Skip to main content
Erschienen in: Journal of Computational Electronics 3/2014

01.09.2014

Quantum drift-diffusion model for IMPATT devices

verfasst von: Aritra Acharyya, Subhashri Chatterjee, Jayabrata Goswami, Suranjana Banerjee, J. P. Banerjee

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum correction is necessary on the classical drift-diffusion (CLDD) model to predict the accurate behavior of high frequency performance of ATT devices at frequencies greater than 200 GHz when the active layer of the device shrinks in the range of 150–350 nm. In the present work, a quantum drift-diffusion model for impact avalanche transit time (IMPATT) devices has been developed by incorporating appropriate quantum mechanical corrections based on density-gradient theory which macroscopically takes into account important quantum mechanical effects such as quantum confinement, quantum tunneling, etc. into the CLDD model. Quantum potentials (synonymous as Bohm potentials) have been incorporated in the current density equations as necessary quantum mechanical corrections for the analysis of millimeter-wave (mm-wave) and Terahertz (THz) IMPATT devices. It is observed that the large-signal (L-S) performance of the device is degraded due to the incorporation of quantum corrections into the model when the frequency of operation increases above 200 GHz; while the effect of quantum corrections are negligible for the devices operating at lower mm-wave frequencies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Midford, T.A., Bernick, R.L.: Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans. Microw. Theory Tech. 27(5), 483–492 (1979)CrossRef Midford, T.A., Bernick, R.L.: Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans. Microw. Theory Tech. 27(5), 483–492 (1979)CrossRef
2.
Zurück zum Zitat Luy, J.F., Casel, A., Behr, W., Kasper, E.: A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans. Electron Devices 34(5), 1084–1089 (1987)CrossRef Luy, J.F., Casel, A., Behr, W., Kasper, E.: A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans. Electron Devices 34(5), 1084–1089 (1987)CrossRef
3.
Zurück zum Zitat Wollitzer, M., Buchler, J., Schafflr, F., Luy, J.F.: D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron. Lett. 32, 122–123 (1996)CrossRef Wollitzer, M., Buchler, J., Schafflr, F., Luy, J.F.: D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron. Lett. 32, 122–123 (1996)CrossRef
4.
Zurück zum Zitat Fong, T.T., Kuno, H.J.: Millimeter-wave pulsed IMPATT sources. IEEE Trans. Micriw. Theory Tech. 27(5), 492–499 (1979)CrossRef Fong, T.T., Kuno, H.J.: Millimeter-wave pulsed IMPATT sources. IEEE Trans. Micriw. Theory Tech. 27(5), 492–499 (1979)CrossRef
5.
Zurück zum Zitat Acharyya, A., Banerjee, J.P.: Prospects of IMPATT Devices based on Wide Bandgap Semiconductors as Potential Terahertz Sources. Applied Nanoscience 4, 1–14 (2014) Acharyya, A., Banerjee, J.P.: Prospects of IMPATT Devices based on Wide Bandgap Semiconductors as Potential Terahertz Sources. Applied Nanoscience 4, 1–14 (2014)
6.
Zurück zum Zitat Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. Int. J. Microw. Wirel. Technol. 5(5), 567–578 (2013)CrossRef Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. Int. J. Microw. Wirel. Technol. 5(5), 567–578 (2013)CrossRef
7.
Zurück zum Zitat Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. J. Semicond. 34(10), 104003–104008 (2013)CrossRef Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. J. Semicond. 34(10), 104003–104008 (2013)CrossRef
8.
Zurück zum Zitat Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE, Special Issue Microw. Semicond. Devices 59(8), 1140–1154 (1971) Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE, Special Issue Microw. Semicond. Devices 59(8), 1140–1154 (1971)
9.
Zurück zum Zitat Acharyya, A., Banerjee, S., Banerjee, J.P.: Influence of skin effect on the series resistance of millimeter-wave IMPATT devices. J. Comput. Electron. 12(3), 511–525 (2013)CrossRef Acharyya, A., Banerjee, S., Banerjee, J.P.: Influence of skin effect on the series resistance of millimeter-wave IMPATT devices. J. Comput. Electron. 12(3), 511–525 (2013)CrossRef
10.
Zurück zum Zitat Acharyya, A., Datta, K., Ghosh, R., Sarkar, M., Sanyal, R., Banerjee, S., Banerjee, J.P.: Diamond based DDR IMPATTs: prospects and potentiality as millimeter-wave source at 94 GHz atmospheric window. Radioengineering 22(2), 624–631 (2013) Acharyya, A., Datta, K., Ghosh, R., Sarkar, M., Sanyal, R., Banerjee, S., Banerjee, J.P.: Diamond based DDR IMPATTs: prospects and potentiality as millimeter-wave source at 94 GHz atmospheric window. Radioengineering 22(2), 624–631 (2013)
11.
Zurück zum Zitat Acharyya, A., Banerjee, S., Banerjee, J.P.: A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snap-shots. Int. J. Microw. Wirel. Technol. 5(1), 91–100 (2013) Acharyya, A., Banerjee, S., Banerjee, J.P.: A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snap-shots. Int. J. Microw. Wirel. Technol. 5(1), 91–100 (2013)
12.
Zurück zum Zitat Acharyya, A., Banerjee, S., Banerjee, J.P.: Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. J. Semicond. 34(2), 024001–0240012 (2013) Acharyya, A., Banerjee, S., Banerjee, J.P.: Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. J. Semicond. 34(2), 024001–0240012 (2013)
13.
Zurück zum Zitat Acharyya, A., Banerjee, S., Banerjee, J.P.: Large-signal simulation of 94 GHz pulsed DDR silicon IMPATTs including the temperature transient effect. Radioengineering 21(4), 1218–1225 (2012) Acharyya, A., Banerjee, S., Banerjee, J.P.: Large-signal simulation of 94 GHz pulsed DDR silicon IMPATTs including the temperature transient effect. Radioengineering 21(4), 1218–1225 (2012)
14.
Zurück zum Zitat Ancona, M.G., Tiersten, H.F.: Macroscopic physics of the silicon inversion layer. Phys. Rev. B 35, 7959–7965 (1987)CrossRef Ancona, M.G., Tiersten, H.F.: Macroscopic physics of the silicon inversion layer. Phys. Rev. B 35, 7959–7965 (1987)CrossRef
15.
Zurück zum Zitat Ancona, M.G., Yu, Z., Dutton, R.W., Voorde, P.J.V., Cao, M., Vook, D.: Density-gradient analysis of MOS tunneling. IEEE Trans. Electron Devices 47(12), 2310–2319 (2000)CrossRef Ancona, M.G., Yu, Z., Dutton, R.W., Voorde, P.J.V., Cao, M., Vook, D.: Density-gradient analysis of MOS tunneling. IEEE Trans. Electron Devices 47(12), 2310–2319 (2000)CrossRef
16.
Zurück zum Zitat Ancona, M.G.: Density-gradient theory: a macroscopic approach to quantum confinement and tunneling in semiconductor devices. J. Comput. Electron. 10, 65–97 (2011)CrossRef Ancona, M.G.: Density-gradient theory: a macroscopic approach to quantum confinement and tunneling in semiconductor devices. J. Comput. Electron. 10, 65–97 (2011)CrossRef
17.
Zurück zum Zitat Grant, W.N.: Electron and hole ionization rates in epitaxial silicon. Solid State Electron. 16, 1189–1203 (1973)CrossRefMathSciNet Grant, W.N.: Electron and hole ionization rates in epitaxial silicon. Solid State Electron. 16, 1189–1203 (1973)CrossRefMathSciNet
18.
Zurück zum Zitat Canali, C., Ottaviani, G., Quaranta, A.A.: Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids 32, 1707 (1971) Canali, C., Ottaviani, G., Quaranta, A.A.: Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids 32, 1707 (1971)
19.
Zurück zum Zitat Zeghbroeck, B.V.: Principles of Semiconductor Devices. Colorado Press, Colorado (2011) Zeghbroeck, B.V.: Principles of Semiconductor Devices. Colorado Press, Colorado (2011)
21.
Zurück zum Zitat Falco, C.D., Gatti, E., Lacaita, A.L., Sacco, R.: Quantum-corrected drift-diffusion models for transport in semiconductor devices. J. Comput. Phys. 204(2), 533–561 (2005)CrossRefMATHMathSciNet Falco, C.D., Gatti, E., Lacaita, A.L., Sacco, R.: Quantum-corrected drift-diffusion models for transport in semiconductor devices. J. Comput. Phys. 204(2), 533–561 (2005)CrossRefMATHMathSciNet
22.
Zurück zum Zitat Elta, M.E.: The effect of mixed tunneling and avalanche breakdown on microwave transit-time diodes. Technical Report, Ph.D. dissertation, Electron Physics Laboratory, University of Michigan, Ann Arbor (1978) Elta, M.E.: The effect of mixed tunneling and avalanche breakdown on microwave transit-time diodes. Technical Report, Ph.D. dissertation, Electron Physics Laboratory, University of Michigan, Ann Arbor (1978)
24.
Zurück zum Zitat Acharyya, A., Mukherjee, M., Banerjee, J.P.: Effects of tunnelling current on mm-wave IMPATT devices. Int. J. Electron. (2014). in press Acharyya, A., Mukherjee, M., Banerjee, J.P.: Effects of tunnelling current on mm-wave IMPATT devices. Int. J. Electron. (2014). in press
25.
Zurück zum Zitat Acharyya, A., Mukherjee, M., Banerjee, J.P.: Influence of tunnel current on DC and dynamic properties of silicon based terahertz IMPATT source. Terahertz Sci. Technol. 4(1), 26–41 (2011) Acharyya, A., Mukherjee, M., Banerjee, J.P.: Influence of tunnel current on DC and dynamic properties of silicon based terahertz IMPATT source. Terahertz Sci. Technol. 4(1), 26–41 (2011)
26.
Zurück zum Zitat Dash, G.N., Pati, S.P.: A generalized simulation method for IMPATT mode operation and studies on the influence of tunnel current on IMPATT properties. Semicond. Sci. and Technol. 7, 222–230 (1992)CrossRef Dash, G.N., Pati, S.P.: A generalized simulation method for IMPATT mode operation and studies on the influence of tunnel current on IMPATT properties. Semicond. Sci. and Technol. 7, 222–230 (1992)CrossRef
27.
Zurück zum Zitat Ancona, M.G.: Macroscopic description of quantum-mechanical tunneling. Phys. Rev. B 42, 1222–1223 (1990)CrossRef Ancona, M.G.: Macroscopic description of quantum-mechanical tunneling. Phys. Rev. B 42, 1222–1223 (1990)CrossRef
28.
Zurück zum Zitat Ancona, M.G.: Density-gradient analysis of field emission from metals. Phys. Rev. B 46, 4874–4883 (1992)CrossRef Ancona, M.G.: Density-gradient analysis of field emission from metals. Phys. Rev. B 46, 4874–4883 (1992)CrossRef
29.
Zurück zum Zitat Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 16(1), 64–77 (1969)CrossRef Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 16(1), 64–77 (1969)CrossRef
Metadaten
Titel
Quantum drift-diffusion model for IMPATT devices
verfasst von
Aritra Acharyya
Subhashri Chatterjee
Jayabrata Goswami
Suranjana Banerjee
J. P. Banerjee
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2014
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-014-0595-7

Weitere Artikel der Ausgabe 3/2014

Journal of Computational Electronics 3/2014 Zur Ausgabe