Skip to main content
Erschienen in: Journal of Elasticity 2/2015

01.08.2015

Hyperelastic Energy Densities for Soft Biological Tissues: A Review

verfasst von: G. Chagnon, M. Rebouah, D. Favier

Erschienen in: Journal of Elasticity | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many soft tissues are naturally made of a matrix and fibres that present some privileged directions. They are known to support large reversible deformations. The mechanical behaviour of these tissues highlights different phenomena as hysteresis, stress softening or relaxation. A hyperelastic constitutive equation is typically the basis of the model that describes the behaviour of the material. The hyperelastic constitutive equation can be isotropic or anisotropic, it is generally expressed by means of strain components or strain invariants. This paper proposes a review of these constitutive equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Details about the link between structural tensors and a method to link a fictitious isotropic configuration to render an anisotropic, undeformed reference configuration via an appropriate linear tangent map is given in [163].
 
Literatur
1.
Zurück zum Zitat Abraham, A.C., Moyer, J.T., Villegas, D.F., Odegard, G.M., Haut Donahue, T.L.: Hyperelastic properties of human meniscal attachments. J. Biomech. 44, 413–418 (2011) Abraham, A.C., Moyer, J.T., Villegas, D.F., Odegard, G.M., Haut Donahue, T.L.: Hyperelastic properties of human meniscal attachments. J. Biomech. 44, 413–418 (2011)
2.
Zurück zum Zitat Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series vol. 55 (1964) Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series vol. 55 (1964)
3.
Zurück zum Zitat Agoras, M., Lopez-Pamies, O., Ponte Castañeda, P.: A general hyperelastic model for incompressible fiber-reinforced elastomers. J. Mech. Phys. Solids 57, 268–286 (2009) Agoras, M., Lopez-Pamies, O., Ponte Castañeda, P.: A general hyperelastic model for incompressible fiber-reinforced elastomers. J. Mech. Phys. Solids 57, 268–286 (2009)
4.
Zurück zum Zitat Alastrué, V., Peña, E., Martinez, M.A., Doblaré, M.: Experimental study and constitutive modelling of the passive mechanical properties of the ovine infrarenal vena cava tissue. J. Biomech. 41, 3038–3045 (2008) Alastrué, V., Peña, E., Martinez, M.A., Doblaré, M.: Experimental study and constitutive modelling of the passive mechanical properties of the ovine infrarenal vena cava tissue. J. Biomech. 41, 3038–3045 (2008)
5.
Zurück zum Zitat Alastrué, V., Martinez, M.A., Doblaré, M., Menzel, A.: Anisotropic microsphere-based finite elasticity applied to blood vessel modelling. J. Mech. Phys. Solids 57, 178–203 (2009) Alastrué, V., Martinez, M.A., Doblaré, M., Menzel, A.: Anisotropic microsphere-based finite elasticity applied to blood vessel modelling. J. Mech. Phys. Solids 57, 178–203 (2009)
6.
Zurück zum Zitat Alastrué, V., Martinez, M.A., Doblaré, M., Menzel, A.: On the use of the bingham statistical distribution in microsphere-based constitutive models for arterial tissue. Mech. Res. Commun. 37, 700–706 (2010) Alastrué, V., Martinez, M.A., Doblaré, M., Menzel, A.: On the use of the bingham statistical distribution in microsphere-based constitutive models for arterial tissue. Mech. Res. Commun. 37, 700–706 (2010)
7.
Zurück zum Zitat Arnoux, P.J.: Modélisation des ligaments des membres porteurs. Ph.D. thesis, Université de la Méditerranée (2000) Arnoux, P.J.: Modélisation des ligaments des membres porteurs. Ph.D. thesis, Université de la Méditerranée (2000)
8.
Zurück zum Zitat Arnoux, P.J., Chabrand, P., Jean, M., Bonnoit, J.: A viscohyperelastic model with damage for the knee ligaments under dynamic constraints. Comput. Methods Biomech. Biomed. Eng. 5, 167–174 (2002) Arnoux, P.J., Chabrand, P., Jean, M., Bonnoit, J.: A viscohyperelastic model with damage for the knee ligaments under dynamic constraints. Comput. Methods Biomech. Biomed. Eng. 5, 167–174 (2002)
9.
Zurück zum Zitat Arruda, E.M., Boyce, M.C.: A three dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993) Arruda, E.M., Boyce, M.C.: A three dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)
10.
Zurück zum Zitat Ateshian, G.A.: Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers. J. Biomech. Eng. 129, 240–249 (2007) Ateshian, G.A.: Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers. J. Biomech. Eng. 129, 240–249 (2007)
11.
Zurück zum Zitat Ateshian, G.A., Costa, K.D.: A frame-invariant formulation of fung elasticity. J. Biomech. 42, 781–785 (2009) Ateshian, G.A., Costa, K.D.: A frame-invariant formulation of fung elasticity. J. Biomech. 42, 781–785 (2009)
12.
Zurück zum Zitat Azar, F.S., Metaxas, D.N., Schnall, M.D.: A deformable finite element model of the breast for predicting mechanical deformations under external perturbations. Acad. Radiol. 8, 965–975 (2001) Azar, F.S., Metaxas, D.N., Schnall, M.D.: A deformable finite element model of the breast for predicting mechanical deformations under external perturbations. Acad. Radiol. 8, 965–975 (2001)
13.
Zurück zum Zitat Baek, S., Gleason, R.L., Rajagopal, K.R., Humphrey, J.D.: Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196, 3070–3078 (2007) Baek, S., Gleason, R.L., Rajagopal, K.R., Humphrey, J.D.: Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196, 3070–3078 (2007)
14.
Zurück zum Zitat Ball, J.M.: Convexity conditions and existence theorems in non-linear elasticity. Arch. Ration. Mech. Anal. 63, 557–611 (1977) Ball, J.M.: Convexity conditions and existence theorems in non-linear elasticity. Arch. Ration. Mech. Anal. 63, 557–611 (1977)
15.
Zurück zum Zitat Ball, J.M.: Constitutive equalities and existence theorems in elasticity. In: Knops, R.J. (ed.) Symposium on Non-well Posed Problems and Logarithmic Convexity. Lecture Notes in Math., vol. 316. Springer, Berlin (1977) Ball, J.M.: Constitutive equalities and existence theorems in elasticity. In: Knops, R.J. (ed.) Symposium on Non-well Posed Problems and Logarithmic Convexity. Lecture Notes in Math., vol. 316. Springer, Berlin (1977)
16.
Zurück zum Zitat Balzani, D., Neff, P., Schröder, J., Holzapfel, G.A.: A polyconvex framework for soft biological tissues. Adjustement to experimental data. Int. J. Solids Struct. 43, 6052–6070 (2006) Balzani, D., Neff, P., Schröder, J., Holzapfel, G.A.: A polyconvex framework for soft biological tissues. Adjustement to experimental data. Int. J. Solids Struct. 43, 6052–6070 (2006)
17.
Zurück zum Zitat Balzani, D., Schröder, J., Gross, D.: Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomater. 2, 609–618 (2006) Balzani, D., Schröder, J., Gross, D.: Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomater. 2, 609–618 (2006)
18.
Zurück zum Zitat Balzani, D., Brands, D., Klawonn, A., Rheinbach, O., Schröder, J.: On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies. Arch. Appl. Mech. 80, 479–488 (2010) Balzani, D., Brands, D., Klawonn, A., Rheinbach, O., Schröder, J.: On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies. Arch. Appl. Mech. 80, 479–488 (2010)
19.
Zurück zum Zitat Basciano, C.A., Kleinstreuer, C.: Invariant-based anisotropic constitutive models of the healthy and aneurysmal abdominal aortic wall. J. Biomech. Eng. 131, 1–11 (2009) Basciano, C.A., Kleinstreuer, C.: Invariant-based anisotropic constitutive models of the healthy and aneurysmal abdominal aortic wall. J. Biomech. Eng. 131, 1–11 (2009)
20.
Zurück zum Zitat Bažant, Z.P., Oh, B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66, 37–49 (1986) Bažant, Z.P., Oh, B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66, 37–49 (1986)
21.
Zurück zum Zitat Beatty, M.F.: An average-stretch full-network model for rubber elasticity. J. Elast. 70, 65–86 (2004) Beatty, M.F.: An average-stretch full-network model for rubber elasticity. J. Elast. 70, 65–86 (2004)
22.
Zurück zum Zitat Bell, J.: The Experimental Foundations of Solid Mechanics, Mechanics of Solids. Springer, Berlin (1984) Bell, J.: The Experimental Foundations of Solid Mechanics, Mechanics of Solids. Springer, Berlin (1984)
23.
Zurück zum Zitat Bilgili, E.: Restricting the hyperelastic models for elastomers based on some thermodynamical, mechanical and empirical criteria. J. Elastomers Plast. 36, 159–175 (2004) Bilgili, E.: Restricting the hyperelastic models for elastomers based on some thermodynamical, mechanical and empirical criteria. J. Elastomers Plast. 36, 159–175 (2004)
24.
Zurück zum Zitat Billar, K.L., Sacks, M.S.: Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II—a structural constitutive model. J. Biomech. Eng. 122, 327–335 (2000) Billar, K.L., Sacks, M.S.: Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II—a structural constitutive model. J. Biomech. Eng. 122, 327–335 (2000)
25.
Zurück zum Zitat Bischoff, J.E., Arruda, E.M., Grosh, K.: A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69, 570–579 (2002) Bischoff, J.E., Arruda, E.M., Grosh, K.: A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69, 570–579 (2002)
26.
Zurück zum Zitat Bischoff, J.E., Arruda, E.M., Grosh, K.: Orthotropic hyperelasticity in terms of an arbitrary molecular chain model. J. Appl. Mech. 69, 198–201 (2002) Bischoff, J.E., Arruda, E.M., Grosh, K.: Orthotropic hyperelasticity in terms of an arbitrary molecular chain model. J. Appl. Mech. 69, 198–201 (2002)
27.
Zurück zum Zitat Bischoff, J.E., Arruda, E.M., Grosh, K.: A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech. Model. Mechanobiol. 3, 56–65 (2004) Bischoff, J.E., Arruda, E.M., Grosh, K.: A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech. Model. Mechanobiol. 3, 56–65 (2004)
28.
Zurück zum Zitat Bischoff, J.E.: Continuous versus discrete (invariant) representations of fibruous structure for modeling non-linear anisotropic soft tissue behavior. Int. J. Non-Linear Mech. 41, 167–179 (2006) Bischoff, J.E.: Continuous versus discrete (invariant) representations of fibruous structure for modeling non-linear anisotropic soft tissue behavior. Int. J. Non-Linear Mech. 41, 167–179 (2006)
29.
Zurück zum Zitat Boehler, J.: Applications of Tensor Functions in Solid Mechanics. CISM Courses and Lectures, vol. 292, pp. 13–30. Springer, Berlin (1987) Boehler, J.: Applications of Tensor Functions in Solid Mechanics. CISM Courses and Lectures, vol. 292, pp. 13–30. Springer, Berlin (1987)
30.
Zurück zum Zitat Boehler, J.: A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. J. Appl. Math. Mech. 59, 157–167 (1979) Boehler, J.: A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. J. Appl. Math. Mech. 59, 157–167 (1979)
31.
Zurück zum Zitat Bonet, J., Burton, A.J.: A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput. Methods Appl. Mech. Eng. 162, 151–164 (1998) Bonet, J., Burton, A.J.: A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput. Methods Appl. Mech. Eng. 162, 151–164 (1998)
32.
Zurück zum Zitat Bose, K., Dorfmann, A.: Computational aspects of a pseudo-elastic constitutive model for muscle properties in a soft-bodied arthropod. Int. J. Non-Linear Mech. 44, 42–50 (2009) Bose, K., Dorfmann, A.: Computational aspects of a pseudo-elastic constitutive model for muscle properties in a soft-bodied arthropod. Int. J. Non-Linear Mech. 44, 42–50 (2009)
33.
Zurück zum Zitat Boubaker, M.B., Haboussi, M., Ganghoffer, J.F., Aletti, P.: Finite element simulation of interactions between pelvic organs: predictive model of the prostate motion in the context of radiotherapy. J. Biomech. 42, 1862–1868 (2009) Boubaker, M.B., Haboussi, M., Ganghoffer, J.F., Aletti, P.: Finite element simulation of interactions between pelvic organs: predictive model of the prostate motion in the context of radiotherapy. J. Biomech. 42, 1862–1868 (2009)
34.
Zurück zum Zitat Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000) Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)
35.
Zurück zum Zitat Brown, L.W., Smith, L.M.: A simple transversely isotropic hyperelastic constitutive model suitable for finite element analysis of fiber reinforced elastomers. J. Eng. Mater. Technol. 133, 1–13 (2011) Brown, L.W., Smith, L.M.: A simple transversely isotropic hyperelastic constitutive model suitable for finite element analysis of fiber reinforced elastomers. J. Eng. Mater. Technol. 133, 1–13 (2011)
36.
Zurück zum Zitat Bustamante, C., Bryant, Z., Smith, S.B.: Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003) Bustamante, C., Bryant, Z., Smith, S.B.: Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003)
37.
Zurück zum Zitat Cacho, F., Elbischger, P., Rodriguez, J., Doblaré, M., Holzapfel, G.: A constitutive model for fibrous tissue sconsidering collagen fiber crimp. Int. J. Non-Linear Mech. 42, 391–402 (2007) Cacho, F., Elbischger, P., Rodriguez, J., Doblaré, M., Holzapfel, G.: A constitutive model for fibrous tissue sconsidering collagen fiber crimp. Int. J. Non-Linear Mech. 42, 391–402 (2007)
38.
Zurück zum Zitat Calvo, B., Peña, E., Martins, P., Mascarenhas, T., Doblaré, M., Natal Jorge, R.M., Ferreira, A.: On modelling damage process in vaginal tissue. J. Biomech. 42, 642–651 (2009) Calvo, B., Peña, E., Martins, P., Mascarenhas, T., Doblaré, M., Natal Jorge, R.M., Ferreira, A.: On modelling damage process in vaginal tissue. J. Biomech. 42, 642–651 (2009)
39.
Zurück zum Zitat Calvo, B., Ramirez, A., Alonso, A., Grasa, J., Soteras, F., Osta, R., Muñoz, M.J.: Passive non linear elastic behaviour of skeletal muscle: experimental results and model formulation. J. Biomech. 43, 318–325 (2010) Calvo, B., Ramirez, A., Alonso, A., Grasa, J., Soteras, F., Osta, R., Muñoz, M.J.: Passive non linear elastic behaviour of skeletal muscle: experimental results and model formulation. J. Biomech. 43, 318–325 (2010)
40.
Zurück zum Zitat Caner, F.C., Guo, Z., Moran, B., Bazant, Z.P., Carol, I.: Hyperelastic anisotropic microplane constitutive model for annulus fibrosus. Trans. Am. Soc. Mech. Eng. 129, 1–10 (2007) Caner, F.C., Guo, Z., Moran, B., Bazant, Z.P., Carol, I.: Hyperelastic anisotropic microplane constitutive model for annulus fibrosus. Trans. Am. Soc. Mech. Eng. 129, 1–10 (2007)
41.
Zurück zum Zitat Carboni, M., Desch, G.W., Weizsacker, H.W.: Passive mechanical properties of porcine left circumflex artery and its mathematical description. Med. Eng. Phys. 29, 8–16 (2007) Carboni, M., Desch, G.W., Weizsacker, H.W.: Passive mechanical properties of porcine left circumflex artery and its mathematical description. Med. Eng. Phys. 29, 8–16 (2007)
42.
Zurück zum Zitat Chagnon, G., Marckmann, G., Verron, E.: A comparison of the physical model of Arruda–Boyce with the empirical Hart–Smith model and the Gent model. Rubber Chem. Technol. 77, 724–735 (2004) Chagnon, G., Marckmann, G., Verron, E.: A comparison of the physical model of Arruda–Boyce with the empirical Hart–Smith model and the Gent model. Rubber Chem. Technol. 77, 724–735 (2004)
43.
Zurück zum Zitat Chagnon, G., Gaudin, V., Favier, D., Orgeas, L., Cinquin, P.: An osmotically inflatable seal to treat endoleaks of type 1. J. Mech. Med. Biol. 12, 1250070 (2012) Chagnon, G., Gaudin, V., Favier, D., Orgeas, L., Cinquin, P.: An osmotically inflatable seal to treat endoleaks of type 1. J. Mech. Med. Biol. 12, 1250070 (2012)
44.
Zurück zum Zitat Chen, L., Yin, F.C.P., May-Newman, K.: The structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone. J. Biomech. Eng. 126, 244–251 (2004) Chen, L., Yin, F.C.P., May-Newman, K.: The structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone. J. Biomech. Eng. 126, 244–251 (2004)
45.
Zurück zum Zitat Chen, H., Zhao, X., Lu, X., Kassab, G.: Nonlinear micromechanics of soft tissues. Int. J. Non-Linear Mech. 56, 79–85 (2013) Chen, H., Zhao, X., Lu, X., Kassab, G.: Nonlinear micromechanics of soft tissues. Int. J. Non-Linear Mech. 56, 79–85 (2013)
46.
Zurück zum Zitat Cheng, T., Dai, C., Gan, R.Z.: Viscoelastic properties of human tympanic membrane. Ann. Biomed. Eng. 35, 305–314 (2007) Cheng, T., Dai, C., Gan, R.Z.: Viscoelastic properties of human tympanic membrane. Ann. Biomed. Eng. 35, 305–314 (2007)
47.
Zurück zum Zitat Cheng, T., Gan, R.Z.: Mechanical properties of anterior malleolar ligament from experimental measurement and material modeling analysis. Biomech. Model. Mechanobiol. 7, 387–394 (2008) Cheng, T., Gan, R.Z.: Mechanical properties of anterior malleolar ligament from experimental measurement and material modeling analysis. Biomech. Model. Mechanobiol. 7, 387–394 (2008)
48.
Zurück zum Zitat Choi, H.S., Vito, R.P.: Two-dimensional stress-strain relationship for canine pericardium. J. Biomech. Eng. 112, 153–159 (1990) Choi, H.S., Vito, R.P.: Two-dimensional stress-strain relationship for canine pericardium. J. Biomech. Eng. 112, 153–159 (1990)
49.
Zurück zum Zitat Chuong, C.J., Fung, Y.C.: Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105(3), 268–274 (1983) Chuong, C.J., Fung, Y.C.: Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105(3), 268–274 (1983)
50.
Zurück zum Zitat Ciarletta, P., Izzo, I., Micera, S., Tendick, F.: Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application. J. Mech. Behav. Biomed. Mater. 4, 1359–1368 (2011) Ciarletta, P., Izzo, I., Micera, S., Tendick, F.: Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application. J. Mech. Behav. Biomed. Mater. 4, 1359–1368 (2011)
51.
Zurück zum Zitat Costa, K.D., Hunter, P.J., Waldman, L.K., Guccione, J.M., Mc Culloc, A.: A three-dimensional finite element method for large elastic deformations of ventricular myocardium: Part II—prolate-spherical coordinates. J. Biomech. Eng. 118, 464–472 (1996) Costa, K.D., Hunter, P.J., Waldman, L.K., Guccione, J.M., Mc Culloc, A.: A three-dimensional finite element method for large elastic deformations of ventricular myocardium: Part II—prolate-spherical coordinates. J. Biomech. Eng. 118, 464–472 (1996)
52.
Zurück zum Zitat Criscione, J.C., Douglas, A.S., Hunter, W.C.: Physically based strain invariants set for materials exhibiting transversely isotropic behavior. J. Mech. Phys. Solids 49, 871–891 (2001) Criscione, J.C., Douglas, A.S., Hunter, W.C.: Physically based strain invariants set for materials exhibiting transversely isotropic behavior. J. Mech. Phys. Solids 49, 871–891 (2001)
53.
Zurück zum Zitat Criscione, J.C., Mc Culloch, A.D., Hunter, W.C.: Constitutive framework optimized for myocardium and other high-strain, laminar materials with one fiber family. J. Mech. Phys. Solids 50, 1691–1702 (2002) Criscione, J.C., Mc Culloch, A.D., Hunter, W.C.: Constitutive framework optimized for myocardium and other high-strain, laminar materials with one fiber family. J. Mech. Phys. Solids 50, 1691–1702 (2002)
54.
Zurück zum Zitat deBotton, G., Hariton, I., Socolsky, E.A.: Neo-Hookean fiber-reinforced composites in finite elasticity. J. Mech. Phys. Solids 54, 533–559 (2006) deBotton, G., Hariton, I., Socolsky, E.A.: Neo-Hookean fiber-reinforced composites in finite elasticity. J. Mech. Phys. Solids 54, 533–559 (2006)
55.
Zurück zum Zitat deBotton, G., Shmuel, G.: Mechanics of composites with two families of finitely extensible fibers undergoing large deformations. J. Mech. Phys. Solids 57, 1165–1181 (2009) deBotton, G., Shmuel, G.: Mechanics of composites with two families of finitely extensible fibers undergoing large deformations. J. Mech. Phys. Solids 57, 1165–1181 (2009)
56.
Zurück zum Zitat Delfino, A., Stergiopulos, N., Moore, J.E. Jr, Meister, J.J.: Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30(8), 777–786 (1997) Delfino, A., Stergiopulos, N., Moore, J.E. Jr, Meister, J.J.: Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30(8), 777–786 (1997)
57.
Zurück zum Zitat Demiray, H.: A note on the elasticity of soft biological tissues. J. Biomech. 5, 309–311 (1972) Demiray, H.: A note on the elasticity of soft biological tissues. J. Biomech. 5, 309–311 (1972)
58.
Zurück zum Zitat Demiray, H., Weizsacker, H.W., Pascale, K., Erbay, H.: A stress strain relation for a rat abdominal aorta. J. Biomech. 21, 369–374 (1988) Demiray, H., Weizsacker, H.W., Pascale, K., Erbay, H.: A stress strain relation for a rat abdominal aorta. J. Biomech. 21, 369–374 (1988)
59.
Zurück zum Zitat Demirkoparan, H., Pence, T.: Swelling of an internally pressurized nonlinearly elastic tube with fiber reinforcing. Int. J. Solids Struct. 44, 4009–4029 (2007) Demirkoparan, H., Pence, T.: Swelling of an internally pressurized nonlinearly elastic tube with fiber reinforcing. Int. J. Solids Struct. 44, 4009–4029 (2007)
60.
Zurück zum Zitat Demirkoparan, H., ans, T.J.P., Wineman, A.: On dissolution and reassembly of filamentary reinforcing networks in hyperelastic materials. Proc. R. Soc. A 465, 867–894 (2009) Demirkoparan, H., ans, T.J.P., Wineman, A.: On dissolution and reassembly of filamentary reinforcing networks in hyperelastic materials. Proc. R. Soc. A 465, 867–894 (2009)
61.
Zurück zum Zitat Destrade, M., Gilchrist, M.D., Prikazchikov, D.A., Saccomandi, G.: Surface instability of sheared soft tissues. J. Biomech. Eng. 130, 1–6 (2008). 061007 Destrade, M., Gilchrist, M.D., Prikazchikov, D.A., Saccomandi, G.: Surface instability of sheared soft tissues. J. Biomech. Eng. 130, 1–6 (2008). 061007
62.
Zurück zum Zitat Doll, S., Schweizerhof, K.: On the development of volumetric strain energy functions. J. Appl. Mech. 67, 17–21 (2000) Doll, S., Schweizerhof, K.: On the development of volumetric strain energy functions. J. Appl. Mech. 67, 17–21 (2000)
63.
Zurück zum Zitat Dorfmann, A.L., Woods, W.A. Jr., Trimmer, B.A.: Muscle performance in a soft-bodied terrestrial crawler: constitutive modeling of strain-rate dependency. J. R. Soc. Interface 5, 349–362 (2008) Dorfmann, A.L., Woods, W.A. Jr., Trimmer, B.A.: Muscle performance in a soft-bodied terrestrial crawler: constitutive modeling of strain-rate dependency. J. R. Soc. Interface 5, 349–362 (2008)
64.
