Skip to main content
Erschienen in: Empirical Software Engineering 4/2020

24.04.2020

What do Programmers Discuss about Deep Learning Frameworks

verfasst von: Junxiao Han, Emad Shihab, Zhiyuan Wan, Shuiguang Deng, Xin Xia

Erschienen in: Empirical Software Engineering | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep learning has gained tremendous traction from the developer and researcher communities. It plays an increasingly significant role in a number of application domains. Deep learning frameworks are proposed to help developers and researchers easily leverage deep learning technologies, and they attract a great number of discussions on popular platforms, i.e., Stack Overflow and GitHub. To understand and compare the insights from these two platforms, we mine the topics of interests from these two platforms. Specifically, we apply Latent Dirichlet Allocation (LDA) topic modeling techniques to derive the discussion topics related to three popular deep learning frameworks, namely, Tensorflow, PyTorch and Theano. Within each platform, we compare the topics across the three deep learning frameworks. Moreover, we make a comparison of topics between the two platforms. Our observations include 1) a wide range of topics that are discussed about the three deep learning frameworks on both platforms, and the most popular workflow stages are Model Training and Preliminary Preparation. 2) the topic distributions at the workflow level and topic category level on Tensorflow and PyTorch are always similar while the topic distribution pattern on Theano is quite different. In addition, the topic trends at the workflow level and topic category level of the three deep learning frameworks are quite different. 3) the topics at the workflow level show different trends across the two platforms. e.g., the trend of the Preliminary Preparation stage topic on Stack Overflow comes to be relatively stable after 2016, while the trend of it on GitHub shows a stronger upward trend after 2016. Besides, the Model Training stage topic still achieves the highest impact scores across two platforms. Based on the findings, we also discuss implications for practitioners and researchers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: A system for large-scale machine learning. In: OSDI, vol 16, pp 265–283 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: A system for large-scale machine learning. In: OSDI, vol 16, pp 265–283
Zurück zum Zitat Allamanis M, Sutton C (2013) Why, when, and what: Analyzing stack overflow questions by topic, type, and code. In: Proceedings of the 10th working conference on mining software repositories, IEEE Press, pp 53–56 Allamanis M, Sutton C (2013) Why, when, and what: Analyzing stack overflow questions by topic, type, and code. In: Proceedings of the 10th working conference on mining software repositories, IEEE Press, pp 53–56
Zurück zum Zitat Azad S, Rigby P C, Guerrouj L (2017) Generating api call rules from version history and stack overflow posts. ACM Trans Softw Eng Methodol (TOSEM) 25(4):29CrossRef Azad S, Rigby P C, Guerrouj L (2017) Generating api call rules from version history and stack overflow posts. ACM Trans Softw Eng Methodol (TOSEM) 25(4):29CrossRef
Zurück zum Zitat Bahrampour S, Ramakrishnan N, Schott L, Shah M (2015) Comparative study of deep learning software frameworks. arXiv:151106435 Bahrampour S, Ramakrishnan N, Schott L, Shah M (2015) Comparative study of deep learning software frameworks. arXiv:151106435
Zurück zum Zitat Bajaj K, Pattabiraman K, Mesbah A (2014) Mining questions asked by web developers. In: Proceedings of the 11th working conference on mining software repositories, ACM, pp 112–121 Bajaj K, Pattabiraman K, Mesbah A (2014) Mining questions asked by web developers. In: Proceedings of the 11th working conference on mining software repositories, ACM, pp 112–121
Zurück zum Zitat Baltes S, Dumani L, Treude C, Diehl S (2018) Sotorrent: Reconstructing and analyzing the evolution of stack overflow posts. arXiv:180307311 Baltes S, Dumani L, Treude C, Diehl S (2018) Sotorrent: Reconstructing and analyzing the evolution of stack overflow posts. arXiv:180307311
Zurück zum Zitat Barua A, Thomas S W, Hassan A E (2014) What are developers talking about? an analysis of topics and trends in stack overflow. Empir Softw Eng 19(3):619–654CrossRef Barua A, Thomas S W, Hassan A E (2014) What are developers talking about? an analysis of topics and trends in stack overflow. Empir Softw Eng 19(3):619–654CrossRef
Zurück zum Zitat Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley D, Bengio Y (2010) Theano: A cpu and gpu math compiler in python. In: Proc. 9th python in science conf, vol 1 Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley D, Bengio Y (2010) Theano: A cpu and gpu math compiler in python. In: Proc. 9th python in science conf, vol 1
Zurück zum Zitat Blei D M, Ng A Y, Jordan M I (2012) Latent dirichlet allocation. J Mach Learn Res 3:993–1022MATH Blei D M, Ng A Y, Jordan M I (2012) Latent dirichlet allocation. J Mach Learn Res 3:993–1022MATH
Zurück zum Zitat Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In: 8th ACM international conference on web search and data mining, pp 399–408 Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In: 8th ACM international conference on web search and data mining, pp 399–408
Zurück zum Zitat Bovens L, Hartmann S (2010) Bayesian Epistemology. Clarendon Bovens L, Hartmann S (2010) Bayesian Epistemology. Clarendon
Zurück zum Zitat Cai R, Xu B, Yang X, Zhang Z, Li Z (2017) An encoder-decoder framework translating natural language to database queries. arXiv:171106061 Cai R, Xu B, Yang X, Zhang Z, Li Z (2017) An encoder-decoder framework translating natural language to database queries. arXiv:171106061
Zurück zum Zitat Chen C, Gao S, Xing Z (2016) Mining analogical libraries in q&a discussions–incorporating relational and categorical knowledge into word embedding. In: 2016 IEEE 23rd international conference on software analysis, evolution, and Reengineering (SANER), IEEE, vol 1, pp 338–348 Chen C, Gao S, Xing Z (2016) Mining analogical libraries in q&a discussions–incorporating relational and categorical knowledge into word embedding. In: 2016 IEEE 23rd international conference on software analysis, evolution, and Reengineering (SANER), IEEE, vol 1, pp 338–348
Zurück zum Zitat Chen T H, Thomas S W, Hemmati H, Nagappan M, Hassan A E (2017) An empirical study on the effect of testing on code quality using topic models: A case study on software development systems. IEEE Trans Reliab R 66(3):806–824CrossRef Chen T H, Thomas S W, Hemmati H, Nagappan M, Hassan A E (2017) An empirical study on the effect of testing on code quality using topic models: A case study on software development systems. IEEE Trans Reliab R 66(3):806–824CrossRef
Zurück zum Zitat Collobert R, Kavukcuoglu K, Farabet C (2011) Torch7: A matlab-like environment for machine learning. In: BigLearn, NIPS workshop, EPFL-CONF-192376 Collobert R, Kavukcuoglu K, Farabet C (2011) Torch7: A matlab-like environment for machine learning. In: BigLearn, NIPS workshop, EPFL-CONF-192376
Zurück zum Zitat De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2014) Labeling source code with information retrieval methods: An empirical study. Empir Softw Eng 19(5):1383–1420CrossRef De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2014) Labeling source code with information retrieval methods: An empirical study. Empir Softw Eng 19(5):1383–1420CrossRef
Zurück zum Zitat Ding W, Wang R, Mao F, Taylor G (2014) Theano-based large-scale visual recognition with multiple gpus. arXiv:14122302 Ding W, Wang R, Mao F, Taylor G (2014) Theano-based large-scale visual recognition with multiple gpus. arXiv:14122302
Zurück zum Zitat Duan C, Cui L, Chen X, Wei F, Zhu C, Zhao T (2018) Attention-fused deep matching network for natural language inference. In: IJCAI, pp 4033–4040 Duan C, Cui L, Chen X, Wei F, Zhu C, Zhao T (2018) Attention-fused deep matching network for natural language inference. In: IJCAI, pp 4033–4040
Zurück zum Zitat Erickson B J, Korfiatis P, Akkus Z, Kline T, Philbrick K (2017) Toolkits and libraries for deep learning. J Digit Imaging 30(4):400–405CrossRef Erickson B J, Korfiatis P, Akkus Z, Kline T, Philbrick K (2017) Toolkits and libraries for deep learning. J Digit Imaging 30(4):400–405CrossRef
Zurück zum Zitat Hannun A, Case C, Casper J, Catanzaro B, Diamos G, Elsen E, Prenger R, Satheesh S, Sengupta S, Coates A et al (2014) Deep speech: Scaling up end-to-end speech recognition. arXiv:14125567 Hannun A, Case C, Casper J, Catanzaro B, Diamos G, Elsen E, Prenger R, Satheesh S, Sengupta S, Coates A et al (2014) Deep speech: Scaling up end-to-end speech recognition. arXiv:14125567
Zurück zum Zitat Hinton G E, Osindero S, Teh Y W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554MathSciNetCrossRef Hinton G E, Osindero S, Teh Y W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554MathSciNetCrossRef
