Skip to main content
Erschienen in: Journal of Elasticity 2/2020

16.10.2019

Identification of Scale-Independent Material Parameters in the Relaxed Micromorphic Model Through Model-Adapted First Order Homogenization

verfasst von: Patrizio Neff, Bernhard Eidel, Marco Valerio d’Agostino, Angela Madeo

Erschienen in: Journal of Elasticity | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We rigorously determine the scale-independent short range elastic parameters in the relaxed micromorphic generalized continuum model for a given periodic microstructure. This is done using both classical periodic homogenization and a new procedure involving the concept of apparent material stiffness of a unit-cell under affine Dirichlet boundary conditions and Neumann’s principle on the overall representation of anisotropy. We explain our idea of “maximal” stiffness of the unit-cell and use state of the art first order numerical homogenization methods to obtain the needed parameters for a given tetragonal unit-cell. These results are used in the accompanying paper (d’Agostino et al. in J. Elast. 2019. Accepted in this volume) to describe the wave propagation including band-gaps in the same tetragonal metamaterial.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
As is well-known, under affine loading, the response of a large periodic structure is periodic up to a vanishing boundary layer.
 
2
For the micromorphic model, postulate d) implies a direct interpretation of what the new degrees of freedom (the non symmetric micro-distortion \(P\in \mathbb{R}^{3\times 3}\)) is. While we do not discard such a direct micro-macro relation, we rather believe that any simple relation will fall short of the truth for the relaxed micromorphic model.
 
3
For the presentation we have chosen throughout the simplest representation of the curvature energy – a one constant isotropic format.
 
4
Despite the name micromorphic model.
 
5
The situation is different when one considers homogenization towards a second gradient continuum (or micromorphic approximations thereof) where there is no independent kinematical field. More precisely, the case \(\widehat{\mathbb{C}}_{\textrm{e}}\gg 1\), \(L_{c}\ll 1\) would be consistent with determining \(P\) as some average of the micro-displacements over a unit-cell.
 
6
Equation (4)1 and (4)2 together imply \(\textrm{Div} ( \mathbb{C}_{\textrm{micro}}\,\textrm{sym}\,P ) =f\). Constraining \(\textrm{sym}\,P=\textrm{sym}\,\nabla u\) gives \(\textrm{Div} ( \mathbb{C}_{\textrm{micro}}\,\textrm{sym}\,\nabla u ) =f\).
 
7
The curvature expression in the Eringen-Mindlin-model or gradient elasticity model would typically include a sixth-order tensor [5], in contrast to the relaxed micromorphic model, which only needs a fourth-order tensor.
 
8
Equation (7)1 and (7)2 together imply that \(\textrm{Div} [ \mathbb{C}_{\textrm{micro}}\,\textrm{sym}\,P-\mu \,L_{c}^{2}\Delta P ] =f\). Here \(\mathbb{C}_{\textrm{micro}}\) is invariably coupled to the characteristic length \(L_{c}\). Constraining \(P=\nabla u\) gives \(\textrm{Div} [ \mathbb{C}_{\textrm{micro}}\,\textrm{sym}\,\nabla u-\mu \,L_{c}^{2}\Delta \nabla u ] =f\). This is the fourth-order equilibrium equation of the second gradient formulation (8).
 
9
The relaxed micromorphic model cannot be obtained as penalty formulation of gradient elasticity and in a 1-D setting it reduces to linear elasticity with stiffness \(\mathbb{C}_{\textrm{macro}}\).
 
10
Letting \(L_{c}\rightarrow 0\) in (7) leads to the algebraic side condition \(\widehat{\mathbb{C}}_{\textrm{e}}\,(\nabla u-P)=\mathbb{C}_{\textrm{micro}}\,\textrm{sym}\,P\). Due to the more general format of \(\widehat{\mathbb{C}}_{\textrm{e}}\) as compared to \(\mathbb{C}_{\textrm{e}}\) and \(\mathbb{C}_{\textrm{c}}\) in (13), it is not possible to analytically solve for \(\textrm{sym}\,P\) and no transparent formula connecting \(\widehat{\mathbb{C}}_{\textrm{e}}\) and \(\mathbb{C}_{\textrm{micro}}\) to \(\mathbb{C}_{\textrm{macro}}\) like (15) results. The formally scale-independent material parameters of the classical Eringen-Mindlin-model are \(\widehat{\mathbb{C}}_{\textrm{e}}\) and \(\mathbb{C}_{\textrm{micro}}\) and the scale-independent parameters of \(W_{\textrm{GE}}\) are \(\mathbb{C}_{\textrm{micro}}=\mathbb{C}_{\textrm{macro}}\). For the Cosserat model, the respective scale-independent stiffness is \(\mathbb{C}_{\textrm{e}}=\mathbb{C}_{\textrm{macro}}\). However, considering (footnote 8) \(\textrm{Div} [ \mathbb{C}_{\textrm{micro}}\,\textrm{sym}\,P-\mu \,L_{c}^{2}\Delta P ] =f\), it is not strictly possible to say that \(\mathbb{C}_{\textrm{micro}}\) is scale-independent in the Eringen-Mindlin model. The identification of \(\mathbb{C}_{\textrm{micro}}\) (and therefore also \(\widehat{\mathbb{C}}_{\textrm{e}}\)) in the Eringen-Mindlin model may be length-scale dependent after all.
 
