Skip to main content
Erschienen in: Education and Information Technologies 4/2023

14.10.2022

Examining computational thinking processes in modeling unstructured data

verfasst von: Shiyan Jiang, Yingxiao Qian, Hengtao Tang, Rabia Yalcinkaya, Carolyn P. Rosé, Jie Chao, William Finzer

Erschienen in: Education and Information Technologies | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As artificial intelligence (AI) technologies are increasingly pervasive in our daily lives, the need for students to understand the working mechanisms of AI technologies has become more urgent. Data modeling is an activity that has been proposed to engage students in reasoning about the working mechanism of AI technologies. While Computational thinking (CT) has been conceptualized as critical processes that students engage in during data modeling, much remains unexplored regarding how students created features from unstructured data to develop machine learning models. In this study, we examined high school students’ patterns of iterative model development and themes of CT processes in iterative model development. Twenty-eight students from a journalism class engaged in refining machine learning models iteratively for classifying negative and positive reviews of ice cream stores. This study draws on a theoretical framework of CT processes to examine students’ model development processes. The results showed that students (1) demonstrated three patterns of iterative model development, including incremental, filter-based, and radical feature creation; (2) engaged in complex reasoning about language use in diverse contexts in trial and error, (3) leveraged multiple data representations when applying mathematical and computational techniques. The results provide implications for designing accessible AI learning experiences for students to understand the role and responsibility of modelers in creating AI technologies and studying AI learning experiences from the angle of CT processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Asbell-Clarke, J., Rowe, E., Almeda, V., Edwards, T., Bardar, E., Gasca, S., & Scruggs, R. (2021). The development of students’ computational thinking practices in elementary-and middle-school classes using the learning game, Zoombinis. Computers in Human Behavior, 115, Article 106587. Asbell-Clarke, J., Rowe, E., Almeda, V., Edwards, T., Bardar, E., Gasca, S., & Scruggs, R. (2021). The development of students’ computational thinking practices in elementary-and middle-school classes using the learning game, Zoombinis. Computers in Human Behavior, 115, Article 106587.
Zurück zum Zitat Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning & Leading with Technology, 38(6), 20–23. Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning & Leading with Technology, 38(6), 20–23.
Zurück zum Zitat Benoit, K. (2020). Text as data: An overview. The SAGE Handbook of Research Methods in Political Science and International Relations. SAGE Publishing (forthcoming). Benoit, K. (2020). Text as data: An overview. The SAGE Handbook of Research Methods in Political Science and International Relations. SAGE Publishing (forthcoming).
Zurück zum Zitat Bird, K. A., Castleman, B. L., Mabel, Z., & Song, Y. (2021). Bringing transparency to predictive analytics: A systematic comparison of predictive modeling methods in higher education. AERA Open, 7, 23328584211037630.CrossRef Bird, K. A., Castleman, B. L., Mabel, Z., & Song, Y. (2021). Bringing transparency to predictive analytics: A systematic comparison of predictive modeling methods in higher education. AERA Open, 7, 23328584211037630.CrossRef
Zurück zum Zitat Cateté, V., Lytle, N., Dong, Y., Boulden, D., Akram, B., Houchins, J., & Boyer, K. (2018, October). Infusing computational thinking into middle grade science classrooms: lessons learned. In Proceedings of the 13th Workshop in Primary and Secondary Computing Education (pp. 1–6). Cateté, V., Lytle, N., Dong, Y., Boulden, D., Akram, B., Houchins, J., & Boyer, K. (2018, October). Infusing computational thinking into middle grade science classrooms: lessons learned. In Proceedings of the 13th Workshop in Primary and Secondary Computing Education (pp. 1–6).
