Skip to main content
Erschienen in: Journal of Computational Electronics 4/2012

01.12.2012

Analysis and design of terahertz microstrip antenna on photonic bandgap material

verfasst von: Kumud Ranjan Jha, G. Singh

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a dielectric slab with periodic implantation of the air gaps has been analyzed. An effective dielectric permittivity of the 1-D photonic bandgap substrate material (PBG material) with host material as Polytetrafluoroethylene (PTFE) has been computed at 600 GHz. Based on the extracted effective dielectric permittivity, a rectangular microstrip patch antennas on thin and thick 2-D PBG material as substrate have been designed. The electrical performances of the antennas have been simulated by using two different simulators, CST Microwave Studio based on the finite integral technique and Ansoft HFSS based on the finite element method. This proposed antenna on the PBG material as substrate shows the significant enhancement in the directivity. To validate the homogenized medium approximation, the effect of the antenna position on the substrate material has been observed. The response of antenna has been found to be independent of its position. Various electrical parameters of the proposed antennas have been compared with reported literature. In addition to this, the operating frequency of one of the antenna has been scaled down by the factor of 50 and its various results have been compared with the results obtained at 600 GHz.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Siegel, P.H.: THz instruments for space. IEEE Trans. Antennas Propag. 55(11), 2957–2965 (2007) CrossRef Siegel, P.H.: THz instruments for space. IEEE Trans. Antennas Propag. 55(11), 2957–2965 (2007) CrossRef
2.
Zurück zum Zitat Williams, G.P.: Filling the THz gap–high power sources and applications. Rep. Prog. Phys. 69(2), 301–306 (2006) CrossRef Williams, G.P.: Filling the THz gap–high power sources and applications. Rep. Prog. Phys. 69(2), 301–306 (2006) CrossRef
3.
Zurück zum Zitat Piesiewicz, R., Jacob, M., Koach, M., Schoebel, J., Kuner, T.: Performance analysis of future multigigabit wireless communication systems and THz frequency with highly directive antennas in indoor environments. IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008) CrossRef Piesiewicz, R., Jacob, M., Koach, M., Schoebel, J., Kuner, T.: Performance analysis of future multigigabit wireless communication systems and THz frequency with highly directive antennas in indoor environments. IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008) CrossRef
4.
Zurück zum Zitat Fitch, M.J., Ostiander, R.: Terahertz waves for communications and sensing. John Hopkins APL Tech. Dig. 25(4), 348–355 (2004) Fitch, M.J., Ostiander, R.: Terahertz waves for communications and sensing. John Hopkins APL Tech. Dig. 25(4), 348–355 (2004)
5.
Zurück zum Zitat Brown, E.R., McIntosh, K.A., Nichols, K.B., Dennis, C.L.: Photo mixing upto 3.8 THz in low temperature grown GaAs. Appl. Phys. Lett. 66, 285–287 (1995) CrossRef Brown, E.R., McIntosh, K.A., Nichols, K.B., Dennis, C.L.: Photo mixing upto 3.8 THz in low temperature grown GaAs. Appl. Phys. Lett. 66, 285–287 (1995) CrossRef
6.
Zurück zum Zitat Verghese, S., McIntosh, K.A., Brown, E.R.: Optical and terahertz power limits in the low temperature GaAs photomixer. Appl. Phys. Lett. 71, 2743–2745 (1997) CrossRef Verghese, S., McIntosh, K.A., Brown, E.R.: Optical and terahertz power limits in the low temperature GaAs photomixer. Appl. Phys. Lett. 71, 2743–2745 (1997) CrossRef
7.
Zurück zum Zitat Matsuura, M., Tani, M., Sakai, K.: Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Appl. Phys. Lett. 70, 559–561 (1997) CrossRef Matsuura, M., Tani, M., Sakai, K.: Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Appl. Phys. Lett. 70, 559–561 (1997) CrossRef
8.
Zurück zum Zitat Gregory, I.G., Tribe, W.R., Cole, B.E., Evans, M.J., Linfield, E.H., Davies, A.G., Missons, M.: Resonant dipole antennas for continuous wave terahertz photomixers. Appl. Phys. Lett. 8, 1622–1624 (2004) CrossRef Gregory, I.G., Tribe, W.R., Cole, B.E., Evans, M.J., Linfield, E.H., Davies, A.G., Missons, M.: Resonant dipole antennas for continuous wave terahertz photomixers. Appl. Phys. Lett. 8, 1622–1624 (2004) CrossRef
9.
Zurück zum Zitat Mendis, R., Sydlo, C., Sigmund, J., Feiginov, M., Meissnev, P., Hastnagel, H.L.: Spectral characterization of broadband THz antennas by photoconductive mixing: towards optimal antenna design. IEEE Antennas Wirel. Propag. Lett. 4, 85–88 (2005) CrossRef Mendis, R., Sydlo, C., Sigmund, J., Feiginov, M., Meissnev, P., Hastnagel, H.L.: Spectral characterization of broadband THz antennas by photoconductive mixing: towards optimal antenna design. IEEE Antennas Wirel. Propag. Lett. 4, 85–88 (2005) CrossRef
10.
Zurück zum Zitat Carr, G.L., Martin, M.C., Mckinney, W.R., Jordan, K., Neil, G.R., Williams, G.P.: Very high power THz radiation sources. J. Biol. Phys. 29(2–3), 319–325 (2003) CrossRef Carr, G.L., Martin, M.C., Mckinney, W.R., Jordan, K., Neil, G.R., Williams, G.P.: Very high power THz radiation sources. J. Biol. Phys. 29(2–3), 319–325 (2003) CrossRef
11.
Zurück zum Zitat Gallerano, G.P., Biedron, S.: Overview of terahertz radiation sources. In: Proc. Free Electron Laser Conf, Trieste, Italy, Aug. 29–Sep. 03, 2004, pp. 216–221 (2004) Gallerano, G.P., Biedron, S.: Overview of terahertz radiation sources. In: Proc. Free Electron Laser Conf, Trieste, Italy, Aug. 29–Sep. 03, 2004, pp. 216–221 (2004)
12.
Zurück zum Zitat Raisanen, A.V., Lehto, A.: Radio Engineering for Wireless Communication and Sensor Applications. Artech House, Boston (2003) Raisanen, A.V., Lehto, A.: Radio Engineering for Wireless Communication and Sensor Applications. Artech House, Boston (2003)
13.
Zurück zum Zitat Kadoya, Y., Onuma, M., Yanagi, S., Ohkubo, T., Sato, N., Kitagawa, J.: THz wave propagation on strip lines: devices, properties and applications. Radioengineering 17(2), 48–55 (2008) Kadoya, Y., Onuma, M., Yanagi, S., Ohkubo, T., Sato, N., Kitagawa, J.: THz wave propagation on strip lines: devices, properties and applications. Radioengineering 17(2), 48–55 (2008)
14.
Zurück zum Zitat Yeh, C., Shimabukuro, F., Siegel, P.H.: Low-loss terahertz ribbon waveguides. Appl. Opt. 44(28), 5937–5946 (2005) CrossRef Yeh, C., Shimabukuro, F., Siegel, P.H.: Low-loss terahertz ribbon waveguides. Appl. Opt. 44(28), 5937–5946 (2005) CrossRef
15.
Zurück zum Zitat Bahl, I.J., Bhartia, P.: Microstrip Antennas. Artech House, Dedham (1980) Bahl, I.J., Bhartia, P.: Microstrip Antennas. Artech House, Dedham (1980)
16.
Zurück zum Zitat Nishiyama, E., Aikawa, M.: FDTD analysis of stacked microstrip antenna with high gain. Prog. Electromagn. Res. 33, 29–43 (2001) CrossRef Nishiyama, E., Aikawa, M.: FDTD analysis of stacked microstrip antenna with high gain. Prog. Electromagn. Res. 33, 29–43 (2001) CrossRef
17.
Zurück zum Zitat Yang, G.M., Jin, R.H., Xiao, G.B., Vittoria, C., Harris, V.G., Sun, N.X.: Ultra wideband (UWB) antennas with multi-resonant split-ring loops. IEEE Trans. Antennas Propag. 57(1), 256–260 (2009) CrossRef Yang, G.M., Jin, R.H., Xiao, G.B., Vittoria, C., Harris, V.G., Sun, N.X.: Ultra wideband (UWB) antennas with multi-resonant split-ring loops. IEEE Trans. Antennas Propag. 57(1), 256–260 (2009) CrossRef
18.
Zurück zum Zitat Nishiyama, E., Aikawa, M., Egashira, S.: Stacked microstrip antenna for wideband and high gain. IEE Proc., H Microw. Antennas Propag. 151(2), 143–148 (2004) CrossRef Nishiyama, E., Aikawa, M., Egashira, S.: Stacked microstrip antenna for wideband and high gain. IEE Proc., H Microw. Antennas Propag. 151(2), 143–148 (2004) CrossRef
19.
Zurück zum Zitat Kishk, A.A., Shafai, L.: Gain enhancement of antennas over finite ground plane covered by a dielectric sheet. IEE Proc., H Microw. Antennas Propag. 134(Pt. 1 H), 60–64 (1987) CrossRef Kishk, A.A., Shafai, L.: Gain enhancement of antennas over finite ground plane covered by a dielectric sheet. IEE Proc., H Microw. Antennas Propag. 134(Pt. 1 H), 60–64 (1987) CrossRef
20.
Zurück zum Zitat Grischkowsky, D., Duling, I.N. III, Chen, T.C., Chi, C.-C.: Electromagnetic shock waves from transmission lines. Phys. Rev. Lett. 59(15), 1663–1666 (1987) CrossRef Grischkowsky, D., Duling, I.N. III, Chen, T.C., Chi, C.-C.: Electromagnetic shock waves from transmission lines. Phys. Rev. Lett. 59(15), 1663–1666 (1987) CrossRef
21.
Zurück zum Zitat Bhattacharyya, A.K.: Characteristics of space and surface waves in a multilayered structure. IEEE Trans. Antennas Propag. 38(8), 1231–1238 (1990) CrossRef Bhattacharyya, A.K.: Characteristics of space and surface waves in a multilayered structure. IEEE Trans. Antennas Propag. 38(8), 1231–1238 (1990) CrossRef
22.
Zurück zum Zitat Yang, H.Y.D., Alexopoulos, N.G., Yablonovitch, E.: Photonic band-gap materials for high-gain printed antennas. IEEE Trans. Antennas Propag. 45(1), 185–187 (1997) CrossRef Yang, H.Y.D., Alexopoulos, N.G., Yablonovitch, E.: Photonic band-gap materials for high-gain printed antennas. IEEE Trans. Antennas Propag. 45(1), 185–187 (1997) CrossRef
23.
Zurück zum Zitat Boutayeb, H., Denidni, T.A.: Gain enhancement of microstrip patch antenna using a cylindrical electromagnetic crystal. IEEE Trans. Antennas Propag. 55(11), 3140–3144 (2007) CrossRef Boutayeb, H., Denidni, T.A.: Gain enhancement of microstrip patch antenna using a cylindrical electromagnetic crystal. IEEE Trans. Antennas Propag. 55(11), 3140–3144 (2007) CrossRef
24.
Zurück zum Zitat Park, Y.J., Herschlein, A., Wiesbech, W.: A photonic band-gap structure for guiding and suppressing surface waves in millimeter-wave antennas. IEEE Trans. Microw. Theory Tech. 49(10), 1854–1859 (2001) CrossRef Park, Y.J., Herschlein, A., Wiesbech, W.: A photonic band-gap structure for guiding and suppressing surface waves in millimeter-wave antennas. IEEE Trans. Microw. Theory Tech. 49(10), 1854–1859 (2001) CrossRef
25.
Zurück zum Zitat Sharma, A., Singh, G., Chauhan, D.S.: Design considerations to improve the performance of a rectangular microstrip patch antenna at THz frequency. In: Proc. 33rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2008), USA, 15–19th Sept. 2008, pp. 1–2 (2008) CrossRef Sharma, A., Singh, G., Chauhan, D.S.: Design considerations to improve the performance of a rectangular microstrip patch antenna at THz frequency. In: Proc. 33rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2008), USA, 15–19th Sept. 2008, pp. 1–2 (2008) CrossRef
26.
Zurück zum Zitat Singh, G.: Design consideration for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Phys. Technol. 53(1), 17–22 (2010) CrossRef Singh, G.: Design consideration for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Phys. Technol. 53(1), 17–22 (2010) CrossRef
27.
Zurück zum Zitat Jha, K.R., Singh, G.: Dual-band rectangular microstrip patch antenna at terahertz frequency for surveillance system. J. Comput. Electron. 9(1), 31–41 (2010) MathSciNetCrossRef Jha, K.R., Singh, G.: Dual-band rectangular microstrip patch antenna at terahertz frequency for surveillance system. J. Comput. Electron. 9(1), 31–41 (2010) MathSciNetCrossRef
28.
Zurück zum Zitat Sharma, A., Singh, G.: Rectangular microstrip patch antenna design at THz frequency for short distance wireless communication systems. J. Infrared Millim. Terahertz Waves 30(1), 1–7 (2009) CrossRef Sharma, A., Singh, G.: Rectangular microstrip patch antenna design at THz frequency for short distance wireless communication systems. J. Infrared Millim. Terahertz Waves 30(1), 1–7 (2009) CrossRef
29.
Zurück zum Zitat Han, K., Nguyen, T.K., Park, I., Han, H.: Terahertz Yagi-Uda antenna for high input resistance. J. Infrared Millim. Terahertz Waves 31(4), 441–454 (2010) Han, K., Nguyen, T.K., Park, I., Han, H.: Terahertz Yagi-Uda antenna for high input resistance. J. Infrared Millim. Terahertz Waves 31(4), 441–454 (2010)
30.
Zurück zum Zitat Munemassa, Y., Mitra, M., Takanao, T., Sano, M.: Lightwave antenna with a small aperture manufactured using MEMS processing technology. IEEE Trans. Antennas Propag. 55(11), 3046–3051 (2007) CrossRef Munemassa, Y., Mitra, M., Takanao, T., Sano, M.: Lightwave antenna with a small aperture manufactured using MEMS processing technology. IEEE Trans. Antennas Propag. 55(11), 3046–3051 (2007) CrossRef
31.
Zurück zum Zitat Lubecke, V., Mizuno, K., Rebeiz, G.: Micromachining for terahertz applications. IEEE Trans. Microw. Theory Tech. 46(11), 1821–1831 (1998) CrossRef Lubecke, V., Mizuno, K., Rebeiz, G.: Micromachining for terahertz applications. IEEE Trans. Microw. Theory Tech. 46(11), 1821–1831 (1998) CrossRef
32.
Zurück zum Zitat Lu, Z., Prather, D.W.: Calculation of effective permittivity, permeability, and surface impedance of negative-refractive photonic crystals. Opt. Express 15(13), 8340–8345 (2007) CrossRef Lu, Z., Prather, D.W.: Calculation of effective permittivity, permeability, and surface impedance of negative-refractive photonic crystals. Opt. Express 15(13), 8340–8345 (2007) CrossRef
33.
Zurück zum Zitat Kim, D., Choi, J.I.: Analysis of a high gain Fabry-Perot cavity antenna with an FSS superstrate: effective medium approach. Progress Electromagn. Res. Lett. 7, 59–68 (2009) CrossRef Kim, D., Choi, J.I.: Analysis of a high gain Fabry-Perot cavity antenna with an FSS superstrate: effective medium approach. Progress Electromagn. Res. Lett. 7, 59–68 (2009) CrossRef
34.
Zurück zum Zitat Jha, K.R., Singh, G.: Analysis and design of enhanced directivity microstrip antenna at terahertz frequency by using electromagnetic bandgap material. Int. J. Numer. Model. 24(5), 410–424 (2011) MATHCrossRef Jha, K.R., Singh, G.: Analysis and design of enhanced directivity microstrip antenna at terahertz frequency by using electromagnetic bandgap material. Int. J. Numer. Model. 24(5), 410–424 (2011) MATHCrossRef
35.
Zurück zum Zitat Mosallaei, H., Samii, Y.R.: Periodic bandgap and effective dielectric materials in electromagnetics: characterization and applications in nanocavities and waveguides. IEEE Trans. Antennas Propag. 51(3), 549–563 (2003) CrossRef Mosallaei, H., Samii, Y.R.: Periodic bandgap and effective dielectric materials in electromagnetics: characterization and applications in nanocavities and waveguides. IEEE Trans. Antennas Propag. 51(3), 549–563 (2003) CrossRef
36.
37.
Zurück zum Zitat Balanis, C.A.: Antenna Theory Analysis and Design. Wiley, New York (2001) Balanis, C.A.: Antenna Theory Analysis and Design. Wiley, New York (2001)
38.
Zurück zum Zitat Dejean, G.R., Tentzeris, M.M.: A new high-gain microstrip Yagi array antenna with a high front-to-black (F/B) ratio for WLAN and millimeter-wave applications. IEEE Trans. Antennas Propag. 55(2), 298–304 (2007) CrossRef Dejean, G.R., Tentzeris, M.M.: A new high-gain microstrip Yagi array antenna with a high front-to-black (F/B) ratio for WLAN and millimeter-wave applications. IEEE Trans. Antennas Propag. 55(2), 298–304 (2007) CrossRef
Metadaten
Titel
Analysis and design of terahertz microstrip antenna on photonic bandgap material
verfasst von
Kumud Ranjan Jha
G. Singh
Publikationsdatum
01.12.2012
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2012
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-012-0416-9

Weitere Artikel der Ausgabe 4/2012

Journal of Computational Electronics 4/2012 Zur Ausgabe