11
It is indeed well known in the field of homogenization techniques (see, e.g., [20, 68]) that the homogenization of a unit-cell on which one imposes periodic boundary conditions mimics the behavior of a very large specimen of the associated equivalent Cauchy continuum. Usually, homogenization techniques only provide a direct transition from the micro to the macro-scale without considering the intermediate (transition) scale in which all relevant microstructure-related phenomena are manifest. Some attempts to introduce a transition scale via the homogenization towards a micromorphic continuum are made in [39, 79], even if it is clear that a definitive answer is far from being provided (see [39, 79] and references cited there). Our relaxed micromorphic model naturally provides the bridge between the micro and macro behavior of the considered homogenized material with the simple and transparent tensor homogenization formulas (15).
 
12
In this way, artificial boundary layer effects are avoided.
 
13
And not any of the ambiguous extended versions for generalized continua [26, 27, 29, 40].
 
14
Since
$$\begin{aligned} & \frac{1}{2} \bigl\langle \mathbb{C}_{\textrm{KUBC}}^{V} \,\overline{E}, \overline{E} \bigr\rangle \bigl\vert V (x ) \bigr\vert \\ &\quad =\inf \biggl\{ \int _{\xi \in V (x )}\frac{1}{2} \bigl\langle \mathbb{C} (\xi ) \bigl(\textrm{sym}\nabla _{\xi }v (\xi )+ \overline{E} \bigr),\textrm{sym}\nabla _{\xi }v (\xi )+ \overline{E} \bigr\rangle \,d\xi \: |\:v\in C_{0}^{\infty } \bigl(V \! (x ),\mathbb{R}^{3} \bigr) \biggr\} \\ & \quad v\equiv 0\;(\textrm{constant strain assumption: Taylor/Voigt}) \\ &\quad \leq \int _{V}\frac{1}{2} \bigl\langle \mathbb{C}(\xi ) \overline{E}, \overline{E} \bigr\rangle \,d\xi = \frac{1}{2} \biggl\langle \overline{E}, \int _{V} \mathbb{C}(\xi )\,d\xi \,\overline{E} \biggr\rangle = \frac{1}{2} \vert V \vert \biggl\langle \overline{E}, \frac{1}{ \vert V \vert } \int _{V} \mathbb{C}(\xi )\,d\xi \,\overline{E} \biggr\rangle = \frac{1}{2} \vert V \vert \langle \overline{E},\mathbb{C}_{ \textrm{Voigt}} \,\overline{E} \rangle \end{aligned}$$
(31)
it is clear that \(\langle \mathbb{C}_{\textrm{KUBC}}^{V}\, \overline{E}, \,\overline{E} \rangle \leq \langle \mathbb{C}_{\textrm{Voigt}} \,\overline{E},\overline{E} \rangle \) for all applied loadings \(\overline{E}\in \textrm{Sym}\left(3\right)\). On the other hand, it is natural to require as well \(\langle \mathbb{C}_{\textrm{micro}}\,\overline{E}, \, \overline{E} \rangle \leq \langle \mathbb{C}_{\textrm{Voigt}} \,\overline{E},\overline{E} \rangle \), where equality will be obtained if and only if the material on the micro-scale is homogeneous, i.e., \(\mathbb{C}(\xi )=\textrm{const}\).
 
15
An equivalent, more algorithmic procedure to determine \(\mathbb{C}_{\textrm{KUBC}}^{V}\) is obtained as follows. Consider again (37)
$$ \langle \overline{\sigma },\overline{\varepsilon } \rangle = \frac{1}{ \vert V \vert } \int _{ V} \bigl\langle \sigma (\xi ), \varepsilon (\xi ) \bigr\rangle \,d\xi = \frac{1}{ \vert V \vert } \int _{V} \bigl\langle \mathbb{C}(\xi )\,\varepsilon (\xi ), \varepsilon (\xi ) \bigr\rangle \,d \xi ,\quad \textrm{Div}\,\sigma \! (\xi )=0, \quad \sigma ^{\,T}\!(\xi )=\sigma (\xi ), $$
(38)
and \(\widetilde{v}=\overline{\varepsilon }\cdot \xi \) at the boundary. Let us define the corresponding linear solution operator of the linear elastic problem at the micro-scale \(\mathscr{L}(\xi )\cdot \overline{ \varepsilon }=\varepsilon (\xi )\), (“localization tensor”) and insert this back into (37). This gives
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-019-09752-w/MediaObjects/10659_2019_9752_Equa_HTML.png
 
16
Here, \(\mu \,L^{2}_{c} \langle \mathbb{L}\,\textrm{Curl}\,P,\textrm{Curl}\,P \rangle \) would represent the most general quadratic anisotropic curvature energy in the relaxed micromorphic model, where \(\mathbb{L}\) is a fourth-order tensor mapping non-symmetric second-order tensors to non-symmetric second-order tensors.
 
17
\(\mathbb{C}_{\textrm{micro}}\) could be isotropic nevertheless, since isotropy is a subclass of the tetragonal symmetry.
 
18
Considering the Voigt upper bound \(\mathbb{C}_{\textrm{Voigt}}:= \frac{1}{ \vert V \vert }\int _{V}\mathbb{C}(\xi )\,d\xi \) as representing the maximal microscopic stiffness is not useful for two reasons: First, \(\mathbb{C}_{\,\textrm{Voigt}}\) will be isotropic and lose the information of the geometry of the microstructure. Second, the actual deformation in any unit-cell will never exhibit constant strain.
 
19
Here, \(x\) is the macro space variable of the continuum, while \(\xi \) is the micro-variable spanning inside the unit-cell.
 
20
For a discussion of the non-uniqueness of the unit-cell, see [74].
 
21
N.B. the value of \(\lambda _{\textrm{micro}}\) is correctly 5.270 and not 5.981 because of the definition of \(\widehat{\lambda }\) in (47).
 
Literatur
1.
Zurück zum Zitat Abdulle, A.: Analysis of a heterogeneous multiscale FEM for problems in elasticity. Math. Models Methods Appl. Sci. 16(04), 615–635 (2006) MathSciNetMATH Abdulle, A.: Analysis of a heterogeneous multiscale FEM for problems in elasticity. Math. Models Methods Appl. Sci. 16(04), 615–635 (2006) MathSciNetMATH
2.
Zurück zum Zitat Aivaliotis, A., Daouadji, A., Barbagallo, G., Tallarico, D., Neff, P., Madeo, A.: Low-and high-frequency Stoneley waves, reflection and transmission at a Cauchy/relaxed micromorphic interface (2018). arXiv preprint. arXiv:1810.12578 Aivaliotis, A., Daouadji, A., Barbagallo, G., Tallarico, D., Neff, P., Madeo, A.: Low-and high-frequency Stoneley waves, reflection and transmission at a Cauchy/relaxed micromorphic interface (2018). arXiv preprint. arXiv:​1810.​12578
3.
Zurück zum Zitat Aivaliotis, A., Daouadji, A., Barbagallo, G., Tallarico, D., Neff, P., Madeo, A.: Microstructure-related Stoneley waves and their effect on the scattering properties of a 2d Cauchy/relaxed-micromorphic interface. Wave Motion 90, 99–120 (2019) MathSciNet Aivaliotis, A., Daouadji, A., Barbagallo, G., Tallarico, D., Neff, P., Madeo, A.: Microstructure-related Stoneley waves and their effect on the scattering properties of a 2d Cauchy/relaxed-micromorphic interface. Wave Motion 90, 99–120 (2019) MathSciNet
4.
Zurück zum Zitat Aivaliotis, A., Tallarico, D., Daouadji, A., Neff, P., Madeo, A.: Scattering of finite-size anisotropic metastructures via the relaxed micromorphic model (2019). arXiv preprint. arXiv:1905.12297 Aivaliotis, A., Tallarico, D., Daouadji, A., Neff, P., Madeo, A.: Scattering of finite-size anisotropic metastructures via the relaxed micromorphic model (2019). arXiv preprint. arXiv:​1905.​12297
5.
Zurück zum Zitat Auffray, N., Bouchet, R., Brechet, Y.: Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior. Int. J. Solids Struct. 46(2), 440–454 (2009) MATH Auffray, N., Bouchet, R., Brechet, Y.: Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior. Int. J. Solids Struct. 46(2), 440–454 (2009) MATH
6.
Zurück zum Zitat Barbagallo, G., Madeo, A., d’Agostino, M.V., Abreu, R., Ghiba, I.-D., Neff, P.: Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics. Int. J. Solids Struct. 120, 7–30 (2017) MATH Barbagallo, G., Madeo, A., d’Agostino, M.V., Abreu, R., Ghiba, I.-D., Neff, P.: Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics. Int. J. Solids Struct. 120, 7–30 (2017) MATH
7.
Zurück zum Zitat Barbagallo, G., Tallarico, D., d’Agostino, M.V., Aivaliotis, A., Neff, P., Madeo, A.: Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures. Int. J. Solids Struct. 162, 148–163 (2019) Barbagallo, G., Tallarico, D., d’Agostino, M.V., Aivaliotis, A., Neff, P., Madeo, A.: Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures. Int. J. Solids Struct. 162, 148–163 (2019)
8.
Zurück zum Zitat Bauer, S., Neff, P., Pauly, D., Starke, G.: Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions. ESAIM Control Optim. Calc. Var. 22(1), 112–133 (2016) MathSciNetMATH Bauer, S., Neff, P., Pauly, D., Starke, G.: Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions. ESAIM Control Optim. Calc. Var. 22(1), 112–133 (2016) MathSciNetMATH
9.
Zurück zum Zitat Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, vol. 5. North-Holland Publishing Company, Amsterdam (1978) MATH Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, vol. 5. North-Holland Publishing Company, Amsterdam (1978) MATH
10.
Zurück zum Zitat Biswas, R., Poh, L.H.: A micromorphic computational homogenization framework for heterogeneous materials. J. Mech. Phys. Solids 102, 187–208 (2017) ADSMathSciNet Biswas, R., Poh, L.H.: A micromorphic computational homogenization framework for heterogeneous materials. J. Mech. Phys. Solids 102, 187–208 (2017) ADSMathSciNet
11.
Zurück zum Zitat Boutin, C., Rallu, A., Hans, S.: Large scale modulation of high frequency waves in periodic elastic composites. J. Mech. Phys. Solids 70, 362–381 (2014) ADSMathSciNetMATH Boutin, C., Rallu, A., Hans, S.: Large scale modulation of high frequency waves in periodic elastic composites. J. Mech. Phys. Solids 70, 362–381 (2014) ADSMathSciNetMATH
12.
Zurück zum Zitat Bouyge, F., Jasiuk, I., Boccara, S., Ostoja-Starzewski, M.: A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. Eur. J. Mech. A, Solids 21(3), 465–481 (2002) MATH Bouyge, F., Jasiuk, I., Boccara, S., Ostoja-Starzewski, M.: A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. Eur. J. Mech. A, Solids 21(3), 465–481 (2002) MATH
13.
Zurück zum Zitat Braides, A.: A handbook of \({\varGamma }\)-convergence. Handb. Differ. Equ. 3, 101–213 (2006) MATH Braides, A.: A handbook of \({\varGamma }\)-convergence. Handb. Differ. Equ. 3, 101–213 (2006) MATH
14.
Zurück zum Zitat Burgeth, B., Welk, M., Feddern, C., Weickert, J.: Mathematical morphology on tensor data using the Löwner ordering. In: Visualization and Processing of Tensor Fields, pp. 357–368. Springer, Berlin (2006) Burgeth, B., Welk, M., Feddern, C., Weickert, J.: Mathematical morphology on tensor data using the Löwner ordering. In: Visualization and Processing of Tensor Fields, pp. 357–368. Springer, Berlin (2006)
16.
Zurück zum Zitat d’Agostino, M.V., Barbagallo, G., Ghiba, I.-D., Eidel, B., Neff, P., Madeo, A.: Effective description of anisotropic wave dispersion in mechanical metamaterials via the relaxed micromorphic model. J. Elast. (2019). Accepted in this volume d’Agostino, M.V., Barbagallo, G., Ghiba, I.-D., Eidel, B., Neff, P., Madeo, A.: Effective description of anisotropic wave dispersion in mechanical metamaterials via the relaxed micromorphic model. J. Elast. (2019). Accepted in this volume
17.
Zurück zum Zitat Diebels, S., Steeb, H.: Stress and couple stress in foams. Comput. Mater. Sci. 28(3–4), 714–722 (2003) Diebels, S., Steeb, H.: Stress and couple stress in foams. Comput. Mater. Sci. 28(3–4), 714–722 (2003)
18.
Zurück zum Zitat Weinan, E., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003) MathSciNetMATH Weinan, E., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003) MathSciNetMATH
20.
Zurück zum Zitat Eidel, B., Fischer, A.: The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the FE2 method. Comput. Methods Appl. Mech. Eng. 329, 332–368 (2018) ADS Eidel, B., Fischer, A.: The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the FE2 method. Comput. Methods Appl. Mech. Eng. 329, 332–368 (2018) ADS
21.
Zurück zum Zitat Cemal, A.: Eringen. Mechanics of micromorphic materials. In: Applied Mechanics, pp. 131–138. Springer, Berlin (1966) Cemal, A.: Eringen. Mechanics of micromorphic materials. In: Applied Mechanics, pp. 131–138. Springer, Berlin (1966)
22.
Zurück zum Zitat Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999) MATH Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999) MATH
23.
Zurück zum Zitat Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids – I. Int. J. Eng. Sci. 2(2), 189–203 (1964) MathSciNetMATH Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids – I. Int. J. Eng. Sci. 2(2), 189–203 (1964) MathSciNetMATH
24.
Zurück zum Zitat Fischer, A., Eidel, B.: Convergence and error analysis of FE-HMM/FE2 for energetically consistent micro-coupling conditions in linear elastic solids. Eur. J. Mech. A, Solids 77, 103735 (2019) ADSMathSciNetMATH Fischer, A., Eidel, B.: Convergence and error analysis of FE-HMM/FE2 for energetically consistent micro-coupling conditions in linear elastic solids. Eur. J. Mech. A, Solids 77, 103735 (2019) ADSMathSciNetMATH
25.
Zurück zum Zitat Forest, S.: Mechanics of generalized continua: construction by homogenizaton. J. Phys. IV 08(4), 39–48 (1998) Forest, S.: Mechanics of generalized continua: construction by homogenizaton. J. Phys. IV 08(4), 39–48 (1998)
26.
Zurück zum Zitat Forest, S.: Aufbau und Identifikation von Stoffgleichungen für höhere Kontinua mittels Homogenisierungsmethoden. Tech. Mech. 19(4), 297–306 (1999) MathSciNet Forest, S.: Aufbau und Identifikation von Stoffgleichungen für höhere Kontinua mittels Homogenisierungsmethoden. Tech. Mech. 19(4), 297–306 (1999) MathSciNet
27.
Zurück zum Zitat Forest, S.: Homogenization methods and mechanics of generalized continua – Part 2. Theor. Appl. Mech. 28–29, 113–144 (2002) MATH Forest, S.: Homogenization methods and mechanics of generalized continua – Part 2. Theor. Appl. Mech. 28–29, 113–144 (2002) MATH
28.
Zurück zum Zitat Forest, S., Sab, K.: Cosserat overall modeling of heterogeneous materials. Mech. Res. Commun. 25(4), 449–454 (1998) MathSciNetMATH Forest, S., Sab, K.: Cosserat overall modeling of heterogeneous materials. Mech. Res. Commun. 25(4), 449–454 (1998) MathSciNetMATH
29.
Zurück zum Zitat Forest, S., Trinh, D.K.: Generalized continua and non-homogeneous boundary conditions in homogenisation methods. Z. Angew. Math. Mech. 91(2), 90–109 (2011) MathSciNetMATH Forest, S., Trinh, D.K.: Generalized continua and non-homogeneous boundary conditions in homogenisation methods. Z. Angew. Math. Mech. 91(2), 90–109 (2011) MathSciNetMATH
30.
Zurück zum Zitat Ghiba, I.-D., Neff, P., Madeo, A., Münch, I.: A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions. Math. Mech. Solids 22, 1221–1266 (2016) MathSciNetMATH Ghiba, I.-D., Neff, P., Madeo, A., Münch, I.: A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions. Math. Mech. Solids 22, 1221–1266 (2016) MathSciNetMATH
31.
Zurück zum Zitat Ghiba, I.-D., Neff, P., Madeo, A., Placidi, L., Rosi, G.: The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics. Math. Mech. Solids 20(10), 1171–1197 (2014) MathSciNetMATH Ghiba, I.-D., Neff, P., Madeo, A., Placidi, L., Rosi, G.: The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics. Math. Mech. Solids 20(10), 1171–1197 (2014) MathSciNetMATH
32.
Zurück zum Zitat Gologanu, M., Leblond, J.-B., Perrin, G., Devaux, J.: Recent extensions of Gurson’s model for porous ductile metals Part II: a Gurson-like model including the effect of strong gradients of the macroscopic field. Contin. Micromech. 377, 97–130 (1997) MATH Gologanu, M., Leblond, J.-B., Perrin, G., Devaux, J.: Recent extensions of Gurson’s model for porous ductile metals Part II: a Gurson-like model including the effect of strong gradients of the macroscopic field. Contin. Micromech. 377, 97–130 (1997) MATH
33.
Zurück zum Zitat Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963) ADSMATH Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963) ADSMATH
34.
Zurück zum Zitat Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 326(1565), 131–147 (1972) ADSMATH Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 326(1565), 131–147 (1972) ADSMATH
35.
Zurück zum Zitat Hori, M., Nemat-Nasser, S.: Micromechanics: Overall Properties of Heterogeneous Materials, vol. 37. Elsevier, Amsterdam (2013) MATH Hori, M., Nemat-Nasser, S.: Micromechanics: Overall Properties of Heterogeneous Materials, vol. 37. Elsevier, Amsterdam (2013) MATH
36.
Zurück zum Zitat Huet, C.: Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Solids 38(6), 813–841 (1990) ADSMathSciNet Huet, C.: Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Solids 38(6), 813–841 (1990) ADSMathSciNet
37.
Zurück zum Zitat Huet, C.: An integrated micromechanics and statistical continuum thermodynamics approach for studying the fracture behaviour of microcracked heterogeneous materials with delayed response. Eng. Fract. Mech. 58(5–6), 459–556 (1997) Huet, C.: An integrated micromechanics and statistical continuum thermodynamics approach for studying the fracture behaviour of microcracked heterogeneous materials with delayed response. Eng. Fract. Mech. 58(5–6), 459–556 (1997)
38.
Zurück zum Zitat Huet, C.: Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies. Mech. Mater. 31(12), 787–829 (1999) Huet, C.: Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies. Mech. Mater. 31(12), 787–829 (1999)
39.
Zurück zum Zitat Hütter, G.: Homogenization of a Cauchy continuum towards a micromorphic continuum. J. Mech. Phys. Solids 99, 394–408 (2017) ADSMathSciNet Hütter, G.: Homogenization of a Cauchy continuum towards a micromorphic continuum. J. Mech. Phys. Solids 99, 394–408 (2017) ADSMathSciNet
40.
Zurück zum Zitat Hütter, G.: On the micro-macro relation for the microdeformation in the homogenization towards micromorphic and micropolar continua. J. Mech. Phys. Solids 127, 62–79 (2019) ADSMathSciNet Hütter, G.: On the micro-macro relation for the microdeformation in the homogenization towards micromorphic and micropolar continua. J. Mech. Phys. Solids 127, 62–79 (2019) ADSMathSciNet
41.
Zurück zum Zitat Jänicke, R., Diebels, S., Sehlhorst, H.-G., Düster, A.: Two-scale modelling of micromorphic continua. Contin. Mech. Thermodyn. 21(4), 297–315 (2009) ADSMathSciNetMATH Jänicke, R., Diebels, S., Sehlhorst, H.-G., Düster, A.: Two-scale modelling of micromorphic continua. Contin. Mech. Thermodyn. 21(4), 297–315 (2009) ADSMathSciNetMATH
42.