Zurück zum Zitat Cetin, I., & Dubinsky, E. (2017). Reflective abstraction in computational thinking. The Journal of Mathematical Behavior, 47, 70–80.CrossRef Cetin, I., & Dubinsky, E. (2017). Reflective abstraction in computational thinking. The Journal of Mathematical Behavior, 47, 70–80.CrossRef
Zurück zum Zitat Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.CrossRef Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.CrossRef
Zurück zum Zitat Czerkawski, B. C., & Lyman, E. W. (2015). Exploring issues about computational thinking in higher education. TechTrends, 59(2), 57–65.CrossRef Czerkawski, B. C., & Lyman, E. W. (2015). Exploring issues about computational thinking in higher education. TechTrends, 59(2), 57–65.CrossRef
Zurück zum Zitat Dong, Y., Catete, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., & Andrews, A. (2019, February). PRADA: A practical model for integrating computational thinking in K-12 education. In Proceedings of the 50th ACM technical symposium on computer science education (pp. 906–912). Dong, Y., Catete, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., & Andrews, A. (2019, February). PRADA: A practical model for integrating computational thinking in K-12 education. In Proceedings of the 50th ACM technical symposium on computer science education (pp. 906–912).
Zurück zum Zitat Enyedy, N., & Mukhopadhyay, S. (2007). They don’t show nothing I didn’t know: Emergent tensions between culturally relevant pedagogy and mathematics pedagogy. The Journal of the Learning Sciences, 16(2), 139–174.CrossRef Enyedy, N., & Mukhopadhyay, S. (2007). They don’t show nothing I didn’t know: Emergent tensions between culturally relevant pedagogy and mathematics pedagogy. The Journal of the Learning Sciences, 16(2), 139–174.CrossRef
Zurück zum Zitat Estevez, J., Garate, G., & Graña, M. (2019). Gentle introduction to artificial intelligence for high-school students using scratch. IEEE access, 7, 179027–179036.CrossRef Estevez, J., Garate, G., & Graña, M. (2019). Gentle introduction to artificial intelligence for high-school students using scratch. IEEE access, 7, 179027–179036.CrossRef
Zurück zum Zitat Gadanidis, G. (2017). Artificial intelligence, computational thinking, and mathematics education. The International Journal of Information and Learning Technology, 34(2), 133–139.CrossRef Gadanidis, G. (2017). Artificial intelligence, computational thinking, and mathematics education. The International Journal of Information and Learning Technology, 34(2), 133–139.CrossRef
Zurück zum Zitat Grover, S., & Pea, R. (2013). Computational thinking in K–12 a review of the state of the field. Educational Researcher, 42(1), 38–43.CrossRef Grover, S., & Pea, R. (2013). Computational thinking in K–12 a review of the state of the field. Educational Researcher, 42(1), 38–43.CrossRef
Zurück zum Zitat Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. In Sentance, S., Barendsen, E., & Schulte, C. (Eds.). Computer science education: Perspectives on teaching and learning in school (pp. 19–38). Bloomsbury Academic. Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. In Sentance, S., Barendsen, E., & Schulte, C. (Eds.). Computer science education: Perspectives on teaching and learning in school (pp. 19–38). Bloomsbury Academic.
Zurück zum Zitat Iglesias, M. (2019). Introduction to data visualizations with D3. js. In Pro D3. js (pp. 1–12). Apress. Iglesias, M. (2019). Introduction to data visualizations with D3. js. In Pro D3. js (pp. 1–12). Apress.
Zurück zum Zitat Jiang, S., & Kahn, J. (2020). Data wrangling practices and collaborative interactions with aggregated data. International Journal of Computer-Supported Collaborative Learning, 15(3), 257–281.CrossRef Jiang, S., & Kahn, J. (2020). Data wrangling practices and collaborative interactions with aggregated data. International Journal of Computer-Supported Collaborative Learning, 15(3), 257–281.CrossRef
Zurück zum Zitat Jiang, S., Nocera, A., Tatar, C., Yoder, M. M., Chao, J., Wiedemann, K., ... & Rosé, C. P. (2022). An empirical analysis of high school students’ practices of modelling with unstructured data. British Journal of Educational Technology, 53(5), 1114–1133. Jiang, S., Nocera, A., Tatar, C., Yoder, M. M., Chao, J., Wiedemann, K., ... & Rosé, C. P. (2022). An empirical analysis of high school students’ practices of modelling with unstructured data. British Journal of Educational Technology, 53(5), 1114–1133.