Zurück zum Zitat Hoang CDV, Haffari G, Cohn T (2017) Towards decoding as continuous optimisation in neural machine translation. In: Proceedings of the 2017 conference on empirical methods in natural language processing, pp 146–156 Hoang CDV, Haffari G, Cohn T (2017) Towards decoding as continuous optimisation in neural machine translation. In: Proceedings of the 2017 conference on empirical methods in natural language processing, pp 146–156
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
Zurück zum Zitat Hoffman MD, Blei DM, Bach F (2010) Online learning for latent dirichlet allocation. In: International conference on neural information processing systems, pp 856–864 Hoffman MD, Blei DM, Bach F (2010) Online learning for latent dirichlet allocation. In: International conference on neural information processing systems, pp 856–864
Zurück zum Zitat Ketkar N (2017) Introduction to pytorch. In: Deep learning with python, Springer, pp 195–208 Ketkar N (2017) Introduction to pytorch. In: Deep learning with python, Springer, pp 195–208
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRef
Zurück zum Zitat Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A P, Tejani A, Totz J, Wang Z et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, vol 2, p 4 Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A P, Tejani A, Totz J, Wang Z et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, vol 2, p 4
Zurück zum Zitat Lee SR, Heo MJ, Lee CG, Kim M, Jeong G (2017) Applying deep learning based automatic bug triager to industrial projects. In: Proceedings of the 2017 11th joint meeting on foundations of software engineering, ACM, pp 926–931 Lee SR, Heo MJ, Lee CG, Kim M, Jeong G (2017) Applying deep learning based automatic bug triager to industrial projects. In: Proceedings of the 2017 11th joint meeting on foundations of software engineering, ACM, pp 926–931
Zurück zum Zitat Li H, Xing Z, Peng X, Zhao W (2013) What help do developers seek, when and how? In: 2013 20th Working Conference on Reverse Engineering (WCRE), IEEE, pp 142–151 Li H, Xing Z, Peng X, Zhao W (2013) What help do developers seek, when and how? In: 2013 20th Working Conference on Reverse Engineering (WCRE), IEEE, pp 142–151
Zurück zum Zitat Li H, Chen T H P, Shang W, Hassan A E (2018) Studying software logging using topic models. Empir Softw Eng 23(5):2655–2694CrossRef Li H, Chen T H P, Shang W, Hassan A E (2018) Studying software logging using topic models. Empir Softw Eng 23(5):2655–2694CrossRef
Zurück zum Zitat Li M, Andersen D G, Park J W, Smola A J, Ahmed A, Josifovski V, Long J, Shekita E J, Su B Y (2014) Scaling distributed machine learning with the parameter server. In: OSDI, vol 14, pp 583–598 Li M, Andersen D G, Park J W, Smola A J, Ahmed A, Josifovski V, Long J, Shekita E J, Su B Y (2014) Scaling distributed machine learning with the parameter server. In: OSDI, vol 14, pp 583–598
Zurück zum Zitat Liu H, Xu Z, Zou Y (2018) Deep learning based feature envy detection. In: Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, ACM, pp 385–396 Liu H, Xu Z, Zou Y (2018) Deep learning based feature envy detection. In: Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, ACM, pp 385–396
Zurück zum Zitat Loper E, Bird S (2002) Nltk: The natural language toolkit. In: Proceedings of the ACL-02 workshop on Effective tools and methodologies for teaching natural language processing and computational linguistics-Volume 1, Association for Computational Linguistics, pp 63–70 Loper E, Bird S (2002) Nltk: The natural language toolkit. In: Proceedings of the ACL-02 workshop on Effective tools and methodologies for teaching natural language processing and computational linguistics-Volume 1, Association for Computational Linguistics, pp 63–70
Zurück zum Zitat Lukins SK, Kraft NA, Etzkorn LH (2008) Source code retrieval for bug localization using latent dirichlet allocation. In: Working conference on reverse engineering, 2008. Wcre ’08, pp 155–164 Lukins SK, Kraft NA, Etzkorn LH (2008) Source code retrieval for bug localization using latent dirichlet allocation. In: Working conference on reverse engineering, 2008. Wcre ’08, pp 155–164
Zurück zum Zitat Miller G A (1995) Wordnet: A lexical database for english. Commun ACM 38 (11):39–41CrossRef Miller G A (1995) Wordnet: A lexical database for english. Commun ACM 38 (11):39–41CrossRef
Zurück zum Zitat Mo W, Shen B, Chen Y, Zhu J (2015) Tbil: A tagging-based approach to identity linkage across software communities. In: Software Engineering Conference (APSEC) 2015 Asia-Pacific, IEEE, pp 56–63 Mo W, Shen B, Chen Y, Zhu J (2015) Tbil: A tagging-based approach to identity linkage across software communities. In: Software Engineering Conference (APSEC) 2015 Asia-Pacific, IEEE, pp 56–63
Zurück zum Zitat Newman D, Lau J H, Grieser K, Baldwin T (2010) Automatic evaluation of topic coherence. In: Human language technologies: Conference of the North American chapter of the association of computational linguistics, Proceedings, June 2-4, 2010 Los Angeles, California, USA, pp 100–108 Newman D, Lau J H, Grieser K, Baldwin T (2010) Automatic evaluation of topic coherence. In: Human language technologies: Conference of the North American chapter of the association of computational linguistics, Proceedings, June 2-4, 2010 Los Angeles, California, USA, pp 100–108
Zurück zum Zitat Nguyen AT, Nguyen TT, Al-Kofahi J, Nguyen HV, Nguyen TN (2011) A topic-based approach for narrowing the search space of buggy files from a bug report. In: Proceedings of the 2011 26th IEEE/ACM international conference on automated software engineering, IEEE Computer Society, pp 263–272 Nguyen AT, Nguyen TT, Al-Kofahi J, Nguyen HV, Nguyen TN (2011) A topic-based approach for narrowing the search space of buggy files from a bug report. In: Proceedings of the 2011 26th IEEE/ACM international conference on automated software engineering, IEEE Computer Society, pp 263–272
Zurück zum Zitat Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2013) How to effectively use topic models for software engineering tasks? an approach based on genetic algorithms. In: Proceedings of the 2013 international conference on software engineering, IEEE Press, pp 522–531 Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2013) How to effectively use topic models for software engineering tasks? an approach based on genetic algorithms. In: Proceedings of the 2013 international conference on software engineering, IEEE Press, pp 522–531
Zurück zum Zitat Rosen C, Shihab E (2016) What are mobile developers asking about? a large scale study using stack overflow. Empir Softw Eng 21(3):1192–1223CrossRef Rosen C, Shihab E (2016) What are mobile developers asking about? a large scale study using stack overflow. Empir Softw Eng 21(3):1192–1223CrossRef
Zurück zum Zitat Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef
Zurück zum Zitat Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Netw 61:85–117CrossRef Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Netw 61:85–117CrossRef
Zurück zum Zitat Schütze H, Manning CD, Raghavan P (2008) Introduction to information retrieval, vol 39. Cambridge University Press, CambridgeMATH Schütze H, Manning CD, Raghavan P (2008) Introduction to information retrieval, vol 39. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Spencer D (2009) Card sorting: Designing usable categories. Rosenfeld Media Spencer D (2009) Card sorting: Designing usable categories. Rosenfeld Media
Zurück zum Zitat Thomas S (2012) Mining unstructured software repositories using ir models Thomas S (2012) Mining unstructured software repositories using ir models
Zurück zum Zitat Treude C, Robillard MP (2016) Augmenting api documentation with insights from stack overflow. In: 2016 IEEE/ACM 38th international conference on software engineering (ICSE), IEEE, pp 392–403 Treude C, Robillard MP (2016) Augmenting api documentation with insights from stack overflow. In: 2016 IEEE/ACM 38th international conference on software engineering (ICSE), IEEE, pp 392–403
Zurück zum Zitat Treude C, Barzilay O, Storey MA (2011) How do programmers ask and answer questions on the web?: Nier track. In: 2011 33rd international conference on software engineering (ICSE), IEEE, pp 804–807 Treude C, Barzilay O, Storey MA (2011) How do programmers ask and answer questions on the web?: Nier track. In: 2011 33rd international conference on software engineering (ICSE), IEEE, pp 804–807
Zurück zum Zitat Vasilescu B, Filkov V, Serebrenik A (2013) Stackoverflow and github: Associations between software development and crowdsourced knowledge. In: 2013 international conference on social computing (SocialCom), IEEE, pp 188–195 Vasilescu B, Filkov V, Serebrenik A (2013) Stackoverflow and github: Associations between software development and crowdsourced knowledge. In: 2013 international conference on social computing (SocialCom), IEEE, pp 188–195
