Skip to main content
Erschienen in: Journal of Computational Electronics 1/2023

11.10.2022

Proposing of SPR biosensor based on 2D Ti3C2Tx MXene for uric acid detection ımmobilized by uricase enzyme

verfasst von: Maryam Ghodrati, Ali Mir, Ali Farmani

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a surface plasmon resonance (SPR) biosensor based on Ti3C2Tx MXene two-dimensional material to detect uric acid by utilizing urate oxidase enzyme. The proposed biosensor is a free space structure using Kretschmann configuration to stimulate the surface plasmons. The structure consists of SF11 prism, BK7 glass, silver (Ag), tungsten disulfide (WS2), graphene, Ti3C2Tx MXene, and the sensing medium. The minimum reflection, sensitivity, figure of merit, and detection accuracy of the SPR are investigated using the numerical method of FDTD in the visible region. Molarity varies from 0 to 500 ppm and refractive index from 1.3300 to 1.3336 for the sensing layer. The results indicate that the highest sensitivity of 273.53 deg/RIU can be achieved with a thickness of 50 nm Ag and a monolayer of WS2, a monolayer of graphene, and four layers of Ti3C2Tx MXene, at 633 nm wavelength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Maier, S.A.: Plasmonics fundamentals and applications. Springer (2007)CrossRef Maier, S.A.: Plasmonics fundamentals and applications. Springer (2007)CrossRef
2.
Zurück zum Zitat Ali, S.M.U., et al.: Selective potentiometric determination of uric acid with uricase immobilized on ZnO nanowires. Sens. Actuators B. Chem. 152, 241–247 (2011)CrossRef Ali, S.M.U., et al.: Selective potentiometric determination of uric acid with uricase immobilized on ZnO nanowires. Sens. Actuators B. Chem. 152, 241–247 (2011)CrossRef
4.
Zurück zum Zitat Ali, S.M.U., Ibupoto, Z.H., Kashif, M., Hashim, U., Willander, M.: A potentiometric indirect uric acid sensor based on ZnO nanoflakes and immobilized uricase. Sensors. 12, 2787–2797 (2012)CrossRef Ali, S.M.U., Ibupoto, Z.H., Kashif, M., Hashim, U., Willander, M.: A potentiometric indirect uric acid sensor based on ZnO nanoflakes and immobilized uricase. Sensors. 12, 2787–2797 (2012)CrossRef
5.
Zurück zum Zitat Danaie, M., Shahzadi, A.: Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14, 1453–1465 (2019)CrossRef Danaie, M., Shahzadi, A.: Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14, 1453–1465 (2019)CrossRef
6.
Zurück zum Zitat Parandin, F., Heidari, F., Rahimi, Z., Olyaee, S.: Two-dimensional photonic crystal biosensors: a review. Opt. Laser Technol. 144, 107397 (2021)CrossRef Parandin, F., Heidari, F., Rahimi, Z., Olyaee, S.: Two-dimensional photonic crystal biosensors: a review. Opt. Laser Technol. 144, 107397 (2021)CrossRef
7.
Zurück zum Zitat Ghodrati, M., Mir, A., Naderi, A.: Proposal of a doping-less tunneling carbon nanotube field-effect transistor. Mater. Sci. Eng. A: B. 256, 115016 (2021)CrossRef Ghodrati, M., Mir, A., Naderi, A.: Proposal of a doping-less tunneling carbon nanotube field-effect transistor. Mater. Sci. Eng. A: B. 256, 115016 (2021)CrossRef
8.
Zurück zum Zitat Khani, Sh., Hayati, M.: An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct. 156, 106970 (2021)CrossRef Khani, Sh., Hayati, M.: An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct. 156, 106970 (2021)CrossRef
9.
Zurück zum Zitat Ghodrati, M., Mir, A., Naderi, A.: New structure of tunneling carbon nanotube FET with electrical junction in part of drain region and step impurity distribution pattern. AEU-Int. J. Electron. Commun. 117, 153102 (2020)CrossRef Ghodrati, M., Mir, A., Naderi, A.: New structure of tunneling carbon nanotube FET with electrical junction in part of drain region and step impurity distribution pattern. AEU-Int. J. Electron. Commun. 117, 153102 (2020)CrossRef
10.
Zurück zum Zitat Farmani, A., Soroosh, M., Hazhir Mozaffari, M., Daghooghi, T.: Optical nanosensors for cancer and virus detections. In: Nanosensors for Smart Cities, pp. 419–432. Elsevier, Amsterdam, The Netherlands (2020)CrossRef Farmani, A., Soroosh, M., Hazhir Mozaffari, M., Daghooghi, T.: Optical nanosensors for cancer and virus detections. In: Nanosensors for Smart Cities, pp. 419–432. Elsevier, Amsterdam, The Netherlands (2020)CrossRef
11.
Zurück zum Zitat Ghodrati, M., Farmani, A., Mir, A.: Non-destructive label-free biomaterials detection using tunneling carbon nanotube based biosensor. IEEE Sens. J. 21, 8847–8854 (2021)CrossRef Ghodrati, M., Farmani, A., Mir, A.: Non-destructive label-free biomaterials detection using tunneling carbon nanotube based biosensor. IEEE Sens. J. 21, 8847–8854 (2021)CrossRef
12.
Zurück zum Zitat Qi, Q., et al.: A gas-liquid sensor functionalized with graphene-oxide on chalcogenide tapered fiber by chemical etching. J. Lightw. Technol 39, 6976–6984 (2021)CrossRef Qi, Q., et al.: A gas-liquid sensor functionalized with graphene-oxide on chalcogenide tapered fiber by chemical etching. J. Lightw. Technol 39, 6976–6984 (2021)CrossRef
13.
Zurück zum Zitat Ghodrati, M., Farmani, A., Mir, A.: Nanoscale sensor-based tunneling carbon nanotube transistor for toxic gases detection: a first-principle study. IEEE Sens. J. 19, 7373–7377 (2019)CrossRef Ghodrati, M., Farmani, A., Mir, A.: Nanoscale sensor-based tunneling carbon nanotube transistor for toxic gases detection: a first-principle study. IEEE Sens. J. 19, 7373–7377 (2019)CrossRef
14.
Zurück zum Zitat Kong, L., et al.: Sensitivity-enhanced SPR sensor based on graphene and subwavelength silver gratings. Nanomaterial 10, 2125 (2020)CrossRef Kong, L., et al.: Sensitivity-enhanced SPR sensor based on graphene and subwavelength silver gratings. Nanomaterial 10, 2125 (2020)CrossRef
15.
Zurück zum Zitat Moradiani, F., Farmani, A., Hazhir Mozaffari, M., Seifouri, M., Abedi, K.: Systematic engineering of a nanostructure plasmonic sensing platform for ultrasensitive biomaterial detection. Opt. Commun. 474, 126178 (2020)CrossRef Moradiani, F., Farmani, A., Hazhir Mozaffari, M., Seifouri, M., Abedi, K.: Systematic engineