Skip to main content
Erschienen in: Designs, Codes and Cryptography 1-2/2017

25.03.2016

New lower bounds for the Shannon capacity of odd cycles

verfasst von: K. Ashik Mathew, Patric R. J. Östergård

Erschienen in: Designs, Codes and Cryptography | Ausgabe 1-2/2017

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Shannon capacity of a graph G is defined as \(c(G)=\sup _{d\ge 1}(\alpha (G^d))^{\frac{1}{d}},\) where \(\alpha (G)\) is the independence number of G. The Shannon capacity of the cycle \(C_5\) on 5 vertices was determined by Lovász in 1979, but the Shannon capacity of a cycle \(C_p\) for general odd p remains one of the most notorious open problems in information theory. By prescribing stabilizers for the independent sets in \(C_p^d\) and using stochastic search methods, we show that \(\alpha (C_7^5)\ge 350\), \(\alpha (C_{11}^4)\ge 748\), \(\alpha (C_{13}^4)\ge 1534\), and \(\alpha (C_{15}^3)\ge 381\). This leads to improved lower bounds on the Shannon capacity of \(C_7\) and \(C_{15}\): \(c(C_7)\ge 350^{\frac{1}{5}}> 3.2271\) and \(c(C_{15})\ge 381^{\frac{1}{3}}> 7.2495\).
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Alon N.: On the capacity of digraphs. Eur. J. Comb. 19, 1–5 (1998). Alon N.: On the capacity of digraphs. Eur. J. Comb. 19, 1–5 (1998).
2.
Zurück zum Zitat Alon N., Orlitsky A.: Repeated communication and Ramsey graphs. IEEE Trans. Inf. Theory 41, 1276–1289 (1995). Alon N., Orlitsky A.: Repeated communication and Ramsey graphs. IEEE Trans. Inf. Theory 41, 1276–1289 (1995).
3.
Zurück zum Zitat Ashley J.J., Siegel P.H.: A note on the Shannon capacity of run-length-limited codes. IEEE Trans. Inf. Theory 33, 601–605 (1987). Ashley J.J., Siegel P.H.: A note on the Shannon capacity of run-length-limited codes. IEEE Trans. Inf. Theory 33, 601–605 (1987).
4.
Zurück zum Zitat Baumert L.D., McEliece R.J., Rodemich E., Rumsey H.C. Jr., Stanley R., Taylor H.: A combinatorial packing problem. In: Birkhoff G., Hall M. Jr. (eds.) Computers in Algebra and Number Theory. Proceedings of Symposium in Applied Mathematics of the AMS and SIAM, New York, 1970, pp. 97–108. American Mathematical Society, Providence (1971). Baumert L.D., McEliece R.J., Rodemich E., Rumsey H.C. Jr., Stanley R., Taylor H.: A combinatorial packing problem. In: Birkhoff G., Hall M. Jr. (eds.) Computers in Algebra and Number Theory. Proceedings of Symposium in Applied Mathematics of the AMS and SIAM, New York, 1970, pp. 97–108. American Mathematical Society, Providence (1971).
5.
Zurück zum Zitat Bohman T.: A limit theorem for the Shannon capacities of odd cycles I. Proc. Am. Math. Soc. 131, 3559–3569 (2003). Bohman T.: A limit theorem for the Shannon capacities of odd cycles I. Proc. Am. Math. Soc. 131, 3559–3569 (2003).
6.
Zurück zum Zitat Bohman T., Holzman R., Natarajan V.: On the independence numbers of the cubes of odd cycles. Electron. J. Comb. 20(3), P10 (2013). Bohman T., Holzman R., Natarajan V.: On the independence numbers of the cubes of odd cycles. Electron. J. Comb. 20(3), P10 (2013).
7.
Zurück zum Zitat Bomze I.M., Budinich M., Pardalos P.M., Pelillo M.: The maximum clique problem. In: Du D.Z., Pardalos P.M. (eds.) Handbook of Combinatorial Optimization, Supplement, vol. A, pp. 1–74. Kluwer, Dordrecht (1999). Bomze I.M., Budinich M., Pardalos P.M., Pelillo M.: The maximum clique problem. In: Du D.Z., Pardalos P.M. (eds.) Handbook of Combinatorial Optimization, Supplement, vol. A, pp. 1–74. Kluwer, Dordrecht (1999).
8.
Zurück zum Zitat Braun M., Östergård P.R.J., Wassermann A.: New lower bounds for binary constant dimension subspace codes. Submitted for publication. Braun M., Östergård P.R.J., Wassermann A.: New lower bounds for binary constant dimension subspace codes. Submitted for publication.
9.
Zurück zum Zitat Brouwer A.E., Schrijver A.: Uniform hypergraphs. In: Schrijver A. (ed.) Packing and Covering in Combinatorics. Mathematical Centre Tracts No. 106, pp. 39–73. Mathematisch Centrum, Amsterdam (1979). Brouwer A.E., Schrijver A.: Uniform hypergraphs. In: Schrijver A. (ed.) Packing and Covering in Combinatorics. Mathematical Centre Tracts No. 106, pp. 39–73. Mathematisch Centrum, Amsterdam (1979).
10.
Zurück zum Zitat Feige U.: Randomized graph products, chromatic numbers, and the Lovász \(\vartheta \)-function, In: Proceedings of 27th Annual ACM Symposium on the Theory of Computing, pp. 635–640. ACM, New York (1995). Feige U.: Randomized graph products, chromatic numbers, and the Lovász \(\vartheta \)-function, In: Proceedings of 27th Annual ACM Symposium on the Theory of Computing, pp. 635–640. ACM, New York (1995).
11.
Zurück zum Zitat Frucht R.: On the groups of repeated graphs. Bull. Am. Math. Soc. 55, 418–420 (1949). Frucht R.: On the groups of repeated graphs. Bull. Am. Math. Soc. 55, 418–420 (1949).
12.
Zurück zum Zitat Haemers W.: An upper bound for the Shannon capacity of a graph. In: Lovász L., Sós V.T. (eds.) Algebraic Methods in Graph Theory. Colloquia Mathematica Societatis János Bolyai, vol. 25, pp. 267–272. Szeged (1978). Haemers W.: An upper bound for the Shannon capacity of a graph. In: Lovász L., Sós V.T. (eds.) Algebraic Methods in Graph Theory. Colloquia Mathematica Societatis János Bolyai, vol. 25, pp. 267–272. Szeged (1978).
13.
Zurück zum Zitat Haemers W.: On some problems of Lovász concerning the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 231–232 (1979). Haemers W.: On some problems of Lovász concerning the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 231–232 (1979).
14.
Zurück zum Zitat Hammack R., Imrich W., Klavžar S.: Handbook of Product Graphs, 2nd edn. CRC, Boca Raton (2011). Hammack R., Imrich W., Klavžar S.: Handbook of Product Graphs, 2nd edn. CRC, Boca Raton (2011).
15.
Zurück zum Zitat Kaski P., Östergård P.R.J.: Classification Algorithms for Codes and Designs. Springer, Berlin (2006). Kaski P., Östergård P.R.J.: Classification Algorithms for Codes and Designs. Springer, Berlin (2006).
16.
Zurück zum Zitat Keller O.H.: Über die lückenlose Erfüllung des Raumes mit Würfeln. J. Reine Angew. Math. 163, 231–248 (1930). Keller O.H.: Über die lückenlose Erfüllung des Raumes mit Würfeln. J. Reine Angew. Math. 163, 231–248 (1930).
17.
Zurück zum Zitat Knuth D.E.: The sandwich theorem. Electron. J. Comb. 1, A1 (1994). Knuth D.E.: The sandwich theorem. Electron. J. Comb. 1, A1 (1994).
18.
Zurück zum Zitat Körner J., Orlitsky A.: Zero-error information theory. IEEE Trans. Inf. Theory 44, 2207–2229 (1998). Körner J., Orlitsky A.: Zero-error information theory. IEEE Trans. Inf. Theory 44, 2207–2229 (1998).
19.
Zurück zum Zitat Lovász L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7 (1979). Lovász L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7 (1979).
20.
Zurück zum Zitat Mathew K.A., Östergård P.R.J., Popa A.: On the Shannon capacity of triangular graphs. Electron. J. Comb. 20(2), P27 (2013). Mathew K.A., Östergård P.R.J., Popa A.: On the Shannon capacity of triangular graphs. Electron. J. Comb. 20(2), P27 (2013).
21.
Zurück zum Zitat Montemanni R., Smith D.H.: Heuristic algorithms for constructing binary constant weight codes. IEEE Trans. Inf. Theory 55, 4651–4656 (2009). Montemanni R., Smith D.H.: Heuristic algorithms for constructing binary constant weight codes. IEEE Trans. Inf. Theory 55, 4651–4656 (2009).
22.
Zurück zum Zitat Niskanen S., Östergård P.R.J.: Cliquer User’s Guide (Version 1.0). Technical Report T48, Communications Laboratory, Helsinki University of Technology, Espoo (2003). Niskanen S., Östergård P.R.J.: Cliquer User’s Guide (Version 1.0). Technical Report T48, Communications Laboratory, Helsinki University of Technology, Espoo (2003).
23.
Zurück zum Zitat Shannon C.E.: The zero-error capacity of a noisy channel. IRE Trans. Inf. Theory 2, 8–19 (1956). Shannon C.E.: The zero-error capacity of a noisy channel. IRE Trans. Inf. Theory 2, 8–19 (1956).
24.
Zurück zum Zitat Szegedy M.: A note on the \(\Theta \) number of Lovász and the generalized Delsarte bound. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 36–41. IEEE Computer Society, Los Alamitos (1994). Szegedy M.: A note on the \(\Theta \) number of Lovász and the generalized Delsarte bound. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 36–41. IEEE Computer Society, Los Alamitos (1994).
25.
Zurück zum Zitat Vesel A., Žerovnik J.: Improved lower bound on the Shannon capacity of \(C_7\). Inf. Process. Lett. 81, 277–282 (2002). Vesel A., Žerovnik J.: Improved lower bound on the Shannon capacity of \(C_7\). Inf. Process. Lett. 81, 277–282 (2002).
Metadaten
Titel
New lower bounds for the Shannon capacity of odd cycles
verfasst von
K. Ashik Mathew
Patric R. J. Östergård
Publikationsdatum
25.03.2016
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 1-2/2017
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0194-7

Weitere Artikel der Ausgabe 1-2/2017

Designs, Codes and Cryptography 1-2/2017 Zur Ausgabe

Premium Partner