Zurück zum Zitat Doyle, M.G., Tavoularis, S., Bourgault, Y.: Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study. J. Biomech. Eng. 132, 041006 (2010) Doyle, M.G., Tavoularis, S., Bourgault, Y.: Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study. J. Biomech. Eng. 132, 041006 (2010)
65.
Zurück zum Zitat Driessen, N.J.B., Bouten, C.V.C., Baaijens, F.P.T.: A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J. Biomed. Eng. 124, 494–503 (2005) Driessen, N.J.B., Bouten, C.V.C., Baaijens, F.P.T.: A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J. Biomed. Eng. 124, 494–503 (2005)
66.
Zurück zum Zitat Ebbing, V., Schröder, J., Neff, P.: Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies. Arch. Appl. Mech. 79, 651–657 (2009) Ebbing, V., Schröder, J., Neff, P.: Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies. Arch. Appl. Mech. 79, 651–657 (2009)
67.
Zurück zum Zitat Ehret, A.E., Itskov, M.: A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues. J. Mater. Sci. 42, 8853–8863 (2007) Ehret, A.E., Itskov, M.: A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues. J. Mater. Sci. 42, 8853–8863 (2007)
68.
Zurück zum Zitat Einstein, D.R., Freed, A.D., Stander, N., Fata, B., Vesel, I.: Inverse parameter fitting of biological tissues: a response surface approach. Ann. Biomed. Eng. 33, 1819–1830 (2005) Einstein, D.R., Freed, A.D., Stander, N., Fata, B., Vesel, I.: Inverse parameter fitting of biological tissues: a response surface approach. Ann. Biomed. Eng. 33, 1819–1830 (2005)
69.
Zurück zum Zitat Epstein, E.H., Munderloh, N.H.: Isolation and characterisation of cnbr peptides of human [α 1(iii)]3 collagen and tissue distribution [α 1(i)]2 α 2 and [α 1(iii)]3 collagen. J. Biol. Chem. 250, 9304–9312 (1975) Epstein, E.H., Munderloh, N.H.: Isolation and characterisation of cnbr peptides of human [α 1(iii)]3 collagen and tissue distribution [α 1(i)]2 α 2 and [α 1(iii)]3 collagen. J. Biol. Chem. 250, 9304–9312 (1975)
70.
Zurück zum Zitat Ericksen, J.L., Rivlin, R.S.: Large elastic deformations of homogeneous anisotropic materials. Arch. Ration. Mech. Anal. 3, 281–301 (1954) Ericksen, J.L., Rivlin, R.S.: Large elastic deformations of homogeneous anisotropic materials. Arch. Ration. Mech. Anal. 3, 281–301 (1954)
71.
Zurück zum Zitat Federico, S., Grillo, A., Imatani, S., Giaquinta, G., Herzog, W.: An energetic approach to the analysis of anisotropic hyperelastic materials. Int. J. Eng. Sci. 46, 164–181 (2008) Federico, S., Grillo, A., Imatani, S., Giaquinta, G., Herzog, W.: An energetic approach to the analysis of anisotropic hyperelastic materials. Int. J. Eng. Sci. 46, 164–181 (2008)
72.
Zurück zum Zitat Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–132 (2013) Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–132 (2013)
73.
Zurück zum Zitat Flory, P.J.: Statistical Mechanics of Chain Molecules (1969) Flory, P.J.: Statistical Mechanics of Chain Molecules (1969)
74.
Zurück zum Zitat Flynn, C., Rubin, M.B.: An anisotropic discrete fibre model based on a generalised strain invariant with application to soft biological tissues. Int. J. Eng. Sci. 60, 66–76 (2012) Flynn, C., Rubin, M.B.: An anisotropic discrete fibre model based on a generalised strain invariant with application to soft biological tissues. Int. J. Eng. Sci. 60, 66–76 (2012)
75.
Zurück zum Zitat Freed, A.D., Einstein, D.R., Vesely, I.: Invariant formulation for dispersed transverse isotropy in aortic heart valves. Biomech. Model. Mechanobiol. 4, 100–117 (2005) Freed, A.D., Einstein, D.R., Vesely, I.: Invariant formulation for dispersed transverse isotropy in aortic heart valves. Biomech. Model. Mechanobiol. 4, 100–117 (2005)
76.
Zurück zum Zitat Freed, A.D., Einstein, D.R.: An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci. 62, 31–47 (2013) Freed, A.D., Einstein, D.R.: An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci. 62, 31–47 (2013)
77.
Zurück zum Zitat Fung, Y.C., Fronek, K., Patitucci, P.: Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237, H620–H631 (1979) Fung, Y.C., Fronek, K., Patitucci, P.: Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237, H620–H631 (1979)
78.
Zurück zum Zitat Fung, Y.C., Liu, S., Zhou, J.: Remodeling of the constitutive equation while a blood vessel remodels itself under stress. J. Biomech. Eng. 115, 453–459 (1993) Fung, Y.C., Liu, S., Zhou, J.: Remodeling of the constitutive equation while a blood vessel remodels itself under stress. J. Biomech. Eng. 115, 453–459 (1993)
79.
Zurück zum Zitat Galle, B., Ouyang, H., Shi, R., Nauman, E.: A transversely isotropic constitutive model of excised guinea pig spinal cord white matter. J. Biomech. 43, 2839–2843 (2010) Galle, B., Ouyang, H., Shi, R., Nauman, E.: A transversely isotropic constitutive model of excised guinea pig spinal cord white matter. J. Biomech. 43, 2839–2843 (2010)
80.
Zurück zum Zitat Garcia, J.J., Cortes, D.H.: A nonlinear biphasic viscohyperelastic model for articular cartilage. J. Biomech. 39, 2991–2998 (2006) Garcia, J.J., Cortes, D.H.: A nonlinear biphasic viscohyperelastic model for articular cartilage. J. Biomech. 39, 2991–2998 (2006)
81.
Zurück zum Zitat Garikipati, K., Arruda, E.M., Grosh, K., Narayanan, H., Calve, S.: A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids 52, 1595–1625 (2004) Garikipati, K., Arruda, E.M., Grosh, K., Narayanan, H., Calve, S.: A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids 52, 1595–1625 (2004)
82.
Zurück zum Zitat Gasser, T.C., Holzapfel, G.A.: A rate-independent elastoplastic constitutive model for biological fiber-reinforcedcomposites at finite strains: continuum basis, algorithmic formulationand finite element implementation. Comput. Mech. 29, 340–360 (2002) Gasser, T.C., Holzapfel, G.A.: A rate-independent elastoplastic constitutive model for biological fiber-reinforcedcomposites at finite strains: continuum basis, algorithmic formulationand finite element implementation. Comput. Mech. 29, 340–360 (2002)
83.
Zurück zum Zitat Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006) Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)
84.
Zurück zum Zitat Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996) Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)
85.
Zurück zum Zitat Ghaemi, H., Behdinan, K., Spence, A.D.: In vitro technique in estimation of passive mechanical properties of bovine heart. Part II. Constitutive relation and finite element analysis. Med. Eng. Phys. 31, 83–91 (2009) Ghaemi, H., Behdinan, K., Spence, A.D.: In vitro technique in estimation of passive mechanical properties of bovine heart. Part II. Constitutive relation and finite element analysis. Med. Eng. Phys. 31, 83–91 (2009)
86.
Zurück zum Zitat Gilchrist, M.D., Murphy, J.G., Rashid, B.: Generalisations of the strain-energy function of linear elasticity to model biological soft tissue. Int. J. Non-Linear Mech. 47, 268–272 (2012) Gilchrist, M.D., Murphy, J.G., Rashid, B.: Generalisations of the strain-energy function of linear elasticity to model biological soft tissue. Int. J. Non-Linear Mech. 47, 268–272 (2012)
87.
Zurück zum Zitat Girard, M.J.A., Downs, J.C., Burgoyne, C.F., Francis Suh, J.-K.: Peripapillary and posterior scleral mechanics—Part I: development of an anisotropic hyperelastic constitutive model. J. Biomech. Eng. 131, 051011 (2009) Girard, M.J.A., Downs, J.C., Burgoyne, C.F., Francis Suh, J.-K.: Peripapillary and posterior scleral mechanics—Part I: development of an anisotropic hyperelastic constitutive model. J. Biomech. Eng. 131, 051011 (2009)
88.
Zurück zum Zitat Göktepe, S., Acharya, S.N.S., Wong, J., Kuhl, E.: Computational modeling of passive myocardium. Int. J. Numer. Methods Biomed. Eng. 27, 1–12 (2011) Göktepe, S., Acharya, S.N.S., Wong, J., Kuhl, E.: Computational modeling of passive myocardium. Int. J. Numer. Methods Biomed. Eng. 27, 1–12 (2011)
89.
Zurück zum Zitat Gras, L.L., Mitton, D., Viot, P., Laporte, S.: Hyper-elastic properties of the human sternocleidomastoideus muscle in tension. J. Mech. Behav. Biomed. Mater. 15, 131–140 (2012) Gras, L.L., Mitton, D., Viot, P., Laporte, S.: Hyper-elastic properties of the human sternocleidomastoideus muscle in tension. J. Mech. Behav. Biomed. Mater. 15, 131–140 (2012)
90.
Zurück zum Zitat Groves, R.B., Coulman, S.A., Birchall, J.C., Evans, S.L.: An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J. Mech. Behav. Biomed. Mater. 18, 167–180 (2013) Groves, R.B., Coulman, S.A., Birchall, J.C., Evans, S.L.: An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J. Mech. Behav. Biomed. Mater. 18, 167–180 (2013)
91.
Zurück zum Zitat Guo, Z.Y., Peng, X.Q., Moran, B.: A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus. J. Mech. Phys. Solids 54, 1952–1971 (2006) Guo, Z.Y., Peng, X.Q., Moran, B.: A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus. J. Mech. Phys. Solids 54, 1952–1971 (2006)
92.
Zurück zum Zitat Guo, Z.Y., Peng, X.Q., Moran, B.: Large deformation response of a hyperelastic fibre reinforced composite: theoretical model and numerical validation. Composites, Part A, Appl. Sci. Manuf. 38, 1842–1851 (2007) Guo, Z.Y., Peng, X.Q., Moran, B.: Large deformation response of a hyperelastic fibre reinforced composite: theoretical model and numerical validation. Composites, Part A, Appl. Sci. Manuf. 38, 1842–1851 (2007)
93.
Zurück zum Zitat Guo, Z.Y., Peng, X.Q., Moran, B.: Mechanical response of neo-Hookean fiber reinforced incompressible nonlinearly elastic solids. Int. J. Solids Struct. 44, 1949–1969 (2007) Guo, Z.Y., Peng, X.Q., Moran, B.: Mechanical response of neo-Hookean fiber reinforced incompressible nonlinearly elastic solids. Int. J. Solids Struct. 44, 1949–1969 (2007)
94.
Zurück zum Zitat Harb, N., Labed, N., Domaszewski, M., Peyraut, F.: A new parameter identification method of soft biological tissue combining genetic algorithm with analytical optimization. Comput. Methods Appl. Mech. Eng. 200, 208–215 (2011) Harb, N., Labed, N., Domaszewski, M., Peyraut, F.: A new parameter identification method of soft biological tissue combining genetic algorithm with analytical optimization. Comput. Methods Appl. Mech. Eng. 200, 208–215 (2011)
95.
Zurück zum Zitat Harrison, S., Bush, M., Petros, P.: Towards a novel tensile elastometer for soft tissue. Int. J. Mech. Sci. 50, 626–640 (2008) Harrison, S., Bush, M., Petros, P.: Towards a novel tensile elastometer for soft tissue. Int. J. Mech. Sci. 50, 626–640 (2008)
96.
Zurück zum Zitat Hart-Smith, L.J.: Elasticity parameters for finite deformations of rubber-like materials. Z. Angew. Math. Phys. 17, 608–626 (1966) Hart-Smith, L.J.: Elasticity parameters for finite deformations of rubber-like materials. Z. Angew. Math. Phys. 17, 608–626 (1966)
97.
Zurück zum Zitat Hartmann, S.: Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int. J. Solids Struct. 38, 7999–8018 (2001) Hartmann, S.: Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int. J. Solids Struct. 38, 7999–8018 (2001)
98.
Zurück zum Zitat Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40, 2767–2791 (2003) Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40, 2767–2791 (2003)
99.
Zurück zum Zitat Haslach, H.W.: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomech. Model. Mechanobiol. 3, 172–189 (2005) Haslach, H.W.: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomech. Model. Mechanobiol. 3, 172–189 (2005)
100.
Zurück zum Zitat Helfenstein, J., Jabareen, M., Mazza, E., Govindjee, S.: On non-physical response in models for fiber-reinforced hyperelastic materials. Int. J. Solids Struct. 47, 2056–2061 (2010) Helfenstein, J., Jabareen, M., Mazza, E., Govindjee, S.: On non-physical response in models for fiber-reinforced hyperelastic materials. Int. J. Solids Struct. 47, 2056–2061 (2010)
101.
Zurück zum Zitat Hernandez, B., Peña, E., Pascual, G., Rodriguez, M., Calvo, B., Doblaré, M., Bellon, J.M.: Mechanical and histological characterization of the abdominal muscle. a previous step to modelling hernia surgery. J. Mech. Behav. Biomed. Mater. 4, 392–404 (2011) Hernandez, B., Peña, E., Pascual, G., Rodriguez, M., Calvo, B., Doblaré, M., Bellon, J.M.: Mechanical and histological characterization of the abdominal muscle. a previous step to modelling hernia surgery. J. Mech. Behav. Biomed. Mater. 4, 392–404 (2011)
102.
Zurück zum Zitat Hollingsworth, N.T., Wagner, D.R.: Modeling shear behavior of the annulus fibrosus. J. Mech. Behav. Biomed. Mater. 4, 1103–1114 (2011) Hollingsworth, N.T., Wagner, D.R.: Modeling shear behavior of the annulus fibrosus. J. Mech. Behav. Biomed. Mater. 4, 1103–1114 (2011)
103.
Zurück zum Zitat Holmes, M., Mow, V.C.: The non-linear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23, 1145–1156 (1990) Holmes, M., Mow, V.C.: The non-linear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23, 1145–1156 (1990)
104.
Zurück zum Zitat Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000) Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)
105.
Zurück zum Zitat Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A, Solids 21, 441–463 (2002) Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A, Solids 21, 441–463 (2002)
106.
Zurück zum Zitat Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: Comparison of multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. J. Biomech. Eng. 126, 264–275 (2004) Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: Comparison of multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. J. Biomech. Eng. 126, 264–275 (2004)
107.
Zurück zum Zitat Holzapfel, G.A., Sommer, G., Gasser, C.T., Regitnig, P.: Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling. Am. J. Physiol., Heart Circ. Physiol. 289, 2048–2058 (2005) Holzapfel, G.A., Sommer, G., Gasser, C.T., Regitnig, P.: Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling. Am. J. Physiol., Heart Circ. Physiol. 289, 2048–2058 (2005)
108.
Zurück zum Zitat Holzapfel, G.A., Stadler, M., Gasser, T.C.: Changes in the mechanical environment of stenotic arteries during interactionwith stents: computational assessment of parametric stent design. J. Biomech. Eng. 127, 166–180 (2005) Holzapfel, G.A., Stadler, M., Gasser, T.C.: Changes in the mechanical environment of stenotic arteries during interactionwith stents: computational assessment of parametric stent design. J. Biomech. Eng. 127, 166–180 (2005)
109.
Zurück zum Zitat Holzapfel, G.A., Mulvihill, J.J., Cunnane, E.M., Walsh, M.T.: Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J. Biomath. 47, 859–869 (2014) Holzapfel, G.A., Mulvihill, J.J., Cunnane, E.M., Walsh, M.T.: Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J. Biomath. 47, 859–869 (2014)
110.
Zurück zum Zitat Horgan, C.O., Saccomandi, G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159–170 (1999) Horgan, C.O., Saccomandi, G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159–170 (1999)
111.
Zurück zum Zitat Horgan, C.O., Saccomandi, G.: A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53, 1985–2015 (2005) Horgan, C.O., Saccomandi, G.: A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53, 1985–2015 (2005)
112.
Zurück zum Zitat Horgan, C.O., Smayda, M.G.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012) Horgan, C.O., Smayda, M.G.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012)
113.
Zurück zum Zitat Hostettler, A., George, D., Rémond, Y., Nicolau, S.A., Soler, L., Marescaux, J.: Bulk modulus and volume variation measurement of the liver and the kidneys in vivo using abdominal kinetics during free breathing. Comput. Methods Programs Biomed. 100, 149–157 (2010) Hostettler, A., George, D., Rémond, Y., Nicolau, S.A., Soler, L., Marescaux, J.: Bulk modulus and volume variation measurement of the liver and the kidneys in vivo using abdominal kinetics during free breathing. Comput. Methods Programs Biomed. 100, 149–157 (2010)
114.
Zurück zum Zitat Humphrey, J.D., Yin, F.C.P.: On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudo strain-energy approach. J. Biomech. Eng. 109, 298–304 (1987) Humphrey, J.D., Yin, F.C.P.: On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudo strain-energy approach. J. Biomech. Eng. 109, 298–304 (1987)
115.
Zurück zum Zitat Humphrey, J.D., Strumph, R.K., Yin, F.C.P.: Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 15, 1413–1418 (1990) Humphrey, J.D., Strumph, R.K., Yin, F.C.P.: Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 15, 1413–1418 (1990)
116.
Zurück zum Zitat Humphrey, J.D.: Mechanics of arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23, 1–162 (1995) Humphrey, J.D.: Mechanics of arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23, 1–162 (1995)
117.
Zurück zum Zitat Humphrey, J.D.: Cardiovascular Solid Mechanics. Cells, Tissues and Organs. Springer, New York (2002) Humphrey, J.D.: Cardiovascular Solid Mechanics. Cells, Tissues and Organs. Springer, New York (2002)
118.
Zurück zum Zitat Humphrey, J.D.: Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A 459, 3–46 (2003) Humphrey, J.D.: Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A 459, 3–46 (2003)
119.
Zurück zum Zitat Hurschler, C., Loitz-Ramage, B., Vanderby, R. Jr: A structurally based stress-stretch relationship for tendon and ligament. J. Biomech. Eng. 119, 392–399 (1997) Hurschler, C., Loitz-Ramage, B., Vanderby, R. Jr: A structurally based stress-stretch relationship for tendon and ligament. J. Biomech. Eng. 119, 392–399 (1997)
120.
Zurück zum Zitat Itskov, M., Aksel, N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41, 3833–3848 (2004) Itskov, M., Aksel, N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41, 3833–3848 (2004)
121.
Zurück zum Zitat Itskov, M., Ehret, A.E., Mavrilas, D.: A polyconvex anisotropic strain energy function for soft collagenous tissues. Biomech. Model. Mechanobiol. 5, 17–26 (2006) Itskov, M., Ehret, A.E., Mavrilas, D.: A polyconvex anisotropic strain energy function for soft collagenous tissues. Biomech. Model. Mechanobiol. 5, 17–26 (2006)
122.
Zurück zum Zitat Jemiolo, S., Telega, J.J.: Transversely isotropic materials undergoing large deformations and application to modelling soft tissues. Mech. Res. Commun. 28, 397–404 (2001) Jemiolo, S., Telega, J.J.: Transversely isotropic materials undergoing large deformations and application to modelling soft tissues. Mech. Res. Commun. 28, 397–404 (2001)
123.
Zurück zum Zitat Kaliske, M.: A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput. Methods Appl. Mech. Eng. 185, 225–243 (2000) Kaliske, M.: A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput. Methods Appl. Mech. Eng. 185, 225–243 (2000)
124.
Zurück zum Zitat Kalita, P., Schaefer, R.: Mechanical models of artery walls. Arch. Comput. Methods Eng. 15, 1–36 (2008) Kalita, P., Schaefer, R.: Mechanical models of artery walls. Arch. Comput. Methods Eng. 15, 1–36 (2008)
125.
Zurück zum Zitat Karsaj, I., Sansour, C., Soric, J.: The modelling of fibre reorientation in soft tissue. Biomech. Model. Mechanobiol. 8, 359–370 (2009) Karsaj, I., Sansour, C., Soric, J.: The modelling of fibre reorientation in soft tissue. Biomech. Model. Mechanobiol. 8, 359–370 (2009)
126.
Zurück zum Zitat Kastelic, J., Palley, I., Baer, E.: A structural mechanical model for tendon crimping. J. Biomech. 13, 887 (1980) Kastelic, J., Palley, I., Baer, E.: A structural mechanical model for tendon crimping. J. Biomech. 13, 887 (1980)
127.
Zurück zum Zitat Kaster, T., Sack, I., Samani, A.: Measurement of the hyperelastic properties of ex vivo brain tissue slices. J. Biomech. 44, 1158–1163 (2011) Kaster, T., Sack, I., Samani, A.: Measurement of the hyperelastic properties of ex vivo brain tissue slices. J. Biomech. 44, 1158–1163 (2011)
128.
Zurück zum Zitat Kas’yanov, V.A., Rachev, A.I.: Deformation of blood vessels upon stretching, internal pressure, and torsion. Mech. Compos. Mater. 16, 76–80 (1990) Kas’yanov, V.A., Rachev, A.I.: Deformation of blood vessels upon stretching, internal pressure, and torsion. Mech. Compos. Mater. 16, 76–80 (1990)
129.
Zurück zum Zitat Kloczkowski, A.: Application of statistical mechanics to the analysis of various physicalproperties of elastomeric networks—a review. Polymer 43, 1503–1525 (2002) Kloczkowski, A.: Application of statistical mechanics to the analysis of various physicalproperties of elastomeric networks—a review. Polymer 43, 1503–1525 (2002)
130.
Zurück zum Zitat Kloppel, T., Wall, W.A.: A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Biomech. Model. Mechanobiol. 10, 445–459 (2011) Kloppel, T., Wall, W.A.: A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Biomech. Model. Mechanobiol. 10, 445–459 (2011)
131.
Zurück zum Zitat Knowles, J.K.: The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solid. Int. J. Fract. 13, 611–639 (1977) Knowles, J.K.: The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solid. Int. J. Fract. 13, 611–639 (1977)
132.
Zurück zum Zitat Kratky, O., Porod, G.: Röntgenuntersuchungen gelöster fadenmoleküle. Recl. Trav. Chim. 68, 1106–1122 (1949) Kratky, O., Porod, G.: Röntgenuntersuchungen gelöster fadenmoleküle. Recl. Trav. Chim. 68, 1106–1122 (1949)
133.
Zurück zum Zitat Kroon, M., Holzapfel, G.A.: A new constitutive model for multilayered collagenous tissues. J. Biomech. 41, 2766–2771 (2008) Kroon, M., Holzapfel, G.A.: A new constitutive model for multilayered collagenous tissues. J. Biomech. 41, 2766–2771 (2008)
134.
Zurück zum Zitat Kuhl, E., Ramm, E.: Microplane modelling of cohesive frictional materials. Eur. J. Mech. A, Solids 19, S121–S143 (2000) Kuhl, E., Ramm, E.: Microplane modelling of cohesive frictional materials. Eur. J. Mech. A, Solids 19, S121–S143 (2000)
135.
Zurück zum Zitat Kuhl, E., Garikipati, K., Arruda, E.M., Grosh, K.: Remodeling of biological tissue: mechanically induced reorientation of atransversely isotropic chain network. J. Mech. Phys. Solids 53, 1552–1573 (2005) Kuhl, E., Garikipati, K., Arruda, E.M., Grosh, K.: Remodeling of biological tissue: mechanically induced reorientation of atransversely isotropic chain network. J. Mech. Phys. Solids 53, 1552–1573 (2005)
136.
Zurück zum Zitat Kuhl, E., Menzel, A., Garikipati, K.: On the convexity of transversely isotropic chain network models. Philos. Mag. 86, 3241–3258 (2006) Kuhl, E., Menzel, A., Garikipati, K.: On the convexity of transversely isotropic chain network models. Philos. Mag. 86, 3241–3258 (2006)
137.
Zurück zum Zitat Kuhn, W., Grün, F.: Beziehunger zwichen elastischen konstanten und dehnungsdoppelbrechung hochelastischerstoffe. Kolloideitschrift 101, 248–271 (1942) Kuhn, W., Grün, F.: Beziehunger zwichen elastischen konstanten und dehnungsdoppelbrechung hochelastischerstoffe. Kolloideitschrift 101, 248–271 (1942)
138.
