Skip to main content
Erschienen in: Data Mining and Knowledge Discovery 5/2021

14.07.2021

Structure learning for relational logistic regression: an ensemble approach

verfasst von: Nandini Ramanan, Gautam Kunapuli, Tushar Khot, Bahare Fatemi, Seyed Mehran Kazemi, David Poole, Kristian Kersting, Sriraam Natarajan

Erschienen in: Data Mining and Knowledge Discovery | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and develop a learning algorithm based on the recently successful functional-gradient boosting methods for probabilistic logic models. We derive the functional gradients and show how weights can be learned simultaneously in an efficient manner. Our empirical evaluation on standard data sets demonstrates the superiority of our approach over other methods for learning RLR.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We use the term example to mean the grounded target literal. Hence \(y_i = 1\) denotes that the grounding \(\mathsf {Q}(\mathbf {X})=1\) i.e., the grounded target predicate is true. Following standard Bayesian networks terminology, we denote the parents \(\mathcal {A}(\mathsf {Q})\) to include the set of formulae \(\psi \) that influence the current predicate \(\mathsf {Q}\).
 
2
We use formulae and clauses interchangeably from hereon.
 
Literatur
Zurück zum Zitat Blockeel H (1999) Top–down induction of first order logical decision trees. AI Commun 12(1–2):119–120 Blockeel H (1999) Top–down induction of first order logical decision trees. AI Commun 12(1–2):119–120
Zurück zum Zitat Craven M, McCallum A, PiPasquo D, Mitchell T, Freitag D (1998) Learning to extract symbolic knowledge from the world wide web. Proceedings of the 15th AAAI conference on artificial intelligence, pp 509–516 Craven M, McCallum A, PiPasquo D, Mitchell T, Freitag D (1998) Learning to extract symbolic knowledge from the world wide web. Proceedings of the 15th AAAI conference on artificial intelligence, pp 509–516
Zurück zum Zitat Dietterich TG, Ashenfelter A, Bulatov Y (2004) Training conditional random fields via gradient tree boosting. In: Proceedings of the twenty–first international conference on machine learning, p 28 Dietterich TG, Ashenfelter A, Bulatov Y (2004) Training conditional random fields via gradient tree boosting. In: Proceedings of the twenty–first international conference on machine learning, p 28
Zurück zum Zitat Domingos P, Lowd D (2009) Markov logic: an interface layer for artificial intelligence, vol 3. Morgan & Claypool Publishers Domingos P, Lowd D (2009) Markov logic: an interface layer for artificial intelligence, vol 3. Morgan & Claypool Publishers
Zurück zum Zitat Fatemi B, Kazemi SM, Poole D (2016) A learning algorithm for relational logistic regression: preliminary results. arXiv preprint arXiv:1606.08531 Fatemi B, Kazemi SM, Poole D (2016) A learning algorithm for relational logistic regression: preliminary results. arXiv preprint arXiv:​1606.​08531
Zurück zum Zitat Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat, pp 1189–1232 Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat, pp 1189–1232
Zurück zum Zitat Gutmann B, Kersting K (2006) Tildecrf: conditional random fields for logical sequences. In: European conference on machine learning, Springer, Berlin, pp 174–185 Gutmann B, Kersting K (2006) Tildecrf: conditional random fields for logical sequences. In: European conference on machine learning, Springer, Berlin, pp 174–185
Zurück zum Zitat Getoor L, Taskar B, eds. (2007) Introduction to statistical relational learning. MIT Press, Cambridge Getoor L, Taskar B, eds. (2007) Introduction to statistical relational learning. MIT Press, Cambridge
Zurück zum Zitat Harper FM, Konstan JA (2015) The movielens datasets: history and context. ACM Trans Interact Intell Systems 5(4):1–19CrossRef Harper FM, Konstan JA (2015) The movielens datasets: history and context. ACM Trans Interact Intell Systems 5(4):1–19CrossRef
Zurück zum Zitat Heckerman D, Meek C, Koller D (2007) Probabilistic entity–relationship models, PRMs, and plate models. Introduction to statistical relational learning pp 201–238 Heckerman D, Meek C, Koller D (2007) Probabilistic entity–relationship models, PRMs, and plate models. Introduction to statistical relational learning pp 201–238
Zurück zum Zitat Huynh TN, Mooney RJ (2008) Discriminative structure and parameter learning for markov logic networks. In: Proceedings of the 25th international conference on machine learning, pp 416–423 Huynh TN, Mooney RJ (2008) Discriminative structure and parameter learning for markov logic networks. In: Proceedings of the 25th international conference on machine learning, pp 416–423
Zurück zum Zitat Kazemi SM, Poole D (2018) Relnn: a deep neural model for relational learning. In: Proceedings of the AAAI conference on artificial intelligence, vol 32 Kazemi SM, Poole D (2018) Relnn: a deep neural model for relational learning. In: Proceedings of the AAAI conference on artificial intelligence, vol 32
