Skip to main content
Erschienen in: Technology, Knowledge and Learning 1/2009

01.04.2009

Learning Electricity with NIELS: Thinking with Electrons and Thinking in Levels

verfasst von: Pratim Sengupta, Uri Wilensky

Erschienen in: Technology, Knowledge and Learning | Ausgabe 1/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electricity is regarded as one of the most challenging topics for students of all ages. Several researchers have suggested that naïve misconceptions about electricity stem from a deep incommensurability (Slotta and Chi 2006; Chi 2005) or incompatibility (Chi et al. 1994) between naïve and expert knowledge structures. In this paper we argue that adopting an emergent levels-based perspective as proposed by Wilensky and Resnick (1999), allows us to reconceive commonly noted misconceptions in electricity as behavioral evidences of “slippage between levels,” i.e., these misconceptions appear when otherwise productive knowledge elements are sometimes activated inappropriately due to certain macro-level phenomenological cues only. We then introduce NIELS (NetLogo Investigations In Electromagnetism), a curriculum of emergent multi-agent-based computational models. NIELS models represent phenomena such as electric current and resistance as emergent from simple, body-syntonic interactions between electrons and other charges in a circuit. We discuss results from a pilot implementation of NIELS in an undergraduate physics course, that highlight the ability of an emergent levels-based approach to provide students with a deep, expert-like understanding of the relevant phenomena by bootstrapping, rather than discarding their existing repertoire of intuitive knowledge.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that in the literature that deals with learning and understanding complex systems, thinking at the individual level is sometimes referred to as “object-based,” and sometimes as “agent level” or “agent-based” (Wilensky and Resnick 1995, 1999; Chi 2005; Goldstone and Wilensky 2008). In this paper, we use these two terms (i.e., object and agent) interchangeably, when we refer to thinking at the level of the individual elements (such as an electron or an atom), interactions among which give rise to the emergent-level behaviors.
 
2
Ohm’s law states that the total current (I) flowing inside a conductor is directly proportional to the amount of potential difference (V) across its ends, and inversely proportional to the resistance (R) of the material that the conductor is made of. It is expressed in symbolic terms as I = V/R.
 
3
An example of such a phenomenon is why electric current is always equal in each wire of any series circuit, despite the wires being of different resistances. Our studies show that even young learners such as 5th graders, who are typically not introduced to equational representations, can understand and explain such phenomena using emergent, proportionality-based qualitative reasoning (Sengupta and Wilensky 2008a).
 
4
Note that in subsequent iterations of NIELS, electrical resistance is represented in terms of inelastic collisions of free electrons with the atoms in the wire (NIELS Ohm’s Law Model, Sengupta and Wilensky 2007a).
 
Literatur
Zurück zum Zitat Abrahamson, D., & Wilensky, U. (2005). Understanding chance: From student voice to learning supports in a design experiment in the domain of probability. In G. M. Lloyd, M. Wilson, J. L. M. Wilkins, & S. L. Behm (Eds.), Proceedings of the Twenty-Seventh Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1–7). Roanoke, VA: Virginia Tech University. Abrahamson, D., & Wilensky, U. (2005). Understanding chance: From student voice to learning supports in a design experiment in the domain of probability. In G. M. Lloyd, M. Wilson, J. L. M. Wilkins, & S. L. Behm (Eds.), Proceedings of the Twenty-Seventh Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1–7). Roanoke, VA: Virginia Tech University.
Zurück zum Zitat Abrahamson, D., Janusz, R. M., & Wilensky, U. (2006). There once was a 9-block…—A middle-school design for probability and statistics. Journal of Statistics Education, 14(1). Abrahamson, D., Janusz, R. M., & Wilensky, U. (2006). There once was a 9-block…—A middle-school design for probability and statistics. Journal of Statistics Education, 14(1).
Zurück zum Zitat Ashcroft, J. N., & Mermin, D. (1976). Solid state physics. New York: Holt, Rinegart and Winston. Ashcroft, J. N., & Mermin, D. (1976). Solid state physics. New York: Holt, Rinegart and Winston.
