Skip to main content
Erschienen in: Cellulose 8/2020

11.03.2020 | Original Research

The inhibitory effect of xylan on enzymatic hydrolysis of cellulose is dependent on cellulose ultrastructure

verfasst von: Xindong Chen, Lian Xiong, Hailong Li, Liquan Zhang, Ge Yuan, Xuefang Chen, Can Wang, Xinde Chen

Erschienen in: Cellulose | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The inhibitory effect of xylan on enzymatic hydrolysis of cellulose with different ultrastructure is not clear. In this work, cellulose II, cellulose III, and amorphous cellulose were prepared from cellulose I by NaOH, ethylenediamine, and ball-milling treatment, respectively. Their crystalline structure and enzymatic hydrolyzability were systematically characterized and compared with cellulose I. Furthermore, the inhibitory effect of xylan on cellulose with different ultrastructure was investigated in detail. Results suggested that the enzymatic hydrolyzability of different cellulose increased in sequence from cellulose I (25.4%), cellulose III (41.7%), cellulose II (56.2%) to amorphous cellulose (77.4%) at enzyme loadings of 5.56 mg protein/g substrate. The enzymatic hydrolyzability of allomorphic cellulose was strongly inhibited by xylan, while a little inhibition was observed for amorphous cellulose. It was found that cellobiose released from different cellulose was decreased after the addition of xylan. At the initial hydrolysis stage, the inhibition degree was obviously increased for all of different cellulose, and then, the inhibition degree of cellulose I and cellulose II gradually decreased as enzymatic hydrolysis proceeded, while the inhibition degree of cellulose III and amorphous cellulose had changed a little. In addition, at a longer time of hydrolysis, the inhibition degree was decreased with the increase of cellulase dosage except for cellulose III, which remained approximately unchanged. Overall, this study demonstrated that the inhibitory effect of xylan on cellulose hydrolysis was substantially affected by the ultrastructure of cellulose, and thus it provides new insights for relieving the inhibitory effect of xylan by altering the ultrastructure of cellulose.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahola S, Salmi J, Johansson L-S, Laine J, Österberg M (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282PubMedCrossRef Ahola S, Salmi J, Johansson L-S, Laine J, Österberg M (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282PubMedCrossRef
Zurück zum Zitat Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRef Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRef
Zurück zum Zitat Chundawat SP et al (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174PubMedCrossRef Chundawat SP et al (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174PubMedCrossRef
Zurück zum Zitat Ciolacu D, Gorgieva S, Tampu D, Kokol V (2011a) Enzymatic hydrolysis of different allomorphic forms of microcrystalline cellulose. Cellulose 18:1527–1541CrossRef Ciolacu D, Gorgieva S, Tampu D, Kokol V (2011a) Enzymatic hydrolysis of different allomorphic forms of microcrystalline cellulose. Cellulose 18:1527–1541CrossRef
Zurück zum Zitat Ciolacu D, Pitol-Filho L, Ciolacu F (2011b) Studies concerning the accessibility of different allomorphic forms of cellulose. Cellulose 19:55–68CrossRef Ciolacu D, Pitol-Filho L, Ciolacu F (2011b) Studies concerning the accessibility of different allomorphic forms of cellulose. Cellulose 19:55–68CrossRef
Zurück zum Zitat Cui T, Li JH, Yan ZP, Yu MH, Li SZ (2014) The correlation between the enzymatic saccharification and the multidimensional structure of cellulose changed by different pretreatments. Biotechnol Biofuels 7:134PubMedPubMedCentralCrossRef Cui T, Li JH, Yan ZP, Yu MH, Li SZ (2014) The correlation between the enzymatic saccharification and the multidimensional structure of cellulose changed by different pretreatments. Biotechnol Biofuels 7:134PubMedPubMedCentralCrossRef
Zurück zum Zitat da Costa SL et al (2016) Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ Sci 9:1215–1223CrossRef da Costa SL et al (2016) Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ Sci 9:1215–1223CrossRef
Zurück zum Zitat Forziati FH, Stone WK, Rowen JW, Appel WD (1950) Cotton powder for infrared transmission measurements. J Res Nat Bur Stand 45:109–113CrossRef Forziati FH, Stone WK, Rowen JW, Appel WD (1950) Cotton powder for infrared transmission measurements. J Res Nat Bur Stand 45:109–113CrossRef
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
Zurück zum Zitat French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588CrossRef
Zurück zum Zitat Ganner T, Bubner P, Eibinger M, Mayrhofer C, Plank H, Nidetzky B (2012) Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases. J Biol Chem 287:43215–43222PubMedPubMedCentralCrossRef Ganner T, Bubner P, Eibinger M, Mayrhofer C, Plank H, Nidetzky B (2012) Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases. J Biol Chem 287:43215–43222PubMedPubMedCentralCrossRef
Zurück zum Zitat Gao D, Chundawat SP, Sethi A, Balan V, Gnanakaran S, Dale BE (2013) Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proc Natl Acad Sci USA 110:10922–10927PubMedCrossRefPubMedCentral Gao D, Chundawat SP, Sethi A, Balan V, Gnanakaran S, Dale BE (2013) Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proc Natl Acad Sci USA 110:10922–10927PubMedCrossRefPubMedCentral
Zurück zum Zitat Gomide FTF, da Silva ASA, da Silva Bon EP, Alves TLM (2019) Modification of microcrystalline cellulose structural properties by ball-milling and ionic liquid treatments and their correlation to enzymatic hydrolysis rate and yield. Cellulose 26:7323–7335CrossRef Gomide FTF, da Silva ASA, da Silva Bon EP, Alves TLM (2019) Modification of microcrystalline cellulose structural properties by ball-milling and ionic liquid treatments and their correlation to enzymatic hydrolysis rate and yield. Cellulose 26:7323–7335CrossRef
Zurück zum Zitat Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315:804–807PubMedCrossRef Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315:804–807PubMedCrossRef
Zurück zum Zitat Hu JG, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:36PubMedPubMedCentralCrossRef Hu JG, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:36PubMedPubMedCentralCrossRef
Zurück zum Zitat Igarashi K et al (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282PubMedCrossRef Igarashi K et al (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282PubMedCrossRef
Zurück zum Zitat Kumar R, Wyman CE (2009a) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213PubMedCrossRef Kumar R, Wyman CE (2009a) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213PubMedCrossRef
Zurück zum Zitat Kumar R, Wyman CE (2009b) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314PubMedCrossRef Kumar R, Wyman CE (2009b) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314PubMedCrossRef
Zurück zum Zitat Kumar R, Wyman CE (2013) Physical and chemical features of pretreated biomass that influence macro-/micro-accessibility and biological processing. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, New York, pp 281–310CrossRef Kumar R, Wyman CE (2013) Physical and chemical features of pretreated biomass that influence macro-/micro-accessibility and biological processing. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, New York, pp 281–310CrossRef
Zurück zum Zitat Kumar R, Wyman CE (2014) Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars. Biotechnol Bioeng 111:1341–1353PubMedCrossRef Kumar R, Wyman CE (2014) Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars. Biotechnol Bioeng 111:1341–1353PubMedCrossRef
Zurück zum Zitat Kumar R et al (2018) Cellulose–hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chem 20:921–934CrossRef Kumar R et al (2018) Cellulose–hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chem 20:921–934CrossRef
Zurück zum Zitat Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotech 121:1081–1099CrossRef Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotech 121:1081–1099CrossRef
