen HJ (2008b) Biostability and biocompatibility of poly(ester urethane)–gold nanocomposites. Acta Biomater 4:1797–1808CrossRef Hsu SH, Tang ChM, Tsen HJ (2008b) Biostability and biocompatibility of poly(ester urethane)–gold nanocomposites. Acta Biomater 4:1797–1808CrossRef
Zurück zum Zitat Hule RA, Pochan DJ (2007) Polymer nanocomposites for biomedical applications. MRS Bull 32:354–358CrossRef Hule RA, Pochan DJ (2007) Polymer nanocomposites for biomedical applications. MRS Bull 32:354–358CrossRef
Zurück zum Zitat Hung HS, Hsu SH (2009) The response of endothelial cells to polymer surface composed of nanometric micelles. New Biotech 25:235–243CrossRef Hung HS, Hsu SH (2009) The response of endothelial cells to polymer surface composed of nanometric micelles. New Biotech 25:235–243CrossRef
Zurück zum Zitat ISO 10993-5 (1999) Biological evaluation of medical devices. Test for in vitro cytotoxicity. Geneva, Switzerland: International Organization for Standarization ISO 10993-5 (1999) Biological evaluation of medical devices. Test for in vitro cytotoxicity. Geneva, Switzerland: International Organization for Standarization
Zurück zum Zitat Koberstein JT, Galambos AF, Leung LM (1992) Compression-molded polyurethane block copolymers. 1 Microdomain Morpholthermomechanical properties. Macromolecules 25:6195–6204CrossRef Koberstein JT, Galambos AF, Leung LM (1992) Compression-molded polyurethane block copolymers. 1 Microdomain Morpholthermomechanical properties. Macromolecules 25:6195–6204CrossRef
Zurück zum Zitat Kovacs T, Naish V, O’Connor B, Blaise Ch, Gagné F, Hall L, Trudeau V, Martel P (2010) An ecotoxicological characterization of nanocrystalline cellulose. Nanotoxicology 4:255–270CrossRef Kovacs T, Naish V, O’Connor B, Blaise Ch, Gagné F, Hall L, Trudeau V, Martel P (2010) An ecotoxicological characterization of nanocrystalline cellulose. Nanotoxicology 4:255–270CrossRef
Zurück zum Zitat Krouit M, Bras J, Belgacem MN (2008) Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. Eur Polym J 44:4074–4081CrossRef Krouit M, Bras J, Belgacem MN (2008) Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. Eur Polym J 44:4074–4081CrossRef
Zurück zum Zitat Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492CrossRef Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492CrossRef
Zurück zum Zitat Loh XJ, Zhang ZX, Wu YL, Lee TS, Li J (2009) Synthesis of novel biodegradable thermoresponsive triblock copolymers based on poly[(R)-3-hydroxybutyrate] and poly(N-isopropylacrylamide) and their formation of thermoresponsive micelles. Macromolecules 42:194–202CrossRef Loh XJ, Zhang ZX, Wu YL, Lee TS, Li J (2009) Synthesis of novel biodegradable thermoresponsive triblock copolymers based on poly[(R)-3-hydroxybutyrate] and poly(N-isopropylacrylamide) and their formation of thermoresponsive micelles. Macromolecules 42:194–202CrossRef
Zurück zum Zitat Migtragotri S, Lahann J (2009) Physical approaches to biomaterial design. Natur Mater 8:15–23CrossRef Migtragotri S, Lahann J (2009) Physical approaches to biomaterial design. Natur Mater 8:15–23CrossRef
Zurück zum Zitat Northup SJ (2004) Biomaterials science. An introduction to materials in medicine. In vitro assessment of tissue compatibility. In: Rather BD, Hoffman AS, Shoen FJ, Lemons JE (eds) 2nd ed. Elsevier Academic, San Diego, pp 356–360 Northup SJ (2004) Biomaterials science. An introduction to materials in medicine. In vitro assessment of tissue compatibility. In: Rather BD, Hoffman AS, Shoen FJ, Lemons JE (eds) 2nd ed. Elsevier Academic, San Diego, pp 356–360
Zurück zum Zitat Northup SJ, Cammack JN (1999). Handbook of biomaterials evaluation: Scientific, technical and clinical testing of implant materials. Mammalian cell culture models. In: AF Von Recum (ed) 2nd ed. Taylor & Francis: Philadelphia, pp 325–339 Northup SJ, Cammack JN (1999). Handbook of biomaterials evaluation: Scientific, technical and clinical testing of implant materials. Mammalian cell culture models. In: AF Von Recum (ed) 2nd ed. Taylor & Francis: Philadelphia, pp 325–339
Zurück zum Zitat Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA)—crystallization and mechanical property effects. Comp Sci Technol 70:815–821CrossRef Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA)—crystallization and mechanical property effects. Comp Sci Technol 70:815–821CrossRef