Zurück zum Zitat Bagno, E., & Eylon, B.-S. (1997). From problem solving to a knowledge structure: An example from the domain of electromagnetism. American Journal of Physics, 65, 726. doi:10.1119/1.18642.CrossRef Bagno, E., & Eylon, B.-S. (1997). From problem solving to a knowledge structure: An example from the domain of electromagnetism. American Journal of Physics, 65, 726. doi:10.​1119/​1.​18642.CrossRef
Zurück zum Zitat Bagno, E., Eylon, B.-S., & Ganiel, U. (2000). From fragmented knowledge to a knowledge structure: Linking the domains of mechanics and electromagnetism. Physics Education Research Supplement. American Journal of Physics, 68(S2), S16–S26. doi:10.1119/1.19515. Bagno, E., Eylon, B.-S., & Ganiel, U. (2000). From fragmented knowledge to a knowledge structure: Linking the domains of mechanics and electromagnetism. Physics Education Research Supplement. American Journal of Physics, 68(S2), S16–S26. doi:10.​1119/​1.​19515.
Zurück zum Zitat Blikstein, P., & Wilensky, U. (2006). A case study of multi-agent-based simulation in undergraduate materials science education. Paper presented at the Annual Conference of the American Society for Engineering Education, Chicago, IL, 18–21 June. Blikstein, P., & Wilensky, U. (2006). A case study of multi-agent-based simulation in undergraduate materials science education. Paper presented at the Annual Conference of the American Society for Engineering Education, Chicago, IL, 18–21 June.
Zurück zum Zitat Blikstein, P., & Wilensky, U. (2008). Implementing agent-based modeling in the classroom—lessons from empirical studies in undergraduate engineering education. In G. Kanselaar, J. van Merinboer, P. Kirschner, & T. de Jong (Eds.), Proceedings of the International Conference of the Learning Sciences (ICLS). Utrecht, The Netherlands: ICLS (June 2008). Blikstein, P., & Wilensky, U. (2008). Implementing agent-based modeling in the classroom—lessons from empirical studies in undergraduate engineering education. In G. Kanselaar, J. van Merinboer, P. Kirschner, & T. de Jong (Eds.), Proceedings of the International Conference of the Learning Sciences (ICLS). Utrecht, The Netherlands: ICLS (June 2008).
Zurück zum Zitat Brown, D., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18(4). doi:10.1007/BF00118013. Brown, D., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18(4). doi:10.​1007/​BF00118013.
Zurück zum Zitat Centola, D., McKenzie, E., & Wilensky, U. (2000). Survival of the groupiest: Facilitating students’ understanding of multi-level evolution through multi-agent modeling—The EACH project. The Fourth International Conference on Complex Systems. Nashua, NH: New England Complex Systems Institute. Centola, D., McKenzie, E., & Wilensky, U. (2000). Survival of the groupiest: Facilitating students’ understanding of multi-level evolution through multi-agent modeling—The EACH project. The Fourth International Conference on Complex Systems. Nashua, NH: New England Complex Systems Institute.
Zurück zum Zitat Chabay, R. W., & Sherwood, B. A. (2000). Matter and interactions I: Modern mechanics and matter and interactions II: Electric and magnetic interactions. New York: John Wiley and Sons. Chabay, R. W., & Sherwood, B. A. (2000). Matter and interactions I: Modern mechanics and matter and interactions II: Electric and magnetic interactions. New York: John Wiley and Sons.
Zurück zum Zitat Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30, 1241–1257. doi:10.1002/tea.3660301007.CrossRef Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30, 1241–1257. doi:10.​1002/​tea.​3660301007.CrossRef
Zurück zum Zitat Cohen, R., Eylon, B. S., & Ganiel, U. (1983). Potential difference and current in simple electric circuits: A study of students’ concepts. American Journal of Physics, 51, 407–412. doi:10.1119/1.13226.CrossRef Cohen, R., Eylon, B. S., & Ganiel, U. (1983). Potential difference and current in simple electric circuits: A study of students’ concepts. American Journal of Physics, 51, 407–412. doi:10.​1119/​1.​13226.CrossRef
Zurück zum Zitat Confrey, J., & Smith, E. (1995). Splitting, covariation and their role in the development of exponential functions. Journal for Research in Mathematics Education, 26(1), 66–86. doi:10.2307/749228.CrossRef Confrey, J., & Smith, E. (1995). Splitting, covariation and their role in the development of exponential functions. Journal for Research in Mathematics Education, 26(1), 66–86. doi:10.​2307/​749228.CrossRef
Zurück zum Zitat diSessa, A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10, 105–225.CrossRef diSessa, A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10, 105–225.CrossRef
Zurück zum Zitat diSessa, A., & Sherin, B. (1998). What changes in conceptual change? International Journal of Science Education, 20(10), 1155–1191. CrossRef diSessa, A., & Sherin, B. (1998). What changes in conceptual change? International Journal of Science Education, 20(10), 1155–1191. CrossRef
Zurück zum Zitat Dori, Y., & Belcher, J. (2005). How does technology-enabled active learning affect undergraduate students’ understanding of electromagnetism concepts? The Journal of the Learning Sciences, 14(2), 243–279. doi:10.1207/s15327809jls1402_3.CrossRef Dori, Y., & Belcher, J. (2005). How does technology-enabled active learning affect undergraduate students’ understanding of electromagnetism concepts? The Journal of the Learning Sciences, 14(2), 243–279. doi:10.​1207/​s15327809jls1402​_​3.CrossRef
Zurück zum Zitat Drude, P. (1900). Lehrbuch der Optik. Drude, P. (1900). Lehrbuch der Optik.