Zurück zum Zitat Labrosse, M.R., Beller, C.J., Mesana, T., Veinot, J.P.: Mechanical behavior of human aortas: experiments, material constants and 3-D finite element modeling including residual stress. J. Biomech. 42, 996–1004 (2009) Labrosse, M.R., Beller, C.J., Mesana, T., Veinot, J.P.: Mechanical behavior of human aortas: experiments, material constants and 3-D finite element modeling including residual stress. J. Biomech. 42, 996–1004 (2009)
139.
Zurück zum Zitat Lanchares, E., Calvo, B., Cristobal, J.A., Doblaré, M.: Finite element simulation of arcuates for astigmatism correction. J. Biomech. 41, 797–805 (2008) Lanchares, E., Calvo, B., Cristobal, J.A., Doblaré, M.: Finite element simulation of arcuates for astigmatism correction. J. Biomech. 41, 797–805 (2008)
140.
Zurück zum Zitat Lanir, Y.: Structure-strength relations in mammalian tendon. Biophys. J. 24, 541–554 (1978) Lanir, Y.: Structure-strength relations in mammalian tendon. Biophys. J. 24, 541–554 (1978)
141.
Zurück zum Zitat Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationship in flat collagenous tissues. J. Biomech. 12, 423–436 (1979) Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationship in flat collagenous tissues. J. Biomech. 12, 423–436 (1979)
142.
Zurück zum Zitat Lapeer, R.J., Gasson, P.D., Karri, V.: Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics. Prog. Biophys. Mol. Biol. 103, 208–216 (2010) Lapeer, R.J., Gasson, P.D., Karri, V.: Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics. Prog. Biophys. Mol. Biol. 103, 208–216 (2010)
143.
Zurück zum Zitat Li, W.G., Hill, N.A., Ogden, R.W., Smythe, A., Majeed, A.W., Bird, N., Luo, X.Y.: Anisotropic behaviour of human gallbladder walls. J. Mech. Behav. Biomed. Mater. 20, 363–375 (2013) Li, W.G., Hill, N.A., Ogden, R.W., Smythe, A., Majeed, A.W., Bird, N., Luo, X.Y.: Anisotropic behaviour of human gallbladder walls. J. Mech. Behav. Biomed. Mater. 20, 363–375 (2013)
144.
Zurück zum Zitat Li, Z., Alonso, J.E., Kim, J.-E., Davidson, J., Etheridge, B.S., Eberhardt, A.W.: Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues. Ann. Biomed. Eng. 34, 1452–1462 (2006) Li, Z., Alonso, J.E., Kim, J.-E., Davidson, J., Etheridge, B.S., Eberhardt, A.W.: Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues. Ann. Biomed. Eng. 34, 1452–1462 (2006)
145.
Zurück zum Zitat Limbert, G., Taylor, M.: On the constitutive modeling of biological soft connective tissues. A general theoretical framework and explicit forms of the tensors of elasticity for strongly anisotropic continuum fiber-reinforced composites at finite strain. Int. J. Solids Struct. 39, 2343–2358 (2002) Limbert, G., Taylor, M.: On the constitutive modeling of biological soft connective tissues. A general theoretical framework and explicit forms of the tensors of elasticity for strongly anisotropic continuum fiber-reinforced composites at finite strain. Int. J. Solids Struct. 39, 2343–2358 (2002)
146.
Zurück zum Zitat Limbert, G., Middleton, J.: A transversely isotropic viscohyperelastic material application to the modeling of biolgical soft connective tissues. Int. J. Solids Struct. 41, 4237–4260 (2004) Limbert, G., Middleton, J.: A transversely isotropic viscohyperelastic material application to the modeling of biolgical soft connective tissues. Int. J. Solids Struct. 41, 4237–4260 (2004)
147.
Zurück zum Zitat Limbert, G., Middleton, J.: A constitutive model of the posterior cruciate ligament. Med. Eng. Phys. 28, 99–113 (2006) Limbert, G., Middleton, J.: A constitutive model of the posterior cruciate ligament. Med. Eng. Phys. 28, 99–113 (2006)
148.
Zurück zum Zitat Lin, D.H.S., Yin, F.C.P.: A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Eng. 120, 504–517 (1998) Lin, D.H.S., Yin, F.C.P.: A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Eng. 120, 504–517 (1998)
149.
Zurück zum Zitat Lister, K., Gao, Z., Desai, J.P.: Development of in vivo constitutive models for liver: application to surgical simulation. Ann. Biomed. Eng. 39, 1060–1073 (2011) Lister, K., Gao, Z., Desai, J.P.: Development of in vivo constitutive models for liver: application to surgical simulation. Ann. Biomed. Eng. 39, 1060–1073 (2011)
150.
Zurück zum Zitat Lopez-Pamies, O., Idiart, M.I.: Fiber-reinforced hyperelastic solids: a realizable homogenization constitutive theory. J. Eng. Math. 68, 57–83 (2010) Lopez-Pamies, O., Idiart, M.I.: Fiber-reinforced hyperelastic solids: a realizable homogenization constitutive theory. J. Eng. Math. 68, 57–83 (2010)
151.
Zurück zum Zitat Lu, J., Zhang, L.: Physically motivated invariant formulation for transversely isotropic hyperelasticity. Int. J. Solids Struct. 42, 6015–6031 (2005) Lu, J., Zhang, L.: Physically motivated invariant formulation for transversely isotropic hyperelasticity. Int. J. Solids Struct. 42, 6015–6031 (2005)
152.
Zurück zum Zitat Lu, J., Zhou, X., Raghavan, M.L.: Computational method of inverse elastostatics for anisotropic hyperelastic solids. Int. J. Numer. Methods Eng. 69, 1239–1261 (2007) Lu, J., Zhou, X., Raghavan, M.L.: Computational method of inverse elastostatics for anisotropic hyperelastic solids. Int. J. Numer. Methods Eng. 69, 1239–1261 (2007)
153.
Zurück zum Zitat Lurding, D., Basar, Y., Hanskotter, U.: Application of transversely isotropic materials to multi-layer shell elements undergoing finite rotations and large strains. Int. J. Solids Struct. 38, 9493–9503 (2001) Lurding, D., Basar, Y., Hanskotter, U.: Application of transversely isotropic materials to multi-layer shell elements undergoing finite rotations and large strains. Int. J. Solids Struct. 38, 9493–9503 (2001)
154.
Zurück zum Zitat Maher, E., Creane, A., Lally, C., Kelly, D.J.: An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue. J. Mech. Behav. Biomed. 12, 9–19 (2012) Maher, E., Creane, A., Lally, C., Kelly, D.J.: An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue. J. Mech. Behav. Biomed. 12, 9–19 (2012)
155.
Zurück zum Zitat Malvè, M., Pérez del Palomar, A., Trabelsi, O., Lopez-Villalobos, J.L., Ginel, A., Doblaré, M.: Modeling of the fluid structure interaction of a human trachea under different ventilation conditions. Int. Commun. Heat Mass Transf. 38, 10–15 (2011) Malvè, M., Pérez del Palomar, A., Trabelsi, O., Lopez-Villalobos, J.L., Ginel, A., Doblaré, M.: Modeling of the fluid structure interaction of a human trachea under different ventilation conditions. Int. Commun. Heat Mass Transf. 38, 10–15 (2011)
156.
Zurück zum Zitat Marieb, E., Hoehn, K.: Human Anatomy & Physiology. Pearson Education, Upper Saddle River (2010) Marieb, E., Hoehn, K.: Human Anatomy & Physiology. Pearson Education, Upper Saddle River (2010)
157.
Zurück zum Zitat Markert, B., Ehlers, W., Karajan, N.: A general polyconvex strain-energy function for fiber-reinforced materials. Proc. Appl. Math. Mech. 5, 245–246 (2005) Markert, B., Ehlers, W., Karajan, N.: A general polyconvex strain-energy function for fiber-reinforced materials. Proc. Appl. Math. Mech. 5, 245–246 (2005)
158.
Zurück zum Zitat Martins, J.A.C., Pires, E.B., Salvador, R., Dinis, P.B.: A numerical model of passive and active behaviour of skeletal muscles. Comput. Methods Appl. Mech. Eng. 151, 419–433 (1998) Martins, J.A.C., Pires, E.B., Salvador, R., Dinis, P.B.: A numerical model of passive and active behaviour of skeletal muscles. Comput. Methods Appl. Mech. Eng. 151, 419–433 (1998)
159.
Zurück zum Zitat Masson, I., Boutouyrie, P., Laurent, S., Humphrey, J.D., Zidi, M.: Characterization of arterial wall mechanical behavior and stresses from human clinical data. J. Biomech. 41, 2618–2627 (2008) Masson, I., Boutouyrie, P., Laurent, S., Humphrey, J.D., Zidi, M.: Characterization of arterial wall mechanical behavior and stresses from human clinical data. J. Biomech. 41, 2618–2627 (2008)
160.
Zurück zum Zitat Masson, I., Fassot, C., Zidi, M.: Finite dynamic deformations of a hyperelastic, anisotropic, incompressible and prestressed tube. Applications to in vivo arteries. Eur. J. Mech. A, Solids 29, 523–529 (2010) Masson, I., Fassot, C., Zidi, M.: Finite dynamic deformations of a hyperelastic, anisotropic, incompressible and prestressed tube. Applications to in vivo arteries. Eur. J. Mech. A, Solids 29, 523–529 (2010)
161.
Zurück zum Zitat May-Newman, K., Yin, F.C.P.: A constitutive law for mitral valve tissue. Am. J. Physiol. 269, 1319–1327 (1998) May-Newman, K., Yin, F.C.P.: A constitutive law for mitral valve tissue. Am. J. Physiol. 269, 1319–1327 (1998)
162.
Zurück zum Zitat May-Newman, K., Lam, C., Yin, F.C.P.: A hyperelastic constitutive law for aortic valve tissue. J. Biomech. Eng. 131, 1–7 (2009) May-Newman, K., Lam, C., Yin, F.C.P.: A hyperelastic constitutive law for aortic valve tissue. J. Biomech. Eng. 131, 1–7 (2009)
163.
Zurück zum Zitat Menzel, A., Steinmann, P.: On the comparison of two strategies to formulate orthotropic hyperelasticity. J. Elast. 62, 171–201 (2001) Menzel, A., Steinmann, P.: On the comparison of two strategies to formulate orthotropic hyperelasticity. J. Elast. 62, 171–201 (2001)
164.
Zurück zum Zitat Menzel, A., Waffenschmidt, T.: A microsphere-based remodelling formulation for anisotropic biological tissues. Philos. Trans. R. Soc. A 367, 3499–3523 (2009) Menzel, A., Waffenschmidt, T.: A microsphere-based remodelling formulation for anisotropic biological tissues. Philos. Trans. R. Soc. A 367, 3499–3523 (2009)
165.
Zurück zum Zitat Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: I. Mechanical equilibrium. J. Elast. 62, 119–144 (2001) Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: I. Mechanical equilibrium. J. Elast. 62, 119–144 (2001)
166.
Zurück zum Zitat Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: II. Kink band stability and maximally dissipative band broadening. J. Elast. 62, 145–170 (2001) Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: II. Kink band stability and maximally dissipative band broadening. J. Elast. 62, 145–170 (2001)
167.
Zurück zum Zitat Merodio, J., Ogden, R.W.: Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Arch. Mech. 54, 525–552 (2002) Merodio, J., Ogden, R.W.: Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Arch. Mech. 54, 525–552 (2002)
168.
Zurück zum Zitat Merodio, J., Ogden, R.W.: Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. Int. J. Solids Struct. 30, 4707–4727 (2003) Merodio, J., Ogden, R.W.: Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. Int. J. Solids Struct. 30, 4707–4727 (2003)
169.
Zurück zum Zitat Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40, 213–227 (2005) Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40, 213–227 (2005)
170.
Zurück zum Zitat Merodio, J., Ogden, R.W.: On tensile instabilities and ellipticity loss in fiber-reinforced incompressible non-linearly elastic solids. Mech. Res. Commun. 32, 290–299 (2005) Merodio, J., Ogden, R.W.: On tensile instabilities and ellipticity loss in fiber-reinforced incompressible non-linearly elastic solids. Mech. Res. Commun. 32, 290–299 (2005)
171.
Zurück zum Zitat Merodio, J.: A note on tensile instabilities and loss of ellipticity for a fiber-reinforced nonlinearly elastic solid. Arch. Mech. 58, 293–303 (2006) Merodio, J.: A note on tensile instabilities and loss of ellipticity for a fiber-reinforced nonlinearly elastic solid. Arch. Mech. 58, 293–303 (2006)
172.
Zurück zum Zitat Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials—Part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004) Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials—Part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)
173.
Zurück zum Zitat Mielke, A.: Necessary and sufficient conditions for polyconvexity of isotropic functions. J. Convex Anal. 12, 291–314 (2005) Mielke, A.: Necessary and sufficient conditions for polyconvexity of isotropic functions. J. Convex Anal. 12, 291–314 (2005)
174.
Zurück zum Zitat Murphy, J.: Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech. A, Solids 42, 90–96 (2013) Murphy, J.: Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech. A, Solids 42, 90–96 (2013)
175.
Zurück zum Zitat Nash, M.P., Hunter, P.J.: Computational mechanics of the heart: from tissue structure to ventricular function. J. Elast. 61, 113–141 (2000) Nash, M.P., Hunter, P.J.: Computational mechanics of the heart: from tissue structure to ventricular function. J. Elast. 61, 113–141 (2000)
176.
Zurück zum Zitat Natali, A.N., Pavan, P.G., Carniel, E.L., Dorow, C.: A transversally isotropic elasto-damage constitutive model for the periodontal ligament. Comput. Methods Biomech. Biomed. Eng. 6, 329–336 (2003) Natali, A.N., Pavan, P.G., Carniel, E.L., Dorow, C.: A transversally isotropic elasto-damage constitutive model for the periodontal ligament. Comput. Methods Biomech. Biomed. Eng. 6, 329–336 (2003)
177.
Zurück zum Zitat Natali, A.N., Carniel, E.L., Gregersen, H.: Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med. Eng. Phys. 31, 1056–1062 (2009) Natali, A.N., Carniel, E.L., Gregersen, H.: Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med. Eng. Phys. 31, 1056–1062 (2009)
178.
Zurück zum Zitat Nerurkar, N.L., Mauck, R.L., Elliott, D.M.: Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering. Biomech. Model. Mechanobiol. 10, 973–984 (2011) Nerurkar, N.L., Mauck, R.L., Elliott, D.M.: Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering. Biomech. Model. Mechanobiol. 10, 973–984 (2011)
179.
Zurück zum Zitat Nguyen, T.D., Boyce, B.L.: An inverse finite element method for determining the anisotropic properties of the cornea. Biomech. Model. Mechanobiol. 10, 323–337 (2011) Nguyen, T.D., Boyce, B.L.: An inverse finite element method for determining the anisotropic properties of the cornea. Biomech. Model. Mechanobiol. 10, 323–337 (2011)
180.
Zurück zum Zitat Nicholson, D.W.: Tangent modulus matrix for finite element analysis of hyperelastic materials. Acta Mech. 112, 187–201 (1995) Nicholson, D.W.: Tangent modulus matrix for finite element analysis of hyperelastic materials. Acta Mech. 112, 187–201 (1995)
181.
Zurück zum Zitat Nierenberger, M., Rémond, Y., Ahzi, S.: A new multiscale model for the mechanical behavior of vein walls. J. Mech. Behav. Biomed. Mater. 23, 32–43 (2013) Nierenberger, M., Rémond, Y., Ahzi, S.: A new multiscale model for the mechanical behavior of vein walls. J. Mech. Behav. Biomed. Mater. 23, 32–43 (2013)
182.
Zurück zum Zitat Ning, X., Zhu, Q., Lanir, Y., Margulies, S.S.: A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. J. Biomech. Eng. 128, 925–933 (2006) Ning, X., Zhu, Q., Lanir, Y., Margulies, S.S.: A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. J. Biomech. Eng. 128, 925–933 (2006)
183.
Zurück zum Zitat O’Connell, G.D., Guerin, H.L., Elliott, D.M.: Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J. Biomech. Eng. 131, 111007 (2009) O’Connell, G.D., Guerin, H.L., Elliott, D.M.: Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J. Biomech. Eng. 131, 111007 (2009)
184.
Zurück zum Zitat Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubber like solids. Proc. R. Soc. Lond. A 326, 565–584 (1972) Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubber like solids. Proc. R. Soc. Lond. A 326, 565–584 (1972)
185.
Zurück zum Zitat Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997) Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)
186.
Zurück zum Zitat Ogden, R.W.: Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. In: Holzapfel, G.A., Ogden, R.W. (eds.) Biomechanics of Soft Tissue in Cardiovascular System. CISM Courses and Lecture, vol. 441. Springer, New York (2003) Ogden, R.W.: Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. In: Holzapfel, G.A., Ogden, R.W. (eds.) Biomechanics of Soft Tissue in Cardiovascular System. CISM Courses and Lecture, vol. 441. Springer, New York (2003)
187.
Zurück zum Zitat Ogden, R.W., Saccomandi, G.: Introducing mesoscopic information into constitutive equations for arterial walls. Biomech. Model. Mechanobiol. 6, 333–344 (2007) Ogden, R.W., Saccomandi, G.: Introducing mesoscopic information into constitutive equations for arterial walls. Biomech. Model. Mechanobiol. 6, 333–344 (2007)
188.
Zurück zum Zitat Paetsch, C., Trimmer, B.A., Dorfmann, A.: A constitutive model for active–passive transition of muscle fibers. Int. J. Non-Linear Mech. 47, 377–387 (2012) Paetsch, C., Trimmer, B.A., Dorfmann, A.: A constitutive model for active–passive transition of muscle fibers. Int. J. Non-Linear Mech. 47, 377–387 (2012)
189.
Zurück zum Zitat Paetsch, C., Dorfmann, A.: Non-linear modeling of active biohybrid materials. Int. J. Non-Linear Mech. 56, 105–114 (2013) Paetsch, C., Dorfmann, A.: Non-linear modeling of active biohybrid materials. Int. J. Non-Linear Mech. 56, 105–114 (2013)
190.
Zurück zum Zitat Pandolfi, A., Maganiello, F.: A model for the human cornea: constitutive formulation and numerical analysis. Biomech. Model. Mechanobiol. 5, 237–246 (2006) Pandolfi, A., Maganiello, F.: A model for the human cornea: constitutive formulation and numerical analysis. Biomech. Model. Mechanobiol. 5, 237–246 (2006)
191.
Zurück zum Zitat Pandolfi, A., Vasta, M.: Fiber distributed hyperelastic modeling of biological tissues. Mech. Mater. 44, 151–162 (2012) Pandolfi, A., Vasta, M.: Fiber distributed hyperelastic modeling of biological tissues. Mech. Mater. 44, 151–162 (2012)
192.
Zurück zum Zitat Papaharilaou, Y., Ekaterinaris, J.A., Manousakid, E., Katsamouris, A.N.: A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J. Biomech. 40, 367–377 (2007) Papaharilaou, Y., Ekaterinaris, J.A., Manousakid, E., Katsamouris, A.N.: A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J. Biomech. 40, 367–377 (2007)
193.
Zurück zum Zitat Parente, M.P.L., Natal Jorge, R.M., Mascarenhas, T., Fernandes, A.A., Martins, J.A.C.: The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. J. Biomech. 42, 1301–1306 (2009) Parente, M.P.L., Natal Jorge, R.M., Mascarenhas, T., Fernandes, A.A., Martins, J.A.C.: The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. J. Biomech. 42, 1301–1306 (2009)
194.
Zurück zum Zitat Park, H.C., Youn, S.K.: Finite element analysis and constitutive modelling of anisotropic nonlinear hyperelastic bodies with convected frames. Comput. Methods Appl. Mech. Eng. 151, 605–618 (1998) Park, H.C., Youn, S.K.: Finite element analysis and constitutive modelling of anisotropic nonlinear hyperelastic bodies with convected frames. Comput. Methods Appl. Mech. Eng. 151, 605–618 (1998)
195.
Zurück zum Zitat Peña, E., Peña, J.A., Doblaré, M.: On the Mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models. Int. J. Solids Struct. 46, 1727–1735 (2009) Peña, E., Peña, J.A., Doblaré, M.: On the Mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models. Int. J. Solids Struct. 46, 1727–1735 (2009)
196.
Zurück zum Zitat Peña, E., Calvo, B., Martinez, M.A., Martins, P., Mascarenhas, T., Jorge, R.M.N., Ferreira, A., Doblaré, M.: Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue. Biomech. Model. Mechanobiol. 9, 35–44 (2010) Peña, E., Calvo, B., Martinez, M.A., Martins, P., Mascarenhas, T., Jorge, R.M.N., Ferreira, A., Doblaré, M.: Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue. Biomech. Model. Mechanobiol. 9, 35–44 (2010)
197.
Zurück zum Zitat Peña, E.: Prediction of the softening and damage effects with permanent set in fibrous biological materials. J. Mech. Phys. Solids 59, 1808–1822 (2011) Peña, E.: Prediction of the softening and damage effects with permanent set in fibrous biological materials. J. Mech. Phys. Solids 59, 1808–1822 (2011)
198.
Zurück zum Zitat Peña, E., Martins, P., Mascarenhasd, T., Natal Jorge, R.M., Ferreira, A., Doblaré, M., Calvo, B.: Mechanical characterization of the softening behavior of human vaginal tissue. J. Mech. Behav. Biomed. Mater. 4, 275–283 (2011) Peña, E., Martins, P., Mascarenhasd, T., Natal Jorge, R.M., Ferreira, A., Doblaré, M., Calvo, B.: Mechanical characterization of the softening behavior of human vaginal tissue. J. Mech. Behav. Biomed. Mater. 4, 275–283 (2011)
199.
Zurück zum Zitat Peng, X.Q., Guo, Z.Y., Roman, B.: An anisotropic hyperelastic constitutive model with fiber-matrix shear interaction for the human annulus fibrosus. J. Appl. Mech. 73, 815–824 (2006) Peng, X.Q., Guo, Z.Y., Roman, B.: An anisotropic hyperelastic constitutive model with fiber-matrix shear interaction for the human annulus fibrosus. J. Appl. Mech. 73, 815–824 (2006)
200.
Zurück zum Zitat Peng, X., Guo, Z., Du, T., Yu, W.R.: A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation. Composites, Part B, Eng. 52, 275–281 (2013) Peng, X., Guo, Z., Du, T., Yu, W.R.: A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation. Composites, Part B, Eng. 52, 275–281 (2013)
201.
Zurück zum Zitat Pinsky, P.M., van der Heide, D., Chernyak, D.: Computational modeling of mechanical anisotropy in the cornea and sclera. J. Cataract Refract. Surg. 31, 136–145 (2005) Pinsky, P.M., van der Heide, D., Chernyak, D.: Computational modeling of mechanical anisotropy in the cornea and sclera. J. Cataract Refract. Surg. 31, 136–145 (2005)
202.
Zurück zum Zitat Prevost, T.P., Balakrishnan, A., Suresh, S., Socrate, S.: Biomechanics of brain tissue. Acta Biomater. 7, 83–95 (2011) Prevost, T.P., Balakrishnan, A., Suresh, S., Socrate, S.: Biomechanics of brain tissue. Acta Biomater. 7, 83–95 (2011)
203.
Zurück zum Zitat Prot, V., Haaverstad, R., Skallerud, B.: Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution. Biomech. Model. Mechanobiol. 8, 43–55 (2009) Prot, V., Haaverstad, R., Skallerud, B.: Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution. Biomech. Model. Mechanobiol. 8, 43–55 (2009)
204.
Zurück zum Zitat Przybylo, P.A., Arruda, E.M.: Experimental investigations and numerical modeling of incompressible elastomersduring non-homogeneous deformations. Rubber Chem. Technol. 71, 730–749 (1998) Przybylo, P.A., Arruda, E.M.: Experimental investigations and numerical modeling of incompressible elastomersduring non-homogeneous deformations. Rubber Chem. Technol. 71, 730–749 (1998)
205.