Zurück zum Zitat Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003) MATH Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003) MATH
43.
Zurück zum Zitat Kouznetsova, V., Geers, M.G.D., Brekelmans, M.W.A.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54(8), 1235–1260 (2002) MATH Kouznetsova, V., Geers, M.G.D., Brekelmans, M.W.A.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54(8), 1235–1260 (2002) MATH
44.
Zurück zum Zitat Kouznetsova, V., Geers, M.G.D., Brekelmans, M.W.A.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193(48–51), 5525–5550 (2004) ADSMATH Kouznetsova, V., Geers, M.G.D., Brekelmans, M.W.A.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193(48–51), 5525–5550 (2004) ADSMATH
45.
Zurück zum Zitat Lobos, M., Yuzbasioglu, T., Böhlke, T.: Homogenization and materials design of anisotropic multiphase linear elastic materials using central model functions. J. Elast. 128(1), 17–60 (2017) MathSciNetMATH Lobos, M., Yuzbasioglu, T., Böhlke, T.: Homogenization and materials design of anisotropic multiphase linear elastic materials using central model functions. J. Elast. 128(1), 17–60 (2017) MathSciNetMATH
46.
Zurück zum Zitat Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944) MATH Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944) MATH
47.
Zurück zum Zitat Madeo, A., Collet, M., Miniaci, M., Billon, K., Ouisse, M., Neff, P.: Modeling phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia. J. Elast. 130, 1–25 (2017) MathSciNetMATH Madeo, A., Collet, M., Miniaci, M., Billon, K., Ouisse, M., Neff, P.: Modeling phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia. J. Elast. 130, 1–25 (2017) MathSciNetMATH
48.
Zurück zum Zitat Madeo, A., Ghiba, I.-D., Neff, P., Münch, I.: A new view on boundary conditions in the Grioli–Koiter–Mindlin–Toupin indeterminate couple stress model. Eur. J. Mech. A, Solids 59, 294–322 (2016) ADSMathSciNetMATH Madeo, A., Ghiba, I.-D., Neff, P., Münch, I.: A new view on boundary conditions in the Grioli–Koiter–Mindlin–Toupin indeterminate couple stress model. Eur. J. Mech. A, Solids 59, 294–322 (2016) ADSMathSciNetMATH
49.
Zurück zum Zitat Madeo, A., Neff, P., d’Agostino, M.V., Barbagallo, G.: Complete band gaps including non-local effects occur only in the relaxed micromorphic model. C. R., Méc. 344(11), 784–796 (2016) ADS Madeo, A., Neff, P., d’Agostino, M.V., Barbagallo, G.: Complete band gaps including non-local effects occur only in the relaxed micromorphic model. C. R., Méc. 344(11), 784–796 (2016) ADS
50.
Zurück zum Zitat Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Band gaps in the relaxed linear micromorphic continuum. Z. Angew. Math. Mech. 95(9), 880–887 (2014) MathSciNetMATH Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Band gaps in the relaxed linear micromorphic continuum. Z. Angew. Math. Mech. 95(9), 880–887 (2014) MathSciNetMATH
51.
Zurück zum Zitat Madeo, A., Neff, P., Ghiba, I.-D., Rosi, G.: Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model. J. Mech. Phys. Solids 95, 441–479 (2016) ADSMathSciNet Madeo, A., Neff, P., Ghiba, I.-D., Rosi, G.: Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model. J. Mech. Phys. Solids 95, 441–479 (2016) ADSMathSciNet
52.
Zurück zum Zitat Mandel, J.: Plasticité classique et viscoplasticité. International Centre for Mechanical Sciences. Courses and Lectures (1971) Mandel, J.: Plasticité classique et viscoplasticité. International Centre for Mechanical Sciences. Courses and Lectures (1971)
53.
Zurück zum Zitat Michel, J.-C., Moulinec, H., Suquet, P.M.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172(1–4), 109–143 (1999) ADSMathSciNetMATH Michel, J.-C., Moulinec, H., Suquet, P.M.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172(1–4), 109–143 (1999) ADSMathSciNetMATH
54.
Zurück zum Zitat Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964) MathSciNetMATH Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964) MathSciNetMATH
55.
Zurück zum Zitat Münch, I., Neff, P., Madeo, A., Ghiba, I.-D.: The modified indeterminate couple stress model: why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless. Z. Angew. Math. Mech. 97(12), 1524–1554 (2017) MathSciNet Münch, I., Neff, P., Madeo, A., Ghiba, I.-D.: The modified indeterminate couple stress model: why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless. Z. Angew. Math. Mech. 97(12), 1524–1554 (2017) MathSciNet
56.