Zurück zum Zitat Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75, 649–672.CrossRef Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75, 649–672.CrossRef
Zurück zum Zitat Dupin, J., & Johsua, S. (1987). Conceptions of French pupils concerning electric circuits: Structure and evolution. Journal of Research in Science Teaching, 24, 791–806.CrossRef Dupin, J., & Johsua, S. (1987). Conceptions of French pupils concerning electric circuits: Structure and evolution. Journal of Research in Science Teaching, 24, 791–806.CrossRef
Zurück zum Zitat Edwards, L. D. (1995). Microworlds as representations. In A. A. diSessa, C. Hoyles, & R. Noss (Eds.), Computers and exploratory learning (pp. 127–154). Berlin/Heidelberg: Springer-Verlag. Edwards, L. D. (1995). Microworlds as representations. In A. A. diSessa, C. Hoyles, & R. Noss (Eds.), Computers and exploratory learning (pp. 127–154). Berlin/Heidelberg: Springer-Verlag.
Zurück zum Zitat Egan, D. E., & Schwartz, B. J. (1979). Chunking in recall of symbolic drawings. Memory and Cognition, 7(2), 149–158. Egan, D. E., & Schwartz, B. J. (1979). Chunking in recall of symbolic drawings. Memory and Cognition, 7(2), 149–158.
Zurück zum Zitat Eylon, B.-S., & Ganiel, U. (1990). Macro-micro relationships: The missing link between electrostatics and electrodynamics in student reasoning. International Journal of Science Education, 12(1), 79–94.CrossRef Eylon, B.-S., & Ganiel, U. (1990). Macro-micro relationships: The missing link between electrostatics and electrodynamics in student reasoning. International Journal of Science Education, 12(1), 79–94.CrossRef
Zurück zum Zitat Fisher, R. A. (1922). On the interpretation of X2 from contingency tables, and the calculation of P. Journal of the Royal Statistical Society, 85(1), 87–94.CrossRef Fisher, R. A. (1922). On the interpretation of X2 from contingency tables, and the calculation of P. Journal of the Royal Statistical Society, 85(1), 87–94.CrossRef
Zurück zum Zitat Frederiksen, J., & White, B. (1988). Teaching and learning generic modeling and reasoning skills. Journal of Interactive Learning Environments, 5, 33–51.CrossRef Frederiksen, J., & White, B. (1988). Teaching and learning generic modeling and reasoning skills. Journal of Interactive Learning Environments, 5, 33–51.CrossRef
Zurück zum Zitat Frederiksen, J., & White, B. (1992). Mental models and understanding: A problem for science education. In E. Scanlon & T. O’Shea (Eds.), New directions in educational technology (pp. 211–226). New York: Springer Verlag. Frederiksen, J., & White, B. (1992). Mental models and understanding: A problem for science education. In E. Scanlon & T. O’Shea (Eds.), New directions in educational technology (pp. 211–226). New York: Springer Verlag.
Zurück zum Zitat Frederiksen, J., White, B., & Gutwill, J. (1999). Dynamic mental models in learning science: The importance of constructing derivational linkages among models. Journal of Research in Science Teaching, 36(7), 806–836.CrossRef Frederiksen, J., White, B., & Gutwill, J. (1999). Dynamic mental models in learning science: The importance of constructing derivational linkages among models. Journal of Research in Science Teaching, 36(7), 806–836.CrossRef
Zurück zum Zitat Gentner, D., & Gentner, D. R. (1983). Flowing waters or teeming crowds: Mental models of electricity. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 99–129). Gentner, D., & Gentner, D. R. (1983). Flowing waters or teeming crowds: Mental models of electricity. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 99–129).