Zurück zum Zitat Li HL et al (2017) The hydrolytic efficiency and synergistic action of recombinant xylan-degrading enzymes on xylan isolated from sugarcane bagasse. Carbohydr Polym 175:199–206PubMedCrossRef Li HL et al (2017) The hydrolytic efficiency and synergistic action of recombinant xylan-degrading enzymes on xylan isolated from sugarcane bagasse. Carbohydr Polym 175:199–206PubMedCrossRef
Zurück zum Zitat Li HL et al (2019a) Enhanced enzymatic hydrolysis of wheat straw via a combination of alkaline hydrogen peroxide and lithium chloride/N,N-dimethylacetamide pretreatment. Ind Crop Prod 137:332–338CrossRef Li HL et al (2019a) Enhanced enzymatic hydrolysis of wheat straw via a combination of alkaline hydrogen peroxide and lithium chloride/N,N-dimethylacetamide pretreatment. Ind Crop Prod 137:332–338CrossRef
Zurück zum Zitat Li HL et al (2019b) Stepwise enzymatic hydrolysis of alkaline oxidation treated sugarcane bagasse for the co-production of functional xylo-oligosaccharides and fermentable sugars. Bioresour Technol 275:345–351PubMedCrossRef Li HL et al (2019b) Stepwise enzymatic hydrolysis of alkaline oxidation treated sugarcane bagasse for the co-production of functional xylo-oligosaccharides and fermentable sugars. Bioresour Technol 275:345–351PubMedCrossRef
Zurück zum Zitat Ling Z et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328CrossRef Ling Z et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328CrossRef
Zurück zum Zitat Lu M, Li J, Han L, Xiao W (2019) An aggregated understanding of cellulase adsorption and hydrolysis for ball-milled cellulose. Bioresour Technol 273:1–7PubMedCrossRef Lu M, Li J, Han L, Xiao W (2019) An aggregated understanding of cellulase adsorption and hydrolysis for ball-milled cellulose. Bioresour Technol 273:1–7PubMedCrossRef
Zurück zum Zitat Malgas S, Kwanya Minghe VM, Pletschke BI (2020) The effect of hemicellulose on the binding and activity of cellobiohydrolase I, Cel7A, from Trichoderma reesei to cellulose. Cellulose 27:781–797CrossRef Malgas S, Kwanya Minghe VM, Pletschke BI (2020) The effect of hemicellulose on the binding and activity of cellobiohydrolase I, Cel7A, from Trichoderma reesei to cellulose. Cellulose 27:781–797CrossRef
Zurück zum Zitat Mazeau K, Charlier L (2012) The molecular basis of the adsorption of xylans on cellulose surface. Cellulose 19:337–349CrossRef Mazeau K, Charlier L (2012) The molecular basis of the adsorption of xylans on cellulose surface. Cellulose 19:337–349CrossRef
Zurück zum Zitat Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41PubMedPubMedCentralCrossRef Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41PubMedPubMedCentralCrossRef
Zurück zum Zitat Mittal A et al (2017) Ammonia pretreatment of corn stover enables facile lignin extraction. Acs Sustain Chem Eng 5:2544–2561CrossRef Mittal A et al (2017) Ammonia pretreatment of corn stover enables facile lignin extraction. Acs Sustain Chem Eng 5:2544–2561CrossRef
Zurück zum Zitat Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10PubMedPubMedCentralCrossRef Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10PubMedPubMedCentralCrossRef
Zurück zum Zitat Penttila PA et al (2013) Xylan as limiting factor in enzymatic hydrolysis of nanocellulose. Bioresour Technol 129:135–141PubMedCrossRef Penttila PA et al (2013) Xylan as limiting factor in enzymatic hydrolysis of nanocellulose. Bioresour Technol 129:135–141PubMedCrossRef
Zurück zum Zitat Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481PubMedCrossRef Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481PubMedCrossRef
Zurück zum Zitat Qin L, Li WC, Zhu JQ, Liang JN, Li BZ, Yuan YJ (2015) Ethylenediamine pretreatment changes cellulose allomorph and lignin structure of lignocellulose at ambient pressure. Biotechnol Biofuels 8:174PubMedPubMedCentralCrossRef Qin L, Li WC, Zhu JQ, Liang JN, Li BZ, Yuan YJ (2015) Ethylenediamine pretreatment changes cellulose allomorph and lignin structure of lignocellulose at ambient pressure. Biotechnol Biofuels 8:174PubMedPubMedCentralCrossRef