Zurück zum Zitat Wan Y, Zhao Z, Yang M, Xu G, Ying H, Wu J, Yu PS (2018) Improving automatic source code summarization via deep reinforcement learning. In: Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, ACM, pp 397–407 Wan Y, Zhao Z, Yang M, Xu G, Ying H, Wu J, Yu PS (2018) Improving automatic source code summarization via deep reinforcement learning. In: Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, ACM, pp 397–407
Zurück zum Zitat Wan Z, Lo D, Xia X, Cai L (2017) Bug characteristics in blockchain systems: A large-scale empirical study Wan Z, Lo D, Xia X, Cai L (2017) Bug characteristics in blockchain systems: A large-scale empirical study
Zurück zum Zitat Wan Z, Xia X, Hassan A E (2019) What do programmers discuss about blockchain? a case study on the use of balanced lda and the reference architecture of a domain to capture online discussions about blockchain platforms across stack exchange communities. IEEE Trans Softw Eng 2019:1–1 Wan Z, Xia X, Hassan A E (2019) What do programmers discuss about blockchain? a case study on the use of balanced lda and the reference architecture of a domain to capture online discussions about blockchain platforms across stack exchange communities. IEEE Trans Softw Eng 2019:1–1
Zurück zum Zitat Wang S, Chen T H, Hassan A E (2018) Understanding the factors for fast answers in technical q&a websites. Empir Softw Eng 23(3):1552–1593CrossRef Wang S, Chen T H, Hassan A E (2018) Understanding the factors for fast answers in technical q&a websites. Empir Softw Eng 23(3):1552–1593CrossRef
Zurück zum Zitat Weng R, Huang S, Zheng Z, Dai X, Chen J (2017) Neural machine translation with word predictions. arXiv:170801771 Weng R, Huang S, Zheng Z, Dai X, Chen J (2017) Neural machine translation with word predictions. arXiv:170801771
Zurück zum Zitat Yang X L, Lo D, Xia X, Wan Z Y, Sun J L (2016) What security questions do developers ask? a large-scale study of stack overflow posts. J Comput Sci Technol 31(5):910–924CrossRef Yang X L, Lo D, Xia X, Wan Z Y, Sun J L (2016) What security questions do developers ask? a large-scale study of stack overflow posts. J Comput Sci Technol 31(5):910–924CrossRef
Zurück zum Zitat Yao Z, Weld DS, Chen WP, Sun H (2018) Staqc: A systematically mined question-code dataset from stack overflow. arXiv:180309371 Yao Z, Weld DS, Chen WP, Sun H (2018) Staqc: A systematically mined question-code dataset from stack overflow. arXiv:180309371
Zurück zum Zitat Ye D, Xing Z, Foo C Y, Li J, Kapre N (2016) Learning to extract api mentions from informal natural language discussions. In: 2016 IEEE international conference on software maintenance and evolution (ICSME), IEEE, pp 389–399 Ye D, Xing Z, Foo C Y, Li J, Kapre N (2016) Learning to extract api mentions from informal natural language discussions. In: 2016 IEEE international conference on software maintenance and evolution (ICSME), IEEE, pp 389–399
Zurück zum Zitat Yu L, Mishra A, Mishra D (2014) An empirical study of the dynamics of github repository and its impact on distributed software development. In: OTM confederated international conferences” on the move to meaningful internet systems”, Springer, pp 457–466 Yu L, Mishra A, Mishra D (2014) An empirical study of the dynamics of github repository and its impact on distributed software development. In: OTM confederated international conferences” on the move to meaningful internet systems”, Springer, pp 457–466
Zurück zum Zitat Zagalsky A, German D M, Storey M A, Teshima C G, Poo-Caamaño G (2018) How the r community creates and curates knowledge: an extended study of stack overflow and mailing lists. Empir Softw Eng 23(2):953–986CrossRef Zagalsky A, German D M, Storey M A, Teshima C G, Poo-Caamaño G (2018) How the r community creates and curates knowledge: an extended study of stack overflow and mailing lists. Empir Softw Eng 23(2):953–986CrossRef
Zurück zum Zitat Zhang Y, Chen Y, Cheung S C, Xiong Y, Zhang L (2018) An empirical study on tensorflow program bugs Zhang Y, Chen Y, Cheung S C, Xiong Y, Zhang L (2018) An empirical study on tensorflow program bugs
Metadaten
Titel
What do Programmers Discuss about Deep Learning Frameworks
verfasst von
Junxiao Han
Emad Shihab
Zhiyuan Wan
Shuiguang Deng
Xin Xia
Publikationsdatum
24.04.2020
Verlag
Springer US
Erschienen in
Empirical Software Engineering / Ausgabe 4/2020
Print ISSN: 1382-3256
Elektronische ISSN: 1573-7616
DOI
https://doi.org/10.1007/s10664-020-09819-6

Weitere Artikel der Ausgabe 4/2020

Empirical Software Engineering 4/2020 Zur Ausgabe

Premium Partner