Zurück zum Zitat Goldstone, R., & Wilensky, U. (2008). Promoting transfer by grounding complex systems principles. Journal of the Learning Sciences, 17(4), 465–516.CrossRef Goldstone, R., & Wilensky, U. (2008). Promoting transfer by grounding complex systems principles. Journal of the Learning Sciences, 17(4), 465–516.CrossRef
Zurück zum Zitat Groen, G., & Kieran, C. (1983). In search of Piagetian mathematics. In H. Ginsburgh (Ed.), The development of mathematical thinking (pp. 352–375). New York: Academic Press. Groen, G., & Kieran, C. (1983). In search of Piagetian mathematics. In H. Ginsburgh (Ed.), The development of mathematical thinking (pp. 352–375). New York: Academic Press.
Zurück zum Zitat Halloun, I. A., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53, 1043–1056.CrossRef Halloun, I. A., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53, 1043–1056.CrossRef
Zurück zum Zitat Hammer, D. (1996). Misconceptions or p-prims: How may alternative perspectives of cognitive structure influence instructional perceptions and intentions? Journal of the Learning Sciences, 5(2), 97–127.CrossRef Hammer, D. (1996). Misconceptions or p-prims: How may alternative perspectives of cognitive structure influence instructional perceptions and intentions? Journal of the Learning Sciences, 5(2), 97–127.CrossRef
Zurück zum Zitat Hartel, H. (1982). The electric circuit as a system: A new approach. European Journal of Science Education, 4, 45–55. Hartel, H. (1982). The electric circuit as a system: A new approach. European Journal of Science Education, 4, 45–55.
Zurück zum Zitat Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141–158.CrossRef Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141–158.CrossRef
Zurück zum Zitat Joshua, S., & Dupin, J. J. (1987). Taking into account student conceptions in instructional strategy: An example in physics. Cognition and Instruction, 4, 117–135.CrossRef Joshua, S., & Dupin, J. J. (1987). Taking into account student conceptions in instructional strategy: An example in physics. Cognition and Instruction, 4, 117–135.CrossRef
Zurück zum Zitat Kaput, J. & West, M. (1995). Missing-value proportional reasoning problems: Factors affecting informal reasoning patterns. In G. Harel, & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 235–287). Albany, NY: State University of New York Press. Kaput, J. & West, M. (1995). Missing-value proportional reasoning problems: Factors affecting informal reasoning patterns. In G. Harel, & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 235–287). Albany, NY: State University of New York Press.
Zurück zum Zitat Kittel, C. (1953). Introduction to solid state physics. NJ: Wiley. Kittel, C. (1953). Introduction to solid state physics. NJ: Wiley.
Zurück zum Zitat Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy. In W. Damon, R. Lerner, K. A. Renninger, & I. E. Sigel (Eds.), Handbook of child psychology, 6th edition, volume 4: Child psychology in practice (pp. 153–196). Hoboken, NJ: John Wiley and Sons. Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy. In W. Damon, R. Lerner, K. A. Renninger, & I. E. Sigel (Eds.), Handbook of child psychology, 6th edition, volume 4: Child psychology in practice (pp. 153–196). Hoboken, NJ: John Wiley and Sons.
Zurück zum Zitat Levy, S. T., Kim, H., & Wilensky, U. (2004). Connected chemistry—A study of secondary students using agent-based models to learn chemistry. Paper presented at the annual meeting of the American Educational Research Association, San Diego, CA, 12–16 April. Levy, S. T., Kim, H., & Wilensky, U. (2004). Connected chemistry—A study of secondary students using agent-based models to learn chemistry. Paper presented at the annual meeting of the American Educational Research Association, San Diego, CA, 12–16 April.
Zurück zum Zitat Levy, S. T., & Wilensky, U. (2008). Inventing a “mid-level” to make ends meet: Reasoning through the levels of complexity. Cognition and Instruction, 26(1), 1–47. Levy, S. T., & Wilensky, U. (2008). Inventing a “mid-level” to make ends meet: Reasoning through the levels of complexity. Cognition and Instruction, 26(1), 1–47.