Zurück zum Zitat Pei A, Malho J-M, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRef Pei A, Malho J-M, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRef
Zurück zum Zitat Roman M, Dong S, Hirani A, Lee YW (2009) Polysaccaride materials: performance by design. ACS Symposium Series, pp 81–91 Roman M, Dong S, Hirani A, Lee YW (2009) Polysaccaride materials: performance by design. ACS Symposium Series, pp 81–91
Zurück zum Zitat Rueda L, Fernández d’Arlas B, Zhou Q, Berglund LA, Corcuera MA, Mondragon I, Eceiza A (2011a) Isocyanate-rich cellulose nanocrystals and their selective insertion in elastomeric polyurethane. Comp Sci Technol 71:1953–1960CrossRef Rueda L, Fernández d’Arlas B, Zhou Q, Berglund LA, Corcuera MA, Mondragon I, Eceiza A (2011a) Isocyanate-rich cellulose nanocrystals and their selective insertion in elastomeric polyurethane. Comp Sci Technol 71:1953–1960CrossRef
Zurück zum Zitat Rueda L, Garcia I, Palomares T, Alonso-Varona A, Mondragon I, Corcuera MA, Eceiza A (2011b) The role of reactive silicates on the structure/property relationships and cell response evaluation in polyurethane nanocomposites. J Biomed Mater Res Part A 97A:480–489CrossRef Rueda L, Garcia I, Palomares T, Alonso-Varona A, Mondragon I, Corcuera MA, Eceiza A (2011b) The role of reactive silicates on the structure/property relationships and cell response evaluation in polyurethane nanocomposites. J Biomed Mater Res Part A 97A:480–489CrossRef
Zurück zum Zitat Rueda-Larraz L, Fernandez d’Arlas B, Tercjak A, Ribes A, Mondragon I, Eceiza A (2009) Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. Eur Polym J 45:2096–2109CrossRef Rueda-Larraz L, Fernandez d’Arlas B, Tercjak A, Ribes A, Mondragon I, Eceiza A (2009) Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. Eur Polym J 45:2096–2109CrossRef
Zurück zum Zitat Saiani A, Novak A, Rodier L, Eeckhaut G, Leenslag JW, Higgins JS (2007) Origin of multiple melting endotherms in a igh hard block content polyurethane: effect of annealing temperature. Macromolecules 40:7252–7262CrossRef Saiani A, Novak A, Rodier L, Eeckhaut G, Leenslag JW, Higgins JS (2007) Origin of multiple melting endotherms in a igh hard block content polyurethane: effect of annealing temperature. Macromolecules 40:7252–7262CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2009) Cellulose Whiskers versus Microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose Whiskers versus Microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef
Zurück zum Zitat Tien YI, Wei KH (2006) Waterborne polyurethane/clay nanocomposites: nNovel effects of the clay and its interlayer ions on the morphology and physical and electrical properties. Macromolecules 39:6133–6141CrossRef Tien YI, Wei KH (2006) Waterborne polyurethane/clay nanocomposites: nNovel effects of the clay and its interlayer ions on the morphology and physical and electrical properties. Macromolecules 39:6133–6141CrossRef
Zurück zum Zitat Viet D, Beck-Candanedo S, Gray DG (2006) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113CrossRef Viet D, Beck-Candanedo S, Gray DG (2006) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113CrossRef
Zurück zum Zitat Wang HH, Chen KV (2007) A novel synthesis of reactive nano-clay polyurethane and its physical and dyeing properties. J Appl Polym Sci 105:1581–1590CrossRef Wang HH, Chen KV (2007) A novel synthesis of reactive nano-clay polyurethane and its physical and dyeing properties. J Appl Polym Sci 105:1581–1590CrossRef
Zurück zum Zitat Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953CrossRef Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953CrossRef
Zurück zum Zitat Wunderlich B (1976) Crystal nucleation, growth, annealing. Academic Press, New York Wunderlich B (1976) Crystal nucleation, growth, annealing. Academic Press, New York
Metadaten
Titel
In situ polymerization and characterization of elastomeric polyurethane-cellulose nanocrystal nanocomposites. Cell response evaluation
verfasst von
L. Rueda
A. Saralegi
B. Fernández-d’Arlas
Q. Zhou
A. Alonso-Varona
L. A. Berglund
I. Mondragon
M. A. Corcuera
A. Eceiza
Publikationsdatum
01.08.2013
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2013
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-9960-0

Weitere Artikel der Ausgabe 4/2013

Cellulose 4/2013 Zur Ausgabe