Zurück zum Zitat Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. Journal of the Learning Sciences, 4(1), 39–103.CrossRef Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. Journal of the Learning Sciences, 4(1), 39–103.CrossRef
Zurück zum Zitat Kelter, J., Peel, A., Bain, C., Anton, G., Dabholkar, S., Horn, M. S., & Wilensky, U. (2021). Constructionist co-design: A dual approach to curriculum and professional development. British Journal of Educational Technology, 52(3), 1043–1059.CrossRef Kelter, J., Peel, A., Bain, C., Anton, G., Dabholkar, S., Horn, M. S., & Wilensky, U. (2021). Constructionist co-design: A dual approach to curriculum and professional development. British Journal of Educational Technology, 52(3), 1043–1059.CrossRef
Zurück zum Zitat Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM, 50(4), 36–42.CrossRef Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM, 50(4), 36–42.CrossRef
Zurück zum Zitat Lehrer, R., & English, L. (2018). Introducing children to modeling variability. International handbook of research in statistics education (pp. 229–260). Springer.CrossRef Lehrer, R., & English, L. (2018). Introducing children to modeling variability. International handbook of research in statistics education (pp. 229–260). Springer.CrossRef
Zurück zum Zitat Liu, Z., Zhi, R., Hicks, A., & Barnes, T. (2017). Understanding problem solving behavior of 6–8 graders in a debugging game. Computer Science Education, 27(1), 1–29.CrossRef Liu, Z., Zhi, R., Hicks, A., & Barnes, T. (2017). Understanding problem solving behavior of 6–8 graders in a debugging game. Computer Science Education, 27(1), 1–29.CrossRef
Zurück zum Zitat Long, D., & Magerko, B. (2020, April). What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–16). Long, D., & Magerko, B. (2020, April). What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–16).
Zurück zum Zitat Mayfield, E., & Rosé, C. (2010, June). An interactive tool for supporting error analysis for text mining. In Proceedings of the NAACL HLT 2010 Demonstration Session (pp. 25–28). Mayfield, E., & Rosé, C. (2010, June). An interactive tool for supporting error analysis for text mining. In Proceedings of the NAACL HLT 2010 Demonstration Session (pp. 25–28).
Zurück zum Zitat Ogegbo, A. A., & Ramnarain, U. (2022). A systematic review of computational thinking in science classrooms. Studies in Science Education, 58(2), 203–230.CrossRef Ogegbo, A. A., & Ramnarain, U. (2022). A systematic review of computational thinking in science classrooms. Studies in Science Education, 58(2), 203–230.CrossRef
Zurück zum Zitat Patton, M. Q. (1990). Qualitative evaluation and research methods (2nd ed.). Sage. Patton, M. Q. (1990). Qualitative evaluation and research methods (2nd ed.). Sage.
Zurück zum Zitat Riikonen, S., Seitamaa-Hakkarainen, P., & Hakkarainen, K. (2020). Bringing maker practices to school: Tracing discursive and materially mediated aspects of student teams’ collaborative making processes. International Journal of Computer-Supported Collaborative Learning, 15(3), 319–349.CrossRef Riikonen, S., Seitamaa-Hakkarainen, P., & Hakkarainen, K. (2020). Bringing maker practices to school: Tracing discursive and materially mediated aspects of student teams’ collaborative making processes. International Journal of Computer-Supported Collaborative Learning, 15(3), 319–349.CrossRef
Zurück zum Zitat Rosé, C. P. (2017). A social spin on language analysis. Nature, 545(7653), 166–167. Rosé, C. P. (2017). A social spin on language analysis. Nature, 545(7653), 166–167.
Zurück zum Zitat Sever, D., & Guven, M. (2014). Effect of inquiry-based learning approach on student resistance in a science and technology course. Educational Sciences: Theory and Practice, 14(4), 1601–1605. Sever, D., & Guven, M. (2014). Effect of inquiry-based learning approach on student resistance in a science and technology course. Educational Sciences: Theory and Practice, 14(4), 1601–1605.