Zurück zum Zitat Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004). Epistemological resources: Applying a new epistemological framework to science instruction. Educational Psychologist, 39(1), 57–68.CrossRef Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004). Epistemological resources: Applying a new epistemological framework to science instruction. Educational Psychologist, 39(1), 57–68.CrossRef
Zurück zum Zitat McCloskey, M. (1982). Intuitive physics. Scientific American, 249, 122. McCloskey, M. (1982). Intuitive physics. Scientific American, 249, 122.
Zurück zum Zitat Metz, K. E. (2004). Children’s understanding of scientific inquiry: Their conceptualization of uncertainty in investigations of their own design. Cognition and Instruction, 2(22), 219–291.CrossRef Metz, K. E. (2004). Children’s understanding of scientific inquiry: Their conceptualization of uncertainty in investigations of their own design. Cognition and Instruction, 2(22), 219–291.CrossRef
Zurück zum Zitat Minsky, M. (1987). The society of mind. New York: Simon and Schuster Inc. Minsky, M. (1987). The society of mind. New York: Simon and Schuster Inc.
Zurück zum Zitat Papert, S. (1972). Teaching children to be mathematicians versus teaching about mathematics. International Journal of Mathematics Education and Science Technology, 3, 249–262.CrossRef Papert, S. (1972). Teaching children to be mathematicians versus teaching about mathematics. International Journal of Mathematics Education and Science Technology, 3, 249–262.CrossRef
Zurück zum Zitat Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books. Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Zurück zum Zitat Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism. Norwood, NJ: Ablex Publishing Corporation. Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism. Norwood, NJ: Ablex Publishing Corporation.
Zurück zum Zitat Pfund, H., & Duit, R. (1998). Bibliography: Students’ alternative frameworks and science education. Kiel, Alemania: IPN. Pfund, H., & Duit, R. (1998). Bibliography: Students’ alternative frameworks and science education. Kiel, Alemania: IPN.
Zurück zum Zitat Rand, W., Novak, M., & Wilensky, U. (2007). BEAGLE curriculum. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University. Rand, W., Novak, M., & Wilensky, U. (2007). BEAGLE curriculum. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University.
Zurück zum Zitat Reiner, M., Slotta, J. D., Chi, T. H., & Resnick, L. B. (2000). Naïve physics reasoning: A commitment to substance-based conceptions. Cognition and Instruction, 18(1), 1–34.CrossRef Reiner, M., Slotta, J. D., Chi, T. H., & Resnick, L. B. (2000). Naïve physics reasoning: A commitment to substance-based conceptions. Cognition and Instruction, 18(1), 1–34.CrossRef
Zurück zum Zitat Resnick, M., & Wilensky, U. (1998). Diving into complexity: Developing probabilistic decentralized thinking through role-playing activities. Journal of Learning Sciences, 7(2), 153–172. doi:10.1207/s15327809jls0702_1. Resnick, M., & Wilensky, U. (1998). Diving into complexity: Developing probabilistic decentralized thinking through role-playing activities. Journal of Learning Sciences, 7(2), 153–172. doi:10.​1207/​s15327809jls0702​_​1.
Zurück zum Zitat Sengupta, P., & Wilensky, U. (2005d). N.I.E.L.S: An emergent multi-agent based modeling environment for learning physics. Proceedings of the Agent-Based Systems for Human Learning Workshop, 4th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), Utrecht, Netherlands. Sengupta, P., & Wilensky, U. (2005d). N.I.E.L.S: An emergent multi-agent based modeling environment for learning physics. Proceedings of the Agent-Based Systems for Human Learning Workshop, 4th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), Utrecht, Netherlands.
Zurück zum Zitat Sengupta, P., & Wilensky, U. (2006) NIELS: An agent-based modeling environment for learning electromagnetism. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA. Sengupta, P., & Wilensky, U. (2006) NIELS: An agent-based modeling environment for learning electromagnetism. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.
Zurück zum Zitat Sengupta, P., & Wilensky, U. (2008a). Designing across ages: On the low-threshold-high-ceiling nature of NetLogo based learning environments. Paper presented at the annual meeting of the American Educational Research Association (AERA 2008), New York, NY. Sengupta, P., & Wilensky, U. (2008a). Designing across ages: On the low-threshold-high-ceiling nature of NetLogo based learning environments. Paper presented at the annual meeting of the American Educational Research Association (AERA 2008), New York, NY.