Zurück zum Zitat Qian, M., Wells, D.M., Jones, A., Becker, A.: Finite element modelling of cell wall properties for onion epidermis using a fibre-reinforced hyperelastic model. J. Struct. Biol. 172, 300–304 (2010) Qian, M., Wells, D.M., Jones, A., Becker, A.: Finite element modelling of cell wall properties for onion epidermis using a fibre-reinforced hyperelastic model. J. Struct. Biol. 172, 300–304 (2010)
206.
Zurück zum Zitat Qiu, G.Y., Pence, T.: Remarks on the behaviour of a simple directionnally reinforced incompressible non linearly elastic solids. J. Elast. 49, 1–30 (1997) Qiu, G.Y., Pence, T.: Remarks on the behaviour of a simple directionnally reinforced incompressible non linearly elastic solids. J. Elast. 49, 1–30 (1997)
207.
Zurück zum Zitat Quapp, K.M., Weiss, J.A.: Material characterization of human medical collaterial ligament. J. Biomech. Eng. 124, 757–763 (1998) Quapp, K.M., Weiss, J.A.: Material characterization of human medical collaterial ligament. J. Biomech. Eng. 124, 757–763 (1998)
208.
Zurück zum Zitat Quaglini, V., Vena, P., Contro, R.: A discrete-time approach to the formulation of constitutive models for viscoelastic soft tissues. Biomech. Model. Mechanobiol. 3, 85–97 (2004) Quaglini, V., Vena, P., Contro, R.: A discrete-time approach to the formulation of constitutive models for viscoelastic soft tissues. Biomech. Model. Mechanobiol. 3, 85–97 (2004)
209.
Zurück zum Zitat Raghavan, M., Webster, M.W., Vorp, D.A.: Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24, 573–582 (1996) Raghavan, M., Webster, M.W., Vorp, D.A.: Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24, 573–582 (1996)
210.
Zurück zum Zitat Raghavan, M., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33, 475–482 (2000) Raghavan, M., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33, 475–482 (2000)
211.
Zurück zum Zitat Raghupathy, R., Barocas, V.H.: A closed-form structural model of planar fibrous tissue mechanics. J. Biomech. 42, 1424–1428 (2009) Raghupathy, R., Barocas, V.H.: A closed-form structural model of planar fibrous tissue mechanics. J. Biomech. 42, 1424–1428 (2009)
212.
Zurück zum Zitat Rajagopal, K.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003) Rajagopal, K.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)
213.
Zurück zum Zitat Rajagopal, K., Bridges, C., Rajagopal, K.R.: Towards an understanding of the mechanics underlying aortic dissection. Biomech. Model. Mechanobiol. 6, 345–359 (2007) Rajagopal, K., Bridges, C., Rajagopal, K.R.: Towards an understanding of the mechanics underlying aortic dissection. Biomech. Model. Mechanobiol. 6, 345–359 (2007)
215.
Zurück zum Zitat Reese, S., Raible, T., Wriggers, P.: Finite element modelling of orthotropic material behaviour in pneumatic membranes. Int. J. Solids Struct. 38, 9525–9544 (2001) Reese, S., Raible, T., Wriggers, P.: Finite element modelling of orthotropic material behaviour in pneumatic membranes. Int. J. Solids Struct. 38, 9525–9544 (2001)
216.
Zurück zum Zitat Rief, M., Oesterhelt, F., Heymann, B., Gaub, H.H.E.: Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997) Rief, M., Oesterhelt, F., Heymann, B., Gaub, H.H.E.: Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997)
217.
Zurück zum Zitat Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials—VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. A 243, 251–288 (1951) Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials—VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. A 243, 251–288 (1951)
218.
Zurück zum Zitat Rodriguez, J.F., Cacho, F., Bea, J.A., Doblaré, M.: A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J. Mech. Phys. Solids 54, 864–886 (2006) Rodriguez, J.F., Cacho, F., Bea, J.A., Doblaré, M.: A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J. Mech. Phys. Solids 54, 864–886 (2006)
219.
Zurück zum Zitat Rodriguez, J.F., Ruiz, C., Doblaré, M., Holzapfel, G.A.: Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130(2), 021023 (2008) Rodriguez, J.F., Ruiz, C., Doblaré, M., Holzapfel, G.A.: Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130(2), 021023 (2008)
220.
Zurück zum Zitat Rohrle, O., Pullan, A.J.: Three-dimensional finite element modelling of muscle forces during mastication. J. Biomech. 40, 3363–3372 (2007) Rohrle, O., Pullan, A.J.: Three-dimensional finite element modelling of muscle forces during mastication. J. Biomech. 40, 3363–3372 (2007)
221.
Zurück zum Zitat Rubin, M.B., Bodner, S.R.: A three-dimensional nonlinear model for dissipative response of soft tissue. Int. J. Solids Struct. 39, 5081–5099 (2002) Rubin, M.B., Bodner, S.R.: A three-dimensional nonlinear model for dissipative response of soft tissue. Int. J. Solids Struct. 39, 5081–5099 (2002)
222.
Zurück zum Zitat Ruter, M., Stein, E.: Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Methods Appl. Mech. Eng. 190, 519–541 (2000) Ruter, M., Stein, E.: Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Methods Appl. Mech. Eng. 190, 519–541 (2000)
223.
Zurück zum Zitat Sacks, M.S., Gloeckner, D.: Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa. J. Biomed. Mater. Res. 46, 1–10 (1999) Sacks, M.S., Gloeckner, D.: Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa. J. Biomed. Mater. Res. 46, 1–10 (1999)
224.
Zurück zum Zitat Sacks, M.S.: Biaxial mechanical evaluation of planar biological materials. J. Elast. 61, 199–246 (2000) Sacks, M.S.: Biaxial mechanical evaluation of planar biological materials. J. Elast. 61, 199–246 (2000)
225.
Zurück zum Zitat Sacks, M.S.: Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collageneous tissues. J. Biomech. Eng. 125, 280–287 (2003) Sacks, M.S.: Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collageneous tissues. J. Biomech. Eng. 125, 280–287 (2003)
226.
Zurück zum Zitat Samani, A., Plewes, D.: A method to measure the hyperelastic parameters of ex vivo breast tissue samples. Phys. Med. Biol. 49, 4395–4405 (2004) Samani, A., Plewes, D.: A method to measure the hyperelastic parameters of ex vivo breast tissue samples. Phys. Med. Biol. 49, 4395–4405 (2004)
227.
Zurück zum Zitat Sansour, C.: On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy. Eur. J. Mech. A, Solids 27, 28–39 (2008) Sansour, C.: On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy. Eur. J. Mech. A, Solids 27, 28–39 (2008)
228.
Zurück zum Zitat Schröder, J., Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Struct. 40, 401–445 (2003) Schröder, J., Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Struct. 40, 401–445 (2003)
229.
Zurück zum Zitat Schröder, J., Neff, P.: On the construction of polyconvex transversely isotropic free energy functions. In: Miehe, C. (ed.) Proceedings of the IUTAM Symposium on Computational Mechanicsof Solids Materials at Large Strains, pp. 171–180. Kluwer Academic, Norwell (2003) Schröder, J., Neff, P.: On the construction of polyconvex transversely isotropic free energy functions. In: Miehe, C. (ed.) Proceedings of the IUTAM Symposium on Computational Mechanicsof Solids Materials at Large Strains, pp. 171–180. Kluwer Academic, Norwell (2003)
230.
Zurück zum Zitat Schröder, J., Neff, P., Balzani, D.: A variational approach for materially stable anisotropic hyperelasticity. Int. J. Solids Struct. 42, 4352–4371 (2005) Schröder, J., Neff, P., Balzani, D.: A variational approach for materially stable anisotropic hyperelasticity. Int. J. Solids Struct. 42, 4352–4371 (2005)
231.
Zurück zum Zitat Schröder, J., Neff, P., Ebbing, V.: Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J. Mech. Phys. Solids 56, 3486–3506 (2008) Schröder, J., Neff, P., Ebbing, V.: Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J. Mech. Phys. Solids 56, 3486–3506 (2008)
232.
Zurück zum Zitat Schröder, J., Neff, P.: Poly-, quasi- and rank-one convexity in applied mechanics. In: CISM International Centre for Mechanical Sciences, vol. 516 (2010) Schröder, J., Neff, P.: Poly-, quasi- and rank-one convexity in applied mechanics. In: CISM International Centre for Mechanical Sciences, vol. 516 (2010)
233.
Zurück zum Zitat Schulze-Bauer, C.A.J., Holzapfel, G.A.: Determination of constitutive equations for human arteries from clinicaldata. J. Biomech. 36, 165–169 (2003) Schulze-Bauer, C.A.J., Holzapfel, G.A.: Determination of constitutive equations for human arteries from clinicaldata. J. Biomech. 36, 165–169 (2003)
234.
Zurück zum Zitat Schwenninger, D., Schumann, S., Guttmann, J.: In vivo characterization of mechanical tissue properties of internal organs using endoscopic microscopy and inverse finite element analysis. J. Biomech. 44, 487–493 (2011) Schwenninger, D., Schumann, S., Guttmann, J.: In vivo characterization of mechanical tissue properties of internal organs using endoscopic microscopy and inverse finite element analysis. J. Biomech. 44, 487–493 (2011)
235.
Zurück zum Zitat Shin, T.J., Vito, R.P., Johnson, L.W., McCarey, B.E.: The distribution of strain in the human cornea. J. Biomech. 30, 497–503 (1997) Shin, T.J., Vito, R.P., Johnson, L.W., McCarey, B.E.: The distribution of strain in the human cornea. J. Biomech. 30, 497–503 (1997)
236.
Zurück zum Zitat Simpson, H.C., Spector, S.J.: On copositive matrices and strong ellipticity for isotropic elastic materials. Arch. Ration. Mech. Anal. 84, 55–68 (1983) Simpson, H.C., Spector, S.J.: On copositive matrices and strong ellipticity for isotropic elastic materials. Arch. Ration. Mech. Anal. 84, 55–68 (1983)
237.
Zurück zum Zitat Singh, F., Katiyar, V.K., Singh, B.P.: A new strain energy function to characterize apple and potato tissues. J. Food Eng. 118(2), 178–187 (2013) Singh, F., Katiyar, V.K., Singh, B.P.: A new strain energy function to characterize apple and potato tissues. J. Food Eng. 118(2), 178–187 (2013)
238.
Zurück zum Zitat Smith, G.F., Rivlin, R.S.: The anisotropic tensors. Q. Appl. Math. 15, 309–314 (1957) Smith, G.F., Rivlin, R.S.: The anisotropic tensors. Q. Appl. Math. 15, 309–314 (1957)
239.
Zurück zum Zitat Smith, G.F., Rivlin, R.S.: The strain energy function for anisotropic elastic materials. Trans. Am. Math. Soc. 88, 175–193 (1958) Smith, G.F., Rivlin, R.S.: The strain energy function for anisotropic elastic materials. Trans. Am. Math. Soc. 88, 175–193 (1958)
240.
Zurück zum Zitat Soldatos, K.P.: On loss of ellipticity in second-gradient hyper-elasticity of fibre-reinforced materials. Int. J. Non-Linear Mech. 47, 117–127 (2012) Soldatos, K.P.: On loss of ellipticity in second-gradient hyper-elasticity of fibre-reinforced materials. Int. J. Non-Linear Mech. 47, 117–127 (2012)
241.
Zurück zum Zitat Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics. Academic Press, San Diego (1971) Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics. Academic Press, San Diego (1971)
242.
Zurück zum Zitat Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre–Reinforced Composites. Springer, New York (1984) Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre–Reinforced Composites. Springer, New York (1984)
243.
Zurück zum Zitat Spencer, A.J.M.: Isotropic polynomial invariants and tensor functions. In: CISM Courses and Lectures, vol. 292, pp. 141–169. Springer, Berlin (1987) Spencer, A.J.M.: Isotropic polynomial invariants and tensor functions. In: CISM Courses and Lectures, vol. 292, pp. 141–169. Springer, Berlin (1987)
244.
Zurück zum Zitat Steigmann, D.: On isotropic, frame-invariant, polyconvex strain-energy functions. Q. J. Mech. Appl. Math. 56, 483–491 (2003) Steigmann, D.: On isotropic, frame-invariant, polyconvex strain-energy functions. Q. J. Mech. Appl. Math. 56, 483–491 (2003)
245.