Zurück zum Zitat Kazemi SM, Buchman D, Kersting K, Natarajan S, Poole D (2014a) Relational logistic regression: the directed analog of markov logic networks. In: AAAI workshop: statistical relational artificial intelligence, Citeseer Kazemi SM, Buchman D, Kersting K, Natarajan S, Poole D (2014a) Relational logistic regression: the directed analog of markov logic networks. In: AAAI workshop: statistical relational artificial intelligence, Citeseer
Zurück zum Zitat Kersting K, De Raedt L (2007) Bayesian logic programming: theory and tool. In: Taskar B, Getoor L (ed). An introduction to statistical relational learning, MIT Press Kersting K, De Raedt L (2007) Bayesian logic programming: theory and tool. In: Taskar B, Getoor L (ed). An introduction to statistical relational learning, MIT Press
Zurück zum Zitat Kersting K, Driessens K (2008) Non–parametric policy gradients: a unified treatment of propositional and relational domains. In: Proceedings of the 25th international conference on machine learning, pp 456–463 Kersting K, Driessens K (2008) Non–parametric policy gradients: a unified treatment of propositional and relational domains. In: Proceedings of the 25th international conference on machine learning, pp 456–463
Zurück zum Zitat Khot T, Natarajan S, Kersting K, Shavlik J (2011) Learning markov logic networks via functional gradient boosting. In: 2011 IEEE 11th international conference on data mining, IEEE, pp 320–329 Khot T, Natarajan S, Kersting K, Shavlik J (2011) Learning markov logic networks via functional gradient boosting. In: 2011 IEEE 11th international conference on data mining, IEEE, pp 320–329
Zurück zum Zitat Kimmig A, Bach S, Broecheler M, Huang B, Getoor L (2012) A short introduction to probabilistic soft logic. In: Proceedings of the NIPS workshop on probabilistic programming: foundations and applications, pp 1–4 Kimmig A, Bach S, Broecheler M, Huang B, Getoor L (2012) A short introduction to probabilistic soft logic. In: Proceedings of the NIPS workshop on probabilistic programming: foundations and applications, pp 1–4
Zurück zum Zitat Kok S, Domingos P (2005) Learning the structure of markov logic networks. In: Proceedings of the 22nd international conference on machine learning, pp 441–448 Kok S, Domingos P (2005) Learning the structure of markov logic networks. In: Proceedings of the 22nd international conference on machine learning, pp 441–448
Zurück zum Zitat Kok S, Domingos P (2009) Learning markov logic network structure via hypergraph lifting. In: Proceedings of the 26th annual international conference on machine learning, pp 505–512 Kok S, Domingos P (2009) Learning markov logic network structure via hypergraph lifting. In: Proceedings of the 26th annual international conference on machine learning, pp 505–512
Zurück zum Zitat Koller D (1999) Probabilistic relational models. In: International conference on inductive logic programming, Springer, pp 3–13 Koller D (1999) Probabilistic relational models. In: International conference on inductive logic programming, Springer, pp 3–13
Zurück zum Zitat Lowd D, Domingos P (2007) Efficient weight learning for markov logic networks. In: European conference on principles of data mining and knowledge discovery, Springer, pp 200–211 Lowd D, Domingos P (2007) Efficient weight learning for markov logic networks. In: European conference on principles of data mining and knowledge discovery, Springer, pp 200–211
Zurück zum Zitat Malec M, Khot T, Nagy J, Blasch E, Natarajan S (2016) Inductive logic programming meets relational databases: an application to statistical relational learning Malec M, Khot T, Nagy J, Blasch E, Natarajan S (2016) Inductive logic programming meets relational databases: an application to statistical relational learning
Zurück zum Zitat Mihalkova L, Mooney RJ (2007) Bottom–up learning of markov logic network structure. In: Proceedings of the 24th international conference on machine learning, pp 625–632 Mihalkova L, Mooney RJ (2007) Bottom–up learning of markov logic network structure. In: Proceedings of the 24th international conference on machine learning, pp 625–632
Zurück zum Zitat Muggleton S (1995) Inverse entailment and Progol. New Gener Comput 13(3–4):245–286 Muggleton S (1995) Inverse entailment and Progol. New Gener Comput 13(3–4):245–286
Zurück zum Zitat Muggleton S (1996) Learning from positive data. In: International conference on inductive logic programming, Springer, pp 358–376 Muggleton S (1996) Learning from positive data. In: International conference on inductive logic programming, Springer, pp 358–376