Zurück zum Zitat Sengupta, P., & Wilensky, U. (2008b). On the learnability of electricity as a complex system. In G. Kanselaar, J. van Merri’nboer, P. Kirschner, & T. de Jong (Eds.), Proceedings of the Eighth International Conference of the Learning Sciences—ICLS 2008, Vol. 3, (pp. 122–124). Utrecht, The Netherlands: ICLS. Sengupta, P., & Wilensky, U. (2008b). On the learnability of electricity as a complex system. In G. Kanselaar, J. van Merri’nboer, P. Kirschner, & T. de Jong (Eds.), Proceedings of the Eighth International Conference of the Learning Sciences—ICLS 2008, Vol. 3, (pp. 122–124). Utrecht, The Netherlands: ICLS.
Zurück zum Zitat Sengupta, P., Wilkerson, M., & Wilensky, U. (2007). On the relationship between spatial knowledge and learning electricity: Comparative case studies of students using 2D and 3D emergent, computational learning environments. Paper presented at the annual meeting of the American Educational Research Association (AERA 2007), Chicago, IL. Sengupta, P., Wilkerson, M., & Wilensky, U. (2007). On the relationship between spatial knowledge and learning electricity: Comparative case studies of students using 2D and 3D emergent, computational learning environments. Paper presented at the annual meeting of the American Educational Research Association (AERA 2007), Chicago, IL.
Zurück zum Zitat Sherin, B. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479–541.CrossRef Sherin, B. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479–541.CrossRef
Zurück zum Zitat Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA: The MIT Press. Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA: The MIT Press.
Zurück zum Zitat Slotta, J. D., & Chi, M. T. H. (2006). The impact of ontology training on conceptual change: Helping students understand the challenging topics in science. Cognition and Instruction, 24(2), 261–289.CrossRef Slotta, J. D., & Chi, M. T. H. (2006). The impact of ontology training on conceptual change: Helping students understand the challenging topics in science. Cognition and Instruction, 24(2), 261–289.CrossRef
Zurück zum Zitat Smith, J. P., diSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3(2), 115–163.CrossRef Smith, J. P., diSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3(2), 115–163.CrossRef
Zurück zum Zitat Steinberg, M. S. (1987). Transient electrical processes as resources for causal reasoning. In J. D. Novak (Ed.), Proceedings of the Second International Seminar, Misconceptions and Educational Strategies in Science and Mathematics, 3 (Vol. 1, pp. 480–490). Ithaca, NY: Cornell University Steinberg, M. S. (1987). Transient electrical processes as resources for causal reasoning. In J. D. Novak (Ed.), Proceedings of the Second International Seminar, Misconceptions and Educational Strategies in Science and Mathematics, 3 (Vol. 1, pp. 480–490). Ithaca, NY: Cornell University
Zurück zum Zitat Stieff, M., & Wilensky, U. (2003). Connected chemistry—incorporating interactive simulations into the chemistry classroom. Journal of Science Education and Technology, 12(3), 285–302.CrossRef Stieff, M., & Wilensky, U. (2003). Connected chemistry—incorporating interactive simulations into the chemistry classroom. Journal of Science Education and Technology, 12(3), 285–302.CrossRef
Zurück zum Zitat Tisue, S., & Wilensky, U. (2004). NetLogo: A simple environment for modeling complexity. Paper presented at the International Conference on Complex Systems, Boston, May 16–21. Tisue, S., & Wilensky, U. (2004). NetLogo: A simple environment for modeling complexity. Paper presented at the International Conference on Complex Systems, Boston, May 16–21.
Zurück zum Zitat White, B., & Frederiksen, J. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3–118.CrossRef White, B., & Frederiksen, J. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3–118.CrossRef
Zurück zum Zitat White, B., Frederiksen, J., & Spoehr, K. (1993). Conceptual models for understanding the behavior of electrical circuits. In M. Caillot (Ed.), Learning electricity and electronics with advanced educational technology (pp. 77–95). New York: Springer-Verlag. White, B., Frederiksen, J., & Spoehr, K. (1993). Conceptual models for understanding the behavior of electrical circuits. In M. Caillot (Ed.), Learning electricity and electronics with advanced educational technology (pp. 77–95). New York: Springer-Verlag.
Zurück zum Zitat Wilensky, U. (1991). Abstract meditations on the concrete and concrete implications for mathematics education. In I. Harel & S. Papert (Eds.), Constructionism. Norwood, MA: Ablex Publishing. Wilensky, U. (1991). Abstract meditations on the concrete and concrete implications for mathematics education. In I. Harel & S. Papert (Eds.), Constructionism. Norwood, MA: Ablex Publishing.
Zurück zum Zitat Wilensky, U. (1993). Connected mathematics: Building concrete relationships with mathematical knowledge. Unpublished doctoral dissertation. Cambridge, MA: MIT. Wilensky, U. (1993). Connected mathematics: Building concrete relationships with mathematical knowledge. Unpublished doctoral dissertation. Cambridge, MA: MIT.
Zurück zum Zitat Wilensky, U. (1999b). GasLab: An extensible modeling toolkit for exploring micro- and macro-views of gases. In N. Roberts, W. Feurzeig, & B. Hunter (Eds.), Computer modeling and simulation in science education (pp. 151–178). Berlin: Springer Verlag. Wilensky, U. (1999b). GasLab: An extensible modeling toolkit for exploring micro- and macro-views of gases. In N. Roberts, W. Feurzeig, & B. Hunter (Eds.), Computer modeling and simulation in science education (pp. 151–178). Berlin: Springer Verlag.
Zurück zum Zitat Wilensky, U. (2001). Modeling nature’s emergent patterns with multi-agent languages. Proceedings of EuroLogo 2001, Linz, Austria. Wilensky, U. (2001). Modeling nature’s emergent patterns with multi-agent languages. Proceedings of EuroLogo 2001, Linz, Austria.
Zurück zum Zitat Wilensky, U. (2003). Statistical mechanics for secondary school: The GasLab modeling toolkit. International Journal of Computers for Mathematical Learning, 8(1), 1–41. (special issue on agent-based modeling).CrossRef Wilensky, U. (2003). Statistical mechanics for secondary school: The GasLab modeling toolkit. International Journal of Computers for Mathematical Learning, 8(1), 1–41. (special issue on agent-based modeling).CrossRef
Zurück zum Zitat Wilensky, U. (2006). Complex systems and restructuration of scientific disciplines: Implications for learning, analysis of social systems, and educational policy. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA, 7–11 April. Wilensky, U. (2006). Complex systems and restructuration of scientific disciplines: Implications for learning, analysis of social systems, and educational policy. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA, 7–11 April.
Zurück zum Zitat Wilensky, U., Hazzard, E., & Longenecker, S. (2000). A bale of turtles: A case study of a middle school science class studying complexity using StarLogoT. Paper presented at the meeting of the Spencer Foundation, New York, New York, 11–13 October. Wilensky, U., Hazzard, E., & Longenecker, S. (2000). A bale of turtles: A case study of a middle school science class studying complexity using StarLogoT. Paper presented at the meeting of the Spencer Foundation, New York, New York, 11–13 October.
Zurück zum Zitat Wilensky, U., & Papert, S. (2006). Restructurations: Reformulations of knowledge disciplines through new representational forms. Working Paper, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. Wilensky, U., & Papert, S. (2006). Restructurations: Reformulations of knowledge disciplines through new representational forms. Working Paper, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
Zurück zum Zitat Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep or a firefly: Learning biology through constructing and testing computational theories—an embodied modeling approach. Cognition and Instruction, 24(2), 171–209.CrossRef Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep or a firefly: Learning biology through constructing and testing computational theories—an embodied modeling approach. Cognition and Instruction, 24(2), 171–209.CrossRef
Zurück zum Zitat Wilensky, U., & Resnick, M. (1995). New thinking for new sciences: Constructionist approaches for exploring complexity. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA. Wilensky, U., & Resnick, M. (1995). New thinking for new sciences: Constructionist approaches for exploring complexity. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.
Zurück zum Zitat Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems perspective to making sense of the world. Journal of Science Education and Technology, 8(1). Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems perspective to making sense of the world. Journal of Science Education and Technology, 8(1).
Metadaten
Titel
Learning Electricity with NIELS: Thinking with Electrons and Thinking in Levels
verfasst von
Pratim Sengupta
Uri Wilensky
Publikationsdatum
01.04.2009
Verlag
Springer Netherlands
Erschienen in
Technology, Knowledge and Learning / Ausgabe 1/2009
Print ISSN: 2211-1662
Elektronische ISSN: 2211-1670
DOI
https://doi.org/10.1007/s10758-009-9144-z

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.