Zurück zum Zitat Steinmann, D.: Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Math. Mech. Solids 8, 496–506 (2003) Steinmann, D.: Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Math. Mech. Solids 8, 496–506 (2003)
246.
Zurück zum Zitat Stewart, M.L., Smith, L.M., Hall, N.: A numerical investigation of breast compression: a computer-aided design approach for prescribing boundary conditions. IEEE Trans. Biomed. Eng. 58(10), 2876–2884 (2011) Stewart, M.L., Smith, L.M., Hall, N.: A numerical investigation of breast compression: a computer-aided design approach for prescribing boundary conditions. IEEE Trans. Biomed. Eng. 58(10), 2876–2884 (2011)
247.
Zurück zum Zitat Sun, W., Sacks, M.S.: Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4, 190–199 (2005) Sun, W., Sacks, M.S.: Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4, 190–199 (2005)
248.
Zurück zum Zitat Sverdlik, A., Lanir, Y.: Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. J. Biomech. Eng. 124, 78–84 (2002) Sverdlik, A., Lanir, Y.: Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. J. Biomech. Eng. 124, 78–84 (2002)
249.
Zurück zum Zitat Takamizawa, K., Hayashi, K.: Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20, 7–17 (1987) Takamizawa, K., Hayashi, K.: Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20, 7–17 (1987)
250.
Zurück zum Zitat Tang, C.Y., Zhang, G., Tsui, C.P.: A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. J. Biomech. 42, 865–872 (2009) Tang, C.Y., Zhang, G., Tsui, C.P.: A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. J. Biomech. 42, 865–872 (2009)
251.
Zurück zum Zitat Tang, D., Yang, C., Kobayashi, S., Zheng, J., Woodard, P.K., Teng, Z., Billiar, K., Bach, K., Ku, R.: 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J. Biomech. Eng. 131, 061010 (2009) Tang, D., Yang, C., Kobayashi, S., Zheng, J., Woodard, P.K., Teng, Z., Billiar, K., Bach, K., Ku, R.: 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J. Biomech. Eng. 131, 061010 (2009)
252.
Zurück zum Zitat Tong, P., Fung, Y.C.: The stress-strain relationship for the skin. J. Biomech. 9, 649–657 (1976) Tong, P., Fung, Y.C.: The stress-strain relationship for the skin. J. Biomech. 9, 649–657 (1976)
253.
Zurück zum Zitat Toungara, M., Chagnon, G., Geindreau, C.: Numerical analysis of the wall stress in abdominal aortic aneurysm: influence of the material model near-incompressibility. J. Mech. Med. Biol. 12, 1250005 (2012) Toungara, M., Chagnon, G., Geindreau, C.: Numerical analysis of the wall stress in abdominal aortic aneurysm: influence of the material model near-incompressibility. J. Mech. Med. Biol. 12, 1250005 (2012)
254.
Zurück zum Zitat Trabelsi, O., Pérez del Palomar, A., Lopez-Villalobos, J.L., Ginel, A., Doblaré, M.: Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea. Med. Eng. Phys. 32, 76–82 (2010) Trabelsi, O., Pérez del Palomar, A., Lopez-Villalobos, J.L., Ginel, A., Doblaré, M.: Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea. Med. Eng. Phys. 32, 76–82 (2010)
255.
Zurück zum Zitat Treloar, L.R.G.: The elasticity of a network of long chains molecules 1. Trans. Faraday Soc. 39, 36–41 (1943) Treloar, L.R.G.: The elasticity of a network of long chains molecules 1. Trans. Faraday Soc. 39, 36–41 (1943)
256.
Zurück zum Zitat Treloar, L.R.G.: The elasticity of a network of long chains molecules 2. Trans. Faraday Soc. 39, 241–246 (1943) Treloar, L.R.G.: The elasticity of a network of long chains molecules 2. Trans. Faraday Soc. 39, 241–246 (1943)
257.
Zurück zum Zitat Triantafyllidis, N., Abeyaratne, R.C.: Instability of a finitely deformed fiber-reinforced elastic material. J. Appl. Mech. 50, 149–156 (1983) Triantafyllidis, N., Abeyaratne, R.C.: Instability of a finitely deformed fiber-reinforced elastic material. J. Appl. Mech. 50, 149–156 (1983)
258.
Zurück zum Zitat Vahapoglu, V., Karadeniz, S.: Constitutive equations for isotropic rubber-like materials using phenomenological approach: a bibliography (1930–2003). Rubber Chem. Technol. 79, 489–499 (2006) Vahapoglu, V., Karadeniz, S.: Constitutive equations for isotropic rubber-like materials using phenomenological approach: a bibliography (1930–2003). Rubber Chem. Technol. 79, 489–499 (2006)
259.
Zurück zum Zitat Vaishnav, R.N., Young, J.T., Patel, D.J.: Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment. Circ. Res. 32, 577–583 (1973) Vaishnav, R.N., Young, J.T., Patel, D.J.: Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment. Circ. Res. 32, 577–583 (1973)
260.
Zurück zum Zitat Valencia, A., Baeza, F.: Numerical simulation of fluid–structure interaction in stenotic arteries considering two layer nonlinear anisotropic structural model. Int. Commun. Heat Mass Transf. 36, 137–142 (2009) Valencia, A., Baeza, F.: Numerical simulation of fluid–structure interaction in stenotic arteries considering two layer nonlinear anisotropic structural model. Int. Commun. Heat Mass Transf. 36, 137–142 (2009)
261.
Zurück zum Zitat van Dam, E.A., Dams, S.D., Peters, G.W.M., Rutten, M.C.M., Schurink, G.W.H., Buth, J., van de Vosse, F.N.: Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech. Model. Mechanobiol. 7, 127–137 (2008) van Dam, E.A., Dams, S.D., Peters, G.W.M., Rutten, M.C.M., Schurink, G.W.H., Buth, J., van de Vosse, F.N.: Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech. Model. Mechanobiol. 7, 127–137 (2008)
262.
Zurück zum Zitat Vande Geest, J.P., Sacks, M.S., Vorp, D.A.: The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39, 1324–1334 (2006) Vande Geest, J.P., Sacks, M.S., Vorp, D.A.: The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39, 1324–1334 (2006)
263.
Zurück zum Zitat Vasta, M., Pandolfi, A., Gizzi, A.: A fiber distributed model of biological tissues. Proc. IUTAM 6, 79–86 (2013) Vasta, M., Pandolfi, A., Gizzi, A.: A fiber distributed model of biological tissues. Proc. IUTAM 6, 79–86 (2013)
264.
Zurück zum Zitat Velardi, F., Fraternali, F., Angelillo, M.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5, 53–61 (2006) Velardi, F., Fraternali, F., Angelillo, M.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5, 53–61 (2006)
265.
Zurück zum Zitat Vito, R.P., Dixon, S.A.: Blood vessel constitutive models 1995–2002. Annu. Rev. Biomed. Eng. 5, 413–439 (2003) Vito, R.P., Dixon, S.A.: Blood vessel constitutive models 1995–2002. Annu. Rev. Biomed. Eng. 5, 413–439 (2003)
266.
Zurück zum Zitat Volokh, K.Y., Vorp, D.A.: A model of growth and rupture of abdominal aortic aneurysm. J. Biomech. 41, 1015–1021 (2008) Volokh, K.Y., Vorp, D.A.: A model of growth and rupture of abdominal aortic aneurysm. J. Biomech. 41, 1015–1021 (2008)
267.
Zurück zum Zitat Walton, J.R., Wilber, J.P.: Sufficient conditions for strong ellipticity for a class of anisotropic materials. Int. J. Non-Linear Mech. 38, 441–455 (2003) Walton, J.R., Wilber, J.P.: Sufficient conditions for strong ellipticity for a class of anisotropic materials. Int. J. Non-Linear Mech. 38, 441–455 (2003)
268.
Zurück zum Zitat Weiss, J.A., Maker, B.N., Govindjee, S.: Finite implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135, 107–128 (1996) Weiss, J.A., Maker, B.N., Govindjee, S.: Finite implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135, 107–128 (1996)
269.
Zurück zum Zitat Wilber, J.P., Walton, J.R.: The convexity properties of a class of constitutive models for biological soft tissues. Math. Mech. Solids 7, 217–235 (2002) Wilber, J.P., Walton, J.R.: The convexity properties of a class of constitutive models for biological soft tissues. Math. Mech. Solids 7, 217–235 (2002)
270.
Zurück zum Zitat Wineman, A.: Some results for generalized neo-Hookean elastic materials. Int. J. Non-Linear Mech. 40, 271–279 (2005) Wineman, A.: Some results for generalized neo-Hookean elastic materials. Int. J. Non-Linear Mech. 40, 271–279 (2005)
271.
Zurück zum Zitat Yosibash, Z., Priel, E.: p-fems for hyperelastic anisotropic nearly incompressible materials under finite deformations with applications to arteries simulation. Int. J. Numer. Methods Eng. 88, 1152–1174 (2011) Yosibash, Z., Priel, E.: p-fems for hyperelastic anisotropic nearly incompressible materials under finite deformations with applications to arteries simulation. Int. J. Numer. Methods Eng. 88, 1152–1174 (2011)
272.
Zurück zum Zitat Yu, J., Zeng, Y., Zhao, J., Liao, D., Gregersen, H.: Quantitative analysis of collagen fiber angle in the submucosa of small intestine. Comput. Biol. Med. 34(34), 539–550 (2004) Yu, J., Zeng, Y., Zhao, J., Liao, D., Gregersen, H.: Quantitative analysis of collagen fiber angle in the submucosa of small intestine. Comput. Biol. Med. 34(34), 539–550 (2004)
273.
Zurück zum Zitat Zee, L., Sternberg, E.: Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids. Arch. Ration. Mech. Anal. 83, 53–90 (1983) Zee, L., Sternberg, E.: Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids. Arch. Ration. Mech. Anal. 83, 53–90 (1983)
274.
Zurück zum Zitat Zhang, J.P., Rajagopal, K.R.: Some inhomogeneous motions and deformations within the context of a non-linear elastic solid. Int. J. Eng. Sci. 30, 919–938 (1992) Zhang, J.P., Rajagopal, K.R.: Some inhomogeneous motions and deformations within the context of a non-linear elastic solid. Int. J. Eng. Sci. 30, 919–938 (1992)
275.
Zurück zum Zitat Zhang, Y., Dunn, M.L., Drexler, E.S., McCowan, C.N., Slifka, A.J., Ivy, D.D., Shandas, R.: A microstructural hyperelastic model of pulmonary arteries under normo- and hypertensive conditions. Ann. Biomed. Eng. 33, 1042–1052 (2005) Zhang, Y., Dunn, M.L., Drexler, E.S., McCowan, C.N., Slifka, A.J., Ivy, D.D., Shandas, R.: A microstructural hyperelastic model of pulmonary arteries under normo- and hypertensive conditions. Ann. Biomed. Eng. 33, 1042–1052 (2005)
276.
Zurück zum Zitat Zhao, X., Raghavan, M.L., Lu, J.: Identifying heterogeneous anisotropic properties in cerebral aneurysms: a point wise approach. Biomech. Model. Mechanobiol. 10, 177–189 (2011) Zhao, X., Raghavan, M.L., Lu, J.: Identifying heterogeneous anisotropic properties in cerebral aneurysms: a point wise approach. Biomech. Model. Mechanobiol. 10, 177–189 (2011)
277.
Zurück zum Zitat Zulliger, M.A., Fridez, P., Hayashi, K., Stergiopulos, N.: A strain energy function for arteries accounting for wall composition and structure. J. Biomech. 37, 989–1000 (2004) Zulliger, M.A., Fridez, P., Hayashi, K., Stergiopulos, N.: A strain energy function for arteries accounting for wall composition and structure. J. Biomech. 37, 989–1000 (2004)
Metadaten
Titel
Hyperelastic Energy Densities for Soft Biological Tissues: A Review
verfasst von
G. Chagnon
M. Rebouah
D. Favier
Publikationsdatum
01.08.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 2/2015
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-014-9508-z

Weitere Artikel der Ausgabe 2/2015

Journal of Elasticity 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.