Zurück zum Zitat Natarajan S, Tadepalli P, Dietterich TG, Fern A (2008) Learning first-order probabilistic models with combining rules. Ann Math Artif Intell 54(1):223–256MathSciNetCrossRef Natarajan S, Tadepalli P, Dietterich TG, Fern A (2008) Learning first-order probabilistic models with combining rules. Ann Math Artif Intell 54(1):223–256MathSciNetCrossRef
Zurück zum Zitat Natarajan S, Joshi S, Tadepalli P, Kersting K, Shavlik J (2011) Imitation learning in relational domains: a functional–gradient boosting approach. In: IJCAI proceedings–international joint conference on artificial intelligence, Citeseer, vol 22, p 1414 Natarajan S, Joshi S, Tadepalli P, Kersting K, Shavlik J (2011) Imitation learning in relational domains: a functional–gradient boosting approach. In: IJCAI proceedings–international joint conference on artificial intelligence, Citeseer, vol 22, p 1414
Zurück zum Zitat Natarajan S, Khot T, Kersting K, Gutmann B, Shavlik J (2012) Gradient-based boosting for statistical relational learning: the relational dependency network case. Mach Learn 86(1):25–56MathSciNetCrossRef Natarajan S, Khot T, Kersting K, Gutmann B, Shavlik J (2012) Gradient-based boosting for statistical relational learning: the relational dependency network case. Mach Learn 86(1):25–56MathSciNetCrossRef
Zurück zum Zitat Natarajan S, Prabhakar A, Ramanan N, Bagilone A, Siek K, Connelly K (2017) Boosting for postpartum depression prediction. In: 2017 IEEE/ACM international conference on connected health: applications, systems and engineering technologies (CHASE), IEEE, pp 232–24 Natarajan S, Prabhakar A, Ramanan N, Bagilone A, Siek K, Connelly K (2017) Boosting for postpartum depression prediction. In: 2017 IEEE/ACM international conference on connected health: applications, systems and engineering technologies (CHASE), IEEE, pp 232–24
Zurück zum Zitat Poole D, Buchman D, Kazemi SM, Kersting K, Natarajan S (2014) Population size extrapolation in relational probabilistic modelling. In: International conference on scalable uncertainty management, Springer, pp 292–305 Poole D, Buchman D, Kazemi SM, Kersting K, Natarajan S (2014) Population size extrapolation in relational probabilistic modelling. In: International conference on scalable uncertainty management, Springer, pp 292–305
Zurück zum Zitat Popescul A, Ungar LH (2003) Structural logistic regression for link analysis. Departmental Papers (CIS) p 133 Popescul A, Ungar LH (2003) Structural logistic regression for link analysis. Departmental Papers (CIS) p 133
Zurück zum Zitat Raedt LD, Kersting K, Natarajan S, Poole D (2016) Statistical relational artificial intelligence: logic, probability, and computation. Synth Lect Artif Intell Mach Learn 10(2):1–189MATH Raedt LD, Kersting K, Natarajan S, Poole D (2016) Statistical relational artificial intelligence: logic, probability, and computation. Synth Lect Artif Intell Mach Learn 10(2):1–189MATH
Zurück zum Zitat Richardson M, Domingos P (2006) Markov logic networks. Mach Learn 62(1–2):107–136CrossRef Richardson M, Domingos P (2006) Markov logic networks. Mach Learn 62(1–2):107–136CrossRef
Zurück zum Zitat Taskar B, Abbeel P, Wong MF, Koller D (2007) Relational markov networks. Introduction to statistical relational learning, pp 175–200 Taskar B, Abbeel P, Wong MF, Koller D (2007) Relational markov networks. Introduction to statistical relational learning, pp 175–200
Zurück zum Zitat Yang S, Khot T, Kersting K, Kunapuli G, Hauser K, Natarajan S (2014) Learning from imbalanced data in relational domains: a soft margin approach. In: 2014 IEEE international conference on data mining, IEEE, pp 1085–1090 Yang S, Khot T, Kersting K, Kunapuli G, Hauser K, Natarajan S (2014) Learning from imbalanced data in relational domains: a soft margin approach. In: 2014 IEEE international conference on data mining, IEEE, pp 1085–1090
Zurück zum Zitat Yang S, Korayem M, AlJadda K, Grainger T, Natarajan S (2017) Combining content-based and collaborative filtering for job recommendation system: a cost-sensitive statistical relational learning approach. Knowl-Based Syst 136:37–45CrossRef Yang S, Korayem M, AlJadda K, Grainger T, Natarajan S (2017) Combining content-based and collaborative filtering for job recommendation system: a cost-sensitive statistical relational learning approach. Knowl-Based Syst 136:37–45CrossRef
Metadaten
Titel
Structure learning for relational logistic regression: an ensemble approach
verfasst von
Nandini Ramanan
Gautam Kunapuli
Tushar Khot
Bahare Fatemi
Seyed Mehran Kazemi
David Poole
Kristian Kersting
Sriraam Natarajan
Publikationsdatum
14.07.2021
Verlag
Springer US
Erschienen in
Data Mining and Knowledge Discovery / Ausgabe 5/2021
Print ISSN: 1384-5810
Elektronische ISSN: 1573-756X
DOI
https://doi.org/10.1007/s10618-021-00770-8

Weitere Artikel der Ausgabe 5/2021

Data Mining and Knowledge Discovery 5/2021 Zur Ausgabe

Premium Partner