Zurück zum Zitat Shih, W. C. (2019, July). Integrating computational thinking into the process of learning artificial intelligence. In Proceedings of the 2019 3rd International Conference on Education and Multimedia Technology (pp. 364–368). Shih, W. C. (2019, July). Integrating computational thinking into the process of learning artificial intelligence. In Proceedings of the 2019 3rd International Conference on Education and Multimedia Technology (pp. 364–368).
Zurück zum Zitat Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158.CrossRef Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158.CrossRef
Zurück zum Zitat Strauss, A., & Corbin, J. M. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). SAGE. Strauss, A., & Corbin, J. M. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). SAGE.
Zurück zum Zitat Tatar, C., Yoder, M. M., Coven, M., Wiedemann, K., Chao, J., Finzer, W., Jiang, S., & Rosé, C. P. (2021). Modeling unstructured data: Teachers as learners and designers of technology-enhanced artificial intelligence curriculum. In Proceedings of the 15th International Conference of the Learning Sciences—ICLS 2021 (pp. 617–620). International Society of the Learning Sciences. Tatar, C., Yoder, M. M., Coven, M., Wiedemann, K., Chao, J., Finzer, W., Jiang, S., & Rosé, C. P. (2021). Modeling unstructured data: Teachers as learners and designers of technology-enhanced artificial intelligence curriculum. In Proceedings of the 15th International Conference of the Learning Sciences—ICLS 2021 (pp. 617–620). International Society of the Learning Sciences.
Zurück zum Zitat Van Brummelen, J., Shen, J. H., & Patton, E. W. (2019, June). The popstar, the poet, and the grinch: Relating artificial intelligence to the computational thinking framework with block-based coding. In Proceedings of International Conference on Computational Thinking Education (Vol. 3, pp. 160–161). Van Brummelen, J., Shen, J. H., & Patton, E. W. (2019, June). The popstar, the poet, and the grinch: Relating artificial intelligence to the computational thinking framework with block-based coding. In Proceedings of International Conference on Computational Thinking Education (Vol. 3, pp. 160–161).
Zurück zum Zitat Vartiainen, H., Tedre, M., & Valtonen, T. (2020). Learning machine learning with very young children: Who is teaching whom? International Journal of Child-Computer Interaction, 25, 100182.CrossRef Vartiainen, H., Tedre, M., & Valtonen, T. (2020). Learning machine learning with very young children: Who is teaching whom? International Journal of Child-Computer Interaction, 25, 100182.CrossRef
Zurück zum Zitat Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.CrossRef Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.CrossRef
Zurück zum Zitat Wing, J. M. (2006). Computational thinking. Communication of ACM, 49(3), 33–35.CrossRef Wing, J. M. (2006). Computational thinking. Communication of ACM, 49(3), 33–35.CrossRef
Zurück zum Zitat Witten, I. H., Frank, E., Hall, M., & Pal, C. J. (2016). Data mining: Practical machine learning tools and techniques (4th ed.). Elsevier. Witten, I. H., Frank, E., Hall, M., & Pal, C. J. (2016). Data mining: Practical machine learning tools and techniques (4th ed.). Elsevier.
Zurück zum Zitat Zimmermann-Niefield, A., Turner, M., Murphy, B., Kane, S. K., & Shapiro, R. B. (2019, June). Youth learning machine learning through building models of athletic moves. In Proceedings of the 18th ACM International Conference on Interaction Design and Children (pp. 121–132). ACM. Zimmermann-Niefield, A., Turner, M., Murphy, B., Kane, S. K., & Shapiro, R. B. (2019, June). Youth learning machine learning through building models of athletic moves. In Proceedings of the 18th ACM International Conference on Interaction Design and Children (pp. 121–132). ACM.
Metadaten
Titel
Examining computational thinking processes in modeling unstructured data
verfasst von
Shiyan Jiang
Yingxiao Qian
Hengtao Tang
Rabia Yalcinkaya
Carolyn P. Rosé
Jie Chao
William Finzer
Publikationsdatum
14.10.2022
Verlag
Springer US
Erschienen in
Education and Information Technologies / Ausgabe 4/2023
Print ISSN: 1360-2357
Elektronische ISSN: 1573-7608
DOI
https://doi.org/10.1007/s10639-022-11355-3

Weitere Artikel der Ausgabe 4/2023

Education and Information Technologies 4/2023 Zur Ausgabe

Premium Partner