Skip to main content
Erschienen in: International Journal of Technology and Design Education 3/2021

25.02.2020

Computational thinking embedded in engineering design: capturing computational thinking of children in an informal engineering design activity

verfasst von: Hoda Ehsan, Abeera P. Rehmat, Monica E. Cardella

Erschienen in: International Journal of Technology and Design Education | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Just as engineering and computational thinking have recently gained increased attention in pre-college school-based education, many museums and science centers have also designed exhibits and experiences to promote computational thinking and engineering learning. Recent reports suggest that computational and engineering thinking can empower each other, and engineering design can be an appropriate context for children’s engagement in computational thinking. Previous studies have documented young children’s abilities to engage in engineering thinking and other studies have collected evidence of young children’s abilities to engage in computational thinking. However, there is little research that explores how children’s engagement in both engineering and computational thinking can support each other. Hence, in this qualitative case study, we aimed to examine how 5 to 7-year-old children engage in computational thinking competencies in the context of a family based engineering design activity. This activity was conducted at a small science center exhibit. In our presented findings we map children’s enactment of at least one CT competency to children’s engagement in engineering design actions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Armoni, B. M. (2013). Designing a K-12 computing curriculum. ACM Inroads, 4(2), 34–35. Armoni, B. M. (2013). Designing a K-12 computing curriculum. ACM Inroads, 4(2), 34–35.
Zurück zum Zitat Ash, D. (2003). Dialogic inquiry in life science conversations of family groups in a museum. Journal of Research in Science Teaching, 40(2), 138–162. Ash, D. (2003). Dialogic inquiry in life science conversations of family groups in a museum. Journal of Research in Science Teaching, 40(2), 138–162.
Zurück zum Zitat Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359–379. Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359–379.
Zurück zum Zitat Bairaktarova, D., Evangelou, D., Bagiati, A., & Brophy, S. (2011). Early engineering in young children’s exploratory play with tangible materials. Children Youth and Environments, 21(2), 212–235. Bairaktarova, D., Evangelou, D., Bagiati, A., & Brophy, S. (2011). Early engineering in young children’s exploratory play with tangible materials. Children Youth and Environments, 21(2), 212–235.
Zurück zum Zitat Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? Acm Inroads, 2(1), 48–54. Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? Acm Inroads, 2(1), 48–54.
Zurück zum Zitat Bell, T., Andreae, P., & A. Robins, A. (2014). A case study of the introduction of computer science in NZ schools. In Proceedings of the 43rd ACM technical symposium on computer science education, SIGCSE’12 (pp. 343–348). Bell, T., Andreae, P., & A. Robins, A. (2014). A case study of the introduction of computer science in NZ schools. In Proceedings of the 43rd ACM technical symposium on computer science education, SIGCSE’12 (pp. 343–348).
Zurück zum Zitat Bell, T., & Vahrenhold, J. (2018). CS unplugged—How is it used, and does it work? In H. J. Böckenhauer, D. Komm, & W. Unger (Eds.), Adventures between lower bounds and higher altitudes. Lecture Notes in Computer Science (Vol. 11011). Cham: Springer. Bell, T., & Vahrenhold, J. (2018). CS unplugged—How is it used, and does it work? In H. J. Böckenhauer, D. Komm, & W. Unger (Eds.), Adventures between lower bounds and higher altitudes. Lecture Notes in Computer Science (Vol. 11011). Cham: Springer.
Zurück zum Zitat Bennett, J., & Müller, U. (2010). The development of flexibility and abstraction in preschool children. Merrill-Palmer Quarterly, 56(4), 455–473. Bennett, J., & Müller, U. (2010). The development of flexibility and abstraction in preschool children. Merrill-Palmer Quarterly, 56(4), 455–473.
Zurück zum Zitat Blikstein, P., & Krannich, D. (2013). The makers’ movement and FabLabs in education: experiences, technologies, and research. In Proceedings of the 12th international conference on interaction design and children (pp. 613–616). ACM. Blikstein, P., & Krannich, D. (2013). The makers’ movement and FabLabs in education: experiences, technologies, and research. In Proceedings of the 12th international conference on interaction design and children (pp. 613–616). ACM.
Zurück zum Zitat Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., & Barone, D. (2017). Development of computational thinking skills through unplugged activities in primary school. In Proceedings of the 12th workshop in primary and secondary computing education (pp. 65–72). Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., & Barone, D. (2017). Development of computational thinking skills through unplugged activities in primary school. In Proceedings of the 12th workshop in primary and secondary computing education (pp. 65–72).
Zurück zum Zitat Capobianco, B. M., Diefes-Dux, H. A., Mena, I., & Weller, J. (2011). What is an engineer? Implications of elementary school student conceptions for engineering education. Journal of Engineering Education, 100(2), 304–328. Capobianco, B. M., Diefes-Dux, H. A., Mena, I., & Weller, J. (2011). What is an engineer? Implications of elementary school student conceptions for engineering education. Journal of Engineering Education, 100(2), 304–328.
Zurück zum Zitat Case, J. M., & Light, G. (2011). Emerging research methodologies in engineering education research. Journal of Engineering Education, 100(1), 186–210. Case, J. M., & Light, G. (2011). Emerging research methodologies in engineering education research. Journal of Engineering Education, 100(1), 186–210.
Zurück zum Zitat Ceci, S. J., & Williams, W. M. (2010). Sex differences in math-intensive fields. Current Directions in Psychological Science, 19(5), 275–279. Ceci, S. J., & Williams, W. M. (2010). Sex differences in math-intensive fields. Current Directions in Psychological Science, 19(5), 275–279.
Zurück zum Zitat Cohen, A. T. (1984). Data abstraction, data encapsulation and object-oriented programming. SIGPLAN Notices, 19(1), 31–35. Cohen, A. T. (1984). Data abstraction, data encapsulation and object-oriented programming. SIGPLAN Notices, 19(1), 31–35.
Zurück zum Zitat Crismond, D. P., & Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101(4), 738–797. Crismond, D. P., & Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101(4), 738–797.
Zurück zum Zitat Dasgupta, A., Rynearson, A., Purzer, S., Ehsan, H., & Cardella, M. (2017). Computational thinking in kindergarten: Evidence from student artifacts (Fundamental). In Proceedings of the 2017 American society for engineering education annual conference & exposition, Columbus, OH. Dasgupta, A., Rynearson, A., Purzer, S., Ehsan, H., & Cardella, M. (2017). Computational thinking in kindergarten: Evidence from student artifacts (Fundamental). In Proceedings of the 2017 American society for engineering education annual conference & exposition, Columbus, OH.
Zurück zum Zitat Denning, P. J., & Freeman, P. A. (2009). The profession of IT computing’s paradigm. Communications of the ACM, 52(12), 28–30. Denning, P. J., & Freeman, P. A. (2009). The profession of IT computing’s paradigm. Communications of the ACM, 52(12), 28–30.
Zurück zum Zitat Dorie, B. L., Cardella, M., & Svarovsky, G. N. (2014). Capturing the design thinking of young children interacting with a parent. In Proceedings of the 121st American society of engineering education annual conference and exposition, Indianapolis, IN. Dorie, B. L., Cardella, M., & Svarovsky, G. N. (2014). Capturing the design thinking of young children interacting with a parent. In Proceedings of the 121st American society of engineering education annual conference and exposition, Indianapolis, IN.
Zurück zum Zitat Dugger, W. E., Jr. (2009). Standards for technological literacy: Content for the study of technology. Essential Topics for Technology Educators, 1001, 102. Dugger, W. E., Jr. (2009). Standards for technological literacy: Content for the study of technology. Essential Topics for Technology Educators, 1001, 102.
Zurück zum Zitat Duncan, C., & Bell, T. (2015). A pilot computer science and programming course for primary school students. In Proceedings of WiPSCE (pp. 1–10). Duncan, C., & Bell, T. (2015). A pilot computer science and programming course for primary school students. In Proceedings of WiPSCE (pp. 1–10).
Zurück zum Zitat Ehsan, H., & Cardella, M. (2017). Capturing the computational thinking of families with young children in out-of-school environments. In Proceedings of the 2017 American society for engineering education annual conference & exposition, Columbus, OH. Ehsan, H., & Cardella, M. (2017). Capturing the computational thinking of families with young children in out-of-school environments. In Proceedings of the 2017 American society for engineering education annual conference & exposition, Columbus, OH.
Zurück zum Zitat Ehsan, H., Dandridge, T., Yeter, I., & Cardella, M. (2018). K-2 students’ computational thinking engagement in formal and informal learning settings: A case study (Fundamental). In Proceedings of the 2018 American society for engineering education annual conference & exposition, Salt Lake City, UT. Ehsan, H., Dandridge, T., Yeter, I., & Cardella, M. (2018). K-2 students’ computational thinking engagement in formal and informal learning settings: A case study (Fundamental). In Proceedings of the 2018 American society for engineering education annual conference & exposition, Salt Lake City, UT.
Zurück zum Zitat English, L., & King, D. (2017). Engineering education with fourth-grade students: Introducing design-based problem solving. International Journal of Engineering Education, 33(1), 346–360. English, L., & King, D. (2017). Engineering education with fourth-grade students: Introducing design-based problem solving. International Journal of Engineering Education, 33(1), 346–360.
Zurück zum Zitat Ginsburg, H. P., Inoue, N., & Seo, K. H. (1999). Young children doing mathematics: Observations of everyday activities. Mathematics in the Early Years, 1, 88–99. Ginsburg, H. P., Inoue, N., & Seo, K. H. (1999). Young children doing mathematics: Observations of everyday activities. Mathematics in the Early Years, 1, 88–99.
Zurück zum Zitat Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational Researcher, 42(1), 38–43. Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational Researcher, 42(1), 38–43.
Zurück zum Zitat Grover, S., & Pea, R. (2017). Computational thinking: A competency whose time has come. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer science education: Perspectives on teaching and learning (pp. 19–38). London: Bloomsbury Publishing. Grover, S., & Pea, R. (2017). Computational thinking: A competency whose time has come. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer science education: Perspectives on teaching and learning (pp. 19–38). London: Bloomsbury Publishing.
Zurück zum Zitat Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for middle school students. Computer Science Education, 25, 199–237. Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for middle school students. Computer Science Education, 25, 199–237.
Zurück zum Zitat Grubbs, M., & Strimel, G. (2015). Engineering design: The great integrator. Journal of STEM Teacher Education, 50(1), 77–90. Grubbs, M., & Strimel, G. (2015). Engineering design: The great integrator. Journal of STEM Teacher Education, 50(1), 77–90.
Zurück zum Zitat Hammer, D., & Berland, L. K. (2014). Confusing claims for data: A critique of common practices for presenting qualitative research on learning. Journal of the Learning Sciences, 23(1), 37–46. Hammer, D., & Berland, L. K. (2014). Confusing claims for data: A critique of common practices for presenting qualitative research on learning. Journal of the Learning Sciences, 23(1), 37–46.
Zurück zum Zitat Hofstein, A., & Rosenfeld, S. (1996). Bridging the gap between formal and informal science learning. Studies in Social Science Education, 28, 87–112. Hofstein, A., & Rosenfeld, S. (1996). Bridging the gap between formal and informal science learning. Studies in Social Science Education, 28, 87–112.
Zurück zum Zitat Hynes, M. M., Moore, T. J., Cardella, M. E., Tank, K. M., Purzer, S., Menekse, M., et al. (2019). Inspiring young children to engage in computational thinking in and out of school (research to practice). In Proceedings of the 2019 American society for engineering education annual conference & exposition, Tampa, FL. Hynes, M. M., Moore, T. J., Cardella, M. E., Tank, K. M., Purzer, S., Menekse, M., et al. (2019). Inspiring young children to engage in computational thinking in and out of school (research to practice). In Proceedings of the 2019 American society for engineering education annual conference & exposition, Tampa, FL.
Zurück zum Zitat International Technology Education Association. (2000). Standards for technological literacy. Reston: International Technology Education Association. International Technology Education Association. (2000). Standards for technological literacy. Reston: International Technology Education Association.
Zurück zum Zitat International Technology and Engineering Educators Association (ITEEA). (2007). Standards for technological literacy: Content for the study of technology. Reston: International Technology and Engineering Educators Association (ITEEA). International Technology and Engineering Educators Association (ITEEA). (2007). Standards for technological literacy: Content for the study of technology. Reston: International Technology and Engineering Educators Association (ITEEA).
Zurück zum Zitat Jaramillo, J. A. (1996). Vygotsky’s sociocultural theory and contributions to the development of constructivist curricula. Education, 117(1), 133–140. Jaramillo, J. A. (1996). Vygotsky’s sociocultural theory and contributions to the development of constructivist curricula. Education, 117(1), 133–140.
Zurück zum Zitat Karatas, F. O., Micklos, A., & Bodner, G. M. (2011). Sixth-grade students’ views of the nature of engineering and images of engineers. Journal of Science Education and Technology, 20(2), 123–135. Karatas, F. O., Micklos, A., & Bodner, G. M. (2011). Sixth-grade students’ views of the nature of engineering and images of engineers. Journal of Science Education and Technology, 20(2), 123–135.
Zurück zum Zitat King, D., & English, L. D. (2016). Engineering design in the primary school: Applying STEM concepts to build an optical instrument. International Journal of Science Education, 38(18), 2762–2794. King, D., & English, L. D. (2016). Engineering design in the primary school: Applying STEM concepts to build an optical instrument. International Journal of Science Education, 38(18), 2762–2794.
Zurück zum Zitat Lachapelle, C. P., Sargianis, K., & Cunningham, C. M. (2013). Engineer it, learn it: Science and engineering practices in action: Step into an elementary classroom to see what Next Generation Science standards practices look like. Science and Children, 51(3), 70–76. Lachapelle, C. P., Sargianis, K., & Cunningham, C. M. (2013). Engineer it, learn it: Science and engineering practices in action: Step into an elementary classroom to see what Next Generation Science standards practices look like. Science and Children, 51(3), 70–76.
Zurück zum Zitat Lee, T. Y., Mauriello, M. L., Ahn, J., & Bederson, B. B. (2014). CTArcade: Computational thinking with games in school age children. International Journal of Child-Computer Interaction, 2(1), 26–33. Lee, T. Y., Mauriello, M. L., Ahn, J., & Bederson, B. B. (2014). CTArcade: Computational thinking with games in school age children. International Journal of Child-Computer Interaction, 2(1), 26–33.
Zurück zum Zitat Lee, T. Y., Mauriello, M. L., Ingraham, J., Sopan, A., Ahn, J., & Bederson, B. B. (2012). CTArcade: Learning computational thinking while training virtual characters through game play. In CHI’12 extended abstracts on human factors in computing systems (pp. 2309–2314). ACM. Lee, T. Y., Mauriello, M. L., Ingraham, J., Sopan, A., Ahn, J., & Bederson, B. B. (2012). CTArcade: Learning computational thinking while training virtual characters through game play. In CHI’12 extended abstracts on human factors in computing systems (pp. 2309–2314). ACM.
Zurück zum Zitat Lichtman, M. (2010). Qualitative research in education: A user’s guide (2nd ed.). Thousand Oaks: Sage. Lichtman, M. (2010). Qualitative research in education: A user’s guide (2nd ed.). Thousand Oaks: Sage.
Zurück zum Zitat Lowe, T., & Brophy, S. (2017). An operationalized model for defining computational thinking. In Frontiers in Education Conference (FIE) (pp. 1–8). Lowe, T., & Brophy, S. (2017). An operationalized model for defining computational thinking. In Frontiers in Education Conference (FIE) (pp. 1–8).
Zurück zum Zitat Lucas, B., & Hanson, J. (2016). Thinking like an engineer: Using engineering habits of mind and signature pedagogies to redesign engineering education. International Journal of Engineering Pedagogy, 6(2), 4–13. Lucas, B., & Hanson, J. (2016). Thinking like an engineer: Using engineering habits of mind and signature pedagogies to redesign engineering education. International Journal of Engineering Pedagogy, 6(2), 4–13.
Zurück zum Zitat Mattoon, C., Bates, A., Shifflet, R., Latham, N., & Ennis, S. (2015). Examining computational skills in prekindergarteners: The effects of traditional and digital manipulatives in a prekindergarten classroom. Early Childhood Research & Practice, 17(1), n1. Mattoon, C., Bates, A., Shifflet, R., Latham, N., & Ennis, S. (2015). Examining computational skills in prekindergarteners: The effects of traditional and digital manipulatives in a prekindergarten classroom. Early Childhood Research & Practice, 17(1), n1.
Zurück zum Zitat National Research Council. (2009). Engineering in K-12 education: Understanding the status and improving the prospects. Washington, DC: The National Academies. National Research Council. (2009). Engineering in K-12 education: Understanding the status and improving the prospects. Washington, DC: The National Academies.
Zurück zum Zitat National Research Council. (2010). Standards for K-12 engineering education?. Washington, DC: The National Academies Press. National Research Council. (2010). Standards for K-12 engineering education?. Washington, DC: The National Academies Press.
Zurück zum Zitat National Research Council. (2011). Committee for the workshops on computational thinking: Report of a workshop of pedagogical aspects of computational thinking. Washington, DC: The National Academies Press. National Research Council. (2011). Committee for the workshops on computational thinking: Report of a workshop of pedagogical aspects of computational thinking. Washington, DC: The National Academies Press.
Zurück zum Zitat Petroski, H. (2003). Engineering: Early education. American Scientist, 91(3), 206–209. Petroski, H. (2003). Engineering: Early education. American Scientist, 91(3), 206–209.
Zurück zum Zitat Piaget, J. (1964). Cognitive development in children: Development and learning. Journal of Research in Science Teaching, 2(3), 176–186. Piaget, J. (1964). Cognitive development in children: Development and learning. Journal of Research in Science Teaching, 2(3), 176–186.
Zurück zum Zitat Powell, A. B., Francisco, J. M., & Maher, C. A. (2003). An analytical model for studying the development of learners’ mathematical ideas and reasoning using videotape data. The Journal of Mathematical Behavior, 22(4), 405–435. Powell, A. B., Francisco, J. M., & Maher, C. A. (2003). An analytical model for studying the development of learners’ mathematical ideas and reasoning using videotape data. The Journal of Mathematical Behavior, 22(4), 405–435.
Zurück zum Zitat Prigmore, M., Taylor, R., & De Luca, D. (2016). A case study of autonomy and motivation in a student-led game development project. Computer Science Education, 26(2–3), 129–147. Prigmore, M., Taylor, R., & De Luca, D. (2016). A case study of autonomy and motivation in a student-led game development project. Computer Science Education, 26(2–3), 129–147.
Zurück zum Zitat Schnittka, C. G., Brandt, C. B., Jones, B. D., & Evans, M. A. (2012). Informal engineering education after school: Employing the studio model for motivation and identification in STEM domains. Advances in Engineering Education, 3(2), 1–31. Schnittka, C. G., Brandt, C. B., Jones, B. D., & Evans, M. A. (2012). Informal engineering education after school: Employing the studio model for motivation and identification in STEM domains. Advances in Engineering Education, 3(2), 1–31.
Zurück zum Zitat Schoenfeld, A. H. (1992). On paradigms and methods: What do you do when the ones you know don’t do what you want them to? Issues in the analysis of data in the form of videotapes. Journal of the Learning Sciences, 2, 179–214. Schoenfeld, A. H. (1992). On paradigms and methods: What do you do when the ones you know don’t do what you want them to? Issues in the analysis of data in the form of videotapes. Journal of the Learning Sciences, 2, 179–214.
Zurück zum Zitat Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158. Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158.
Zurück zum Zitat Stewart, O. G., & Jordan, M. E. (2017). “Some explanation here”: A case study of learning opportunities and tensions in an informal science learning environment. Instructional Science, 45(2), 137–156. Stewart, O. G., & Jordan, M. E. (2017). “Some explanation here”: A case study of learning opportunities and tensions in an informal science learning environment. Instructional Science, 45(2), 137–156.
Zurück zum Zitat Tõugu, P., Marcus, M., Haden, C. A., & Uttal, D. H. (2017). Connecting play experiences and engineering learning in a children’s museum. Journal of Applied Developmental Psychology, 53, 10–19. Tõugu, P., Marcus, M., Haden, C. A., & Uttal, D. H. (2017). Connecting play experiences and engineering learning in a children’s museum. Journal of Applied Developmental Psychology, 53, 10–19.
Zurück zum Zitat Tracy, S. J. (2010). Qualitative quality: Eight “big-tent” criteria for excellent qualitative research. Qualitative Inquiry, 16(10), 837–851. Tracy, S. J. (2010). Qualitative quality: Eight “big-tent” criteria for excellent qualitative research. Qualitative Inquiry, 16(10), 837–851.
Zurück zum Zitat Vygotsky, L. S. (1967). Play and its role in the mental development of the child. Soviet Psychology, 12, 6–18. Vygotsky, L. S. (1967). Play and its role in the mental development of the child. Soviet Psychology, 12, 6–18.
Zurück zum Zitat Watkins, J., Spencer, K., & Hammer, D. (2014). Examining young students’ problem scoping in engineering design. Journal of Pre-College Engineering Education Research (J-PEER), 4(1), 5. Watkins, J., Spencer, K., & Hammer, D. (2014). Examining young students’ problem scoping in engineering design. Journal of Pre-College Engineering Education Research (J-PEER), 4(1), 5.
Zurück zum Zitat Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., et al. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., et al. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.
Zurück zum Zitat Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Zurück zum Zitat Yin, R. K. (2009). Case study research: Design and methods (applied social research methods). London: Sage. Yin, R. K. (2009). Case study research: Design and methods (applied social research methods). London: Sage.
Metadaten
Titel
Computational thinking embedded in engineering design: capturing computational thinking of children in an informal engineering design activity
verfasst von
Hoda Ehsan
Abeera P. Rehmat
Monica E. Cardella
Publikationsdatum
25.02.2020
Verlag
Springer Netherlands
Erschienen in
International Journal of Technology and Design Education / Ausgabe 3/2021
Print ISSN: 0957-7572
Elektronische ISSN: 1573-1804
DOI
https://doi.org/10.1007/s10798-020-09562-5

Weitere Artikel der Ausgabe 3/2021

International Journal of Technology and Design Education 3/2021 Zur Ausgabe

    Premium Partner