Zurück zum Zitat Qing Q, Wyman CE (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 4:18PubMedPubMedCentralCrossRef Qing Q, Wyman CE (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 4:18PubMedPubMedCentralCrossRef
Zurück zum Zitat Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630PubMedCrossRef Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630PubMedCrossRef
Zurück zum Zitat Rollin JA, Zhu ZG, Sathitsuksanoh N, Zhang YHP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30PubMedCrossRef Rollin JA, Zhu ZG, Sathitsuksanoh N, Zhang YHP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30PubMedCrossRef
Zurück zum Zitat Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass. Laboratory analytical procedure (LAP) National Renewable Energy Laboratory. Technical Report: NREL/TP-510-42629, Golden, CO Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass. Laboratory analytical procedure (LAP) National Renewable Energy Laboratory. Technical Report: NREL/TP-510-42629, Golden, CO
Zurück zum Zitat Selig MJ, Thygesen LG, Felby C (2014) Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification. Biotechnol Biofuels 7:159PubMedPubMedCentralCrossRef Selig MJ, Thygesen LG, Felby C (2014) Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification. Biotechnol Biofuels 7:159PubMedPubMedCentralCrossRef
Zurück zum Zitat Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963CrossRef Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963CrossRef
Zurück zum Zitat Sousa LD, Humpula J, Balan V, Dale BE, Chundawat SPS (2019) Impact of ammonia pretreatment conditions on the cellulose III allomorph ultrastructure and its enzymatic digestibility. Acs Sustain Chem Eng 7:14411–14424CrossRef Sousa LD, Humpula J, Balan V, Dale BE, Chundawat SPS (2019) Impact of ammonia pretreatment conditions on the cellulose III allomorph ultrastructure and its enzymatic digestibility. Acs Sustain Chem Eng 7:14411–14424CrossRef
Zurück zum Zitat Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480PubMedCrossRef Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480PubMedCrossRef
Zurück zum Zitat Weimer P, French A, Calamari T (1991) Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria. Appl Environ Microbiol 57:3101–3106PubMedPubMedCentralCrossRef Weimer P, French A, Calamari T (1991) Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria. Appl Environ Microbiol 57:3101–3106PubMedPubMedCentralCrossRef
Zurück zum Zitat Xin DL, Sun ZP, Viikari L, Zhang JH (2015) Role of hemicellulases in production of fermentable sugars from corn stover. Ind Crop Prod 74:209–217CrossRef Xin DL, Sun ZP, Viikari L, Zhang JH (2015) Role of hemicellulases in production of fermentable sugars from corn stover. Ind Crop Prod 74:209–217CrossRef
Zurück zum Zitat Xin DL, Yang M, Chen X, Zhang Y, Ma L, Zhang JH (2017) Improving the hydrolytic action of cellulases by tween 80: offsetting the lost activity of cellobiohydrolase Cel7A. ACS Sustain Chem Eng 5:11339–11345CrossRef Xin DL, Yang M, Chen X, Zhang Y, Ma L, Zhang JH (2017) Improving the hydrolytic action of cellulases by tween 80: offsetting the lost activity of cellobiohydrolase Cel7A. ACS Sustain Chem Eng 5:11339–11345CrossRef
Zurück zum Zitat Zhang JH, Tang M, Viikari L (2012) Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour Technol 121:8–12PubMedCrossRef Zhang JH, Tang M, Viikari L (2012) Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour Technol 121:8–12PubMedCrossRef
Zurück zum Zitat Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuel Bioprod and Biorefining 6:465–482CrossRef Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuel Bioprod and Biorefining 6:465–482CrossRef
Metadaten
Titel
The inhibitory effect of xylan on enzymatic hydrolysis of cellulose is dependent on cellulose ultrastructure
verfasst von
Xindong Chen
Lian Xiong
Hailong Li
Liquan Zhang
Ge Yuan
Xuefang Chen
Can Wang
Xinde Chen
Publikationsdatum
11.03.2020
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 8/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03087-9

Weitere Artikel der Ausgabe 8/2020

Cellulose 8/2020 Zur Ausgabe