Zurück zum Zitat Neff, P.: On material constants for micromorphic continua. In: Trends in Applications of Mathematics to Mechanics, STAMM Proceedings, Seeheim, pp. 337–348. Shaker–Verlag, Aachen (2004) Neff, P.: On material constants for micromorphic continua. In: Trends in Applications of Mathematics to Mechanics, STAMM Proceedings, Seeheim, pp. 337–348. Shaker–Verlag, Aachen (2004)
57.
Zurück zum Zitat Neff, P.: Existence of minimizers for a finite-strain micromorphic elastic solid. Proc. R. Soc. Edinb., Sect. A, Math. 136(05), 997–1012 (2006) MathSciNetMATH Neff, P.: Existence of minimizers for a finite-strain micromorphic elastic solid. Proc. R. Soc. Edinb., Sect. A, Math. 136(05), 997–1012 (2006) MathSciNetMATH
58.
Zurück zum Zitat Neff, P., Forest, S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elast. 87(2–3), 239–276 (2007) MathSciNetMATH Neff, P., Forest, S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elast. 87(2–3), 239–276 (2007) MathSciNetMATH
59.
Zurück zum Zitat Neff, P., Ghiba, I.-D., Lazar, M., Madeo, A.: The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations. Q. J. Mech. Appl. Math. 68(1), 53–84 (2014) MathSciNetMATH Neff, P., Ghiba, I.-D., Lazar, M., Madeo, A.: The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations. Q. J. Mech. Appl. Math. 68(1), 53–84 (2014) MathSciNetMATH
60.
Zurück zum Zitat Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 26(5), 639–681 (2014) ADSMathSciNetMATH Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 26(5), 639–681 (2014) ADSMathSciNetMATH
61.
Zurück zum Zitat Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010) MATH Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010) MATH
62.
Zurück zum Zitat Neff, P., Jeong, J., Ramézani, H.: Subgrid interaction and micro-randomness – Novel invariance requirements in infinitesimal gradient elasticity. Int. J. Solids Struct. 46(25–26), 4261–4276 (2009) MATH Neff, P., Jeong, J., Ramézani, H.: Subgrid interaction and micro-randomness – Novel invariance requirements in infinitesimal gradient elasticity. Int. J. Solids Struct. 46(25–26), 4261–4276 (2009) MATH
63.
Zurück zum Zitat Neff, P., Madeo, A., Barbagallo, G., d’Agostino, M.V., Abreu, R., Ghiba, I.-D.: Real wave propagation in the isotropic-relaxed micromorphic model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473(2197) (2017) Neff, P., Madeo, A., Barbagallo, G., d’Agostino, M.V., Abreu, R., Ghiba, I.-D.: Real wave propagation in the isotropic-relaxed micromorphic model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473(2197) (2017)
64.
Zurück zum Zitat Neff, P., Münch, I.: Curl bounds Grad on SO(3). ESAIM Control Optim. Calc. Var. 14(1), 148–159 (2008) MathSciNetMATH Neff, P., Münch, I.: Curl bounds Grad on SO(3). ESAIM Control Optim. Calc. Var. 14(1), 148–159 (2008) MathSciNetMATH
65.
Zurück zum Zitat Neff, P., Pauly, D., Witsch, K.-J.: Maxwell meets Korn: a new coercive inequality for tensor fields in \(\mathbb{R}^{N\times \,N}\) with square-integrable exterior derivative. Math. Methods Appl. Sci. 35(1), 65–71 (2012) ADSMathSciNetMATH Neff, P., Pauly, D., Witsch, K.-J.: Maxwell meets Korn: a new coercive inequality for tensor fields in \(\mathbb{R}^{N\times \,N}\) with square-integrable exterior derivative. Math. Methods Appl. Sci. 35(1), 65–71 (2012) ADSMathSciNetMATH
66.
Zurück zum Zitat Neff, P., Pauly, D., Witsch, K.-J.: Poincaré meets Korn via Maxwell: extending Korn’s first inequality to incompatible tensor fields. J. Differ. Equ. 258(4), 1267–1302 (2015) ADSMATH Neff, P., Pauly, D., Witsch, K.-J.: Poincaré meets Korn via Maxwell: extending Korn’s first inequality to incompatible tensor fields. J. Differ. Equ. 258(4), 1267–1302 (2015) ADSMATH
67.
Zurück zum Zitat Neumann, F.E.: Vorlesungen über die Theorie der Elasticität der festen Körper und des Lichtäthers. B.G. Teubner, Leipzig (1885) MATH Neumann, F.E.: Vorlesungen über die Theorie der Elasticität der festen Körper und des Lichtäthers. B.G. Teubner, Leipzig (1885) MATH
68.
Zurück zum Zitat Pecullan, S., Gibiansky, L., Torquato, S.: Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites. J. Mech. Phys. Solids 47(7), 1509–1542 (1999) ADSMathSciNetMATH Pecullan, S., Gibiansky, L., Torquato, S.: Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites. J. Mech. Phys. Solids 47(7), 1509–1542 (1999) ADSMathSciNetMATH
69.
Zurück zum Zitat Pham, K., Kouznetsova, V.G., Geers, M.G.D.: Transient computational homogenization for heterogeneous materials under dynamic excitation. J. Mech. Phys. Solids 61(11), 2125–2146 (2013) ADSMathSciNetMATH Pham, K., Kouznetsova, V.G., Geers, M.G.D.: Transient computational homogenization for heterogeneous materials under dynamic excitation. J. Mech. Phys. Solids 61(11), 2125–2146 (2013) ADSMathSciNetMATH
70.
Zurück zum Zitat Reuß, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech. 9(1), 49–58 (1929) MATH Reuß, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech. 9(1), 49–58 (1929) MATH
71.
Zurück zum Zitat Rokoš, O., Ameen, M.M., Peerlings, R.H.J., Geers, M.G.D.: Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields. J. Mech. Phys. Solids 123, 119–137 (2019) ADSMathSciNet Rokoš, O., Ameen, M.M., Peerlings, R.H.J., Geers, M.G.D.: Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields. J. Mech. Phys. Solids 123, 119–137 (2019) ADSMathSciNet
72.
Zurück zum Zitat Romano, G., Barretta, R., Diaco, M.: Micromorphic continua: non-redundant formulations. Contin. Mech. Thermodyn. 28(6), 1659–1670 (2016) ADSMathSciNetMATH Romano, G., Barretta, R., Diaco, M.: Micromorphic continua: non-redundant formulations. Contin. Mech. Thermodyn. 28(6), 1659–1670 (2016) ADSMathSciNetMATH
73.
Zurück zum Zitat Karam, S.: On the homogenization and the simulation of random materials. Eur. J. Mech. A, Solids 5, 585–607 (1992) MathSciNet Karam, S.: On the homogenization and the simulation of random materials. Eur. J. Mech. A, Solids 5, 585–607 (1992) MathSciNet
74.
Zurück zum Zitat Schröder, J.: A numerical two-scale homogenization scheme: the \(\mathit{FE}^{2}\)-method. Schröder, J., Hackl, K. (eds.) Plasticity and Beyond: Microstructures, Crystal-Plasticity and Phase Transitions, vol. 550, pp. 1–64. Springer, Berlin (2014) Schröder, J.: A numerical two-scale homogenization scheme: the \(\mathit{FE}^{2}\)-method. Schröder, J., Hackl, K. (eds.) Plasticity and Beyond: Microstructures, Crystal-Plasticity and Phase Transitions, vol. 550, pp. 1–64. Springer, Berlin (2014)
75.
Zurück zum Zitat Smyshlyaev, V.P., Cherednichenko, K.D.: On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 48(6–7), 1325–1357 (2000) ADSMathSciNetMATH Smyshlyaev, V.P., Cherednichenko, K.D.: On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 48(6–7), 1325–1357 (2000) ADSMathSciNetMATH
76.
Zurück zum Zitat Sridhar, A., Kouznetsova, V.G., Geers, M.G.D.: Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum. Comput. Mech. 57(3), 423–435 (2016) MathSciNetMATH Sridhar, A., Kouznetsova, V.G., Geers, M.G.D.: Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum. Comput. Mech. 57(3), 423–435 (2016) MathSciNetMATH
77.
Zurück zum Zitat Suquet, P.M.: Local and global aspects in the mathematical theory of plasticity. Plasticity today, 279–309 (1985) Suquet, P.M.: Local and global aspects in the mathematical theory of plasticity. Plasticity today, 279–309 (1985)
78.
Zurück zum Zitat Suquet, P.M.: Effective properties of nonlinear composites. In: Continuum Micromechanics, pp. 197–264. Springer, Berlin (1997) MATH Suquet, P.M.: Effective properties of nonlinear composites. In: Continuum Micromechanics, pp. 197–264. Springer, Berlin (1997) MATH
79.
Zurück zum Zitat Trinh D.K., Janicke, R., Auffray, N., Diebels, S., Forest, S.: Evaluation of generalized continuum substitution models for heterogeneous materials. Int. J. Multiscale Comput. Eng. 10(6), 527–549 (2012) Trinh D.K., Janicke, R., Auffray, N., Diebels, S., Forest, S.: Evaluation of generalized continuum substitution models for heterogeneous materials. Int. J. Multiscale Comput. Eng. 10(6), 527–549 (2012)
80.
Zurück zum Zitat Voigt, W.: Lehrbuch der Krystallphysik (mit Ausschluss der Krystalloptik). B.G. Teubner, Leipzig (1910) Voigt, W.: Lehrbuch der Krystallphysik (mit Ausschluss der Krystalloptik). B.G. Teubner, Leipzig (1910)
81.
Zurück zum Zitat Wang, C., Feng, L., Jasiuk, I.: Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid. J. Biomech. Eng. 131(12), 121008 (2009) Wang, C., Feng, L., Jasiuk, I.: Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid. J. Biomech. Eng. 131(12), 121008 (2009)
82.
Zurück zum Zitat Zohdi, T.I.: Homogenization Methods and Multiscale Modeling. Encyclopedia of Computational Mechanics (2004) Zohdi, T.I.: Homogenization Methods and Multiscale Modeling. Encyclopedia of Computational Mechanics (2004)
Metadaten
Titel
Identification of Scale-Independent Material Parameters in the Relaxed Micromorphic Model Through Model-Adapted First Order Homogenization
verfasst von
Patrizio Neff
Bernhard Eidel
Marco Valerio d’Agostino
Angela Madeo
Publikationsdatum
16.10.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 2/2020
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-019-09752-w

Weitere Artikel der Ausgabe 2/2020

Journal of Elasticity 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.