Skip to main content
Erschienen in: Cellulose 5/2015

01.10.2015 | Original Paper

Characterization of mechanical and morphological properties of cellulose reinforced polyamide 6 composites

verfasst von: Yucheng Peng, Douglas J. Gardner, Yousoo Han

Erschienen in: Cellulose | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The utilization of cellulose in reinforcing engineering thermoplastics through melt compounding processes is an argumentative topic in the natural fiber research community. Three different cellulosic materials were used to reinforce polyamide 6 (PA6) at three loading levels (2.5, 5 and 10 % by weight): (1) microcrystalline cellulose, (2) spray-dried cellulose nanofibrils (CNFs) and (3) spray-dried cellulose nanocrystals (CNCs). The particle size, morphology, and thermostability of cellulose were determined using laser diffraction, scanning electron microscopy (SEM), and thermogravimetric analysis. Compounding of cellulose with PA6 was conducted using a batch mixer at 232 °C and testing samples were produced using an injection molder at 270 °C. Slight mass loss of cellulose was observed at 232 °C while serious thermal degradation occurred at 270 °C. No serious thermal degradation of cellulose was observed in the composites because the cellulose materials were exposed to injection molding processing temperatures for a short time period. The mechanical testing results indicated that tensile modulus and strength of the composites were improved by adding cellulose while cellulose had negligible effect on the flexural properties. Impact strength decreased significantly by adding cellulose because of the poor distribution of cellulose particles throughout the matrix using the batch mixing process. Optimized mixing with improved distribution of cellulose are necessary to explore the potential reinforcing effect of cellulose, especially CNF and CNC in PA6. The SEM micrographs showed that there were no agglomerations among the cellulose particles, indicating that spray-dried cellulose materials could be suitable reinforcements in polymer-based composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973CrossRef Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973CrossRef
Zurück zum Zitat Beecher JF (2007) Organic materials: wood, trees and nanotechnology. Nat Nanotechnol 2:466–467CrossRef Beecher JF (2007) Organic materials: wood, trees and nanotechnology. Nat Nanotechnol 2:466–467CrossRef
Zurück zum Zitat Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHCM, Marconcini JM (2013) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–322CrossRef Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHCM, Marconcini JM (2013) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–322CrossRef
Zurück zum Zitat Dharaiya D, Jana SC, Shafi A (2003) A study on the use of phenoxy resins as compatibilizers of polyamide 6 (PA6) and polybutylene terephthalate (PBT). Polym Eng Sci 43:580–595CrossRef Dharaiya D, Jana SC, Shafi A (2003) A study on the use of phenoxy resins as compatibilizers of polyamide 6 (PA6) and polybutylene terephthalate (PBT). Polym Eng Sci 43:580–595CrossRef
Zurück zum Zitat Diddens I, Murphy B, Krisch M, Muller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759CrossRef Diddens I, Murphy B, Krisch M, Muller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759CrossRef
Zurück zum Zitat Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2013) Pulp fiber-reinforced thermoset polymer composites: effects of the pulp fibers and polymer. Compos Part B 48:10–17CrossRef Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2013) Pulp fiber-reinforced thermoset polymer composites: effects of the pulp fibers and polymer. Compos Part B 48:10–17CrossRef
Zurück zum Zitat Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, BerlinCrossRef Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, BerlinCrossRef
Zurück zum Zitat Fu S, Feng X, Lauke B, Mai Y (2008) Effect of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B 39:933–961CrossRef Fu S, Feng X, Lauke B, Mai Y (2008) Effect of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B 39:933–961CrossRef
Zurück zum Zitat Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567CrossRef Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567CrossRef
Zurück zum Zitat Goring DAI (1963) Thermal softening of lignin, hemicelluloses and cellulose. Pulp Pap Mag Can 64(12):T517–T527 Goring DAI (1963) Thermal softening of lignin, hemicelluloses and cellulose. Pulp Pap Mag Can 64(12):T517–T527
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
Zurück zum Zitat Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980 Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980
Zurück zum Zitat Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4(11):3308–3318CrossRef Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4(11):3308–3318CrossRef
Zurück zum Zitat Iwatake A, Nogi M, Yano H (2008) Cellulose nanofibers-reinforced polylactic acid. Compos Sci Technol 68:2103–2106CrossRef Iwatake A, Nogi M, Yano H (2008) Cellulose nanofibers-reinforced polylactic acid. Compos Sci Technol 68:2103–2106CrossRef
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
Zurück zum Zitat Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11(5):1139–1153CrossRef Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11(5):1139–1153CrossRef
Zurück zum Zitat Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 4:377–445CrossRef Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 4:377–445CrossRef
Zurück zum Zitat Moon RJ, Marini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Marini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
Zurück zum Zitat Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol J (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306CrossRef Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol J (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306CrossRef
Zurück zum Zitat Peng Y, Gardner DJ, Han Y (2012a) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102CrossRef Peng Y, Gardner DJ, Han Y (2012a) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102CrossRef
Zurück zum Zitat Peng Y, Han Y, Gardner DJ (2012b) Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci 44(4):448–461 Peng Y, Han Y, Gardner DJ (2012b) Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci 44(4):448–461
Zurück zum Zitat Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013a) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5):2379–2392CrossRef Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013a) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5):2379–2392CrossRef
Zurück zum Zitat Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA (2013b) Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interface Sci 405:85–95CrossRef Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA (2013b) Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interface Sci 405:85–95CrossRef
Zurück zum Zitat Peng Y, Gallegos SA, Gardner DJ, Han Y, Cai Z (2014) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos. doi:10.1002/pc.23235 Peng Y, Gallegos SA, Gardner DJ, Han Y, Cai Z (2014) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos. doi:10.​1002/​pc.​23235
Zurück zum Zitat Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacomolecules 5:1671–1677CrossRef Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacomolecules 5:1671–1677CrossRef
Zurück zum Zitat Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposites field. Biomacromolecules 6(2):612–626CrossRef Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposites field. Biomacromolecules 6(2):612–626CrossRef
Zurück zum Zitat Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Wegner TH, Jones PE (2006) Advancing cellulose-based nanotechnology. Cellulose 13:115–118CrossRef Wegner TH, Jones PE (2006) Advancing cellulose-based nanotechnology. Cellulose 13:115–118CrossRef
Zurück zum Zitat Yang H, Gardner DJ (2011) Mechanical properties of cellulose nanofibril-filled polypropylene composites. Wood Fiber Sci 43:143–152 Yang H, Gardner DJ (2011) Mechanical properties of cellulose nanofibril-filled polypropylene composites. Wood Fiber Sci 43:143–152
Zurück zum Zitat Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef
Zurück zum Zitat Yousefian H, Rodrigue D (2014) Effect of nanocrystalline cellulose on morphological, thermal, and mechanical properties of nylon 6 composites. Polym Compos. doi:10.1002/pc.23316 Yousefian H, Rodrigue D (2014) Effect of nanocrystalline cellulose on morphological, thermal, and mechanical properties of nylon 6 composites. Polym Compos. doi:10.​1002/​pc.​23316
Metadaten
Titel
Characterization of mechanical and morphological properties of cellulose reinforced polyamide 6 composites
verfasst von
Yucheng Peng
Douglas J. Gardner
Yousoo Han
Publikationsdatum
01.10.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2015
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0723-y

Weitere Artikel der Ausgabe 5/2015

Cellulose 5/2015 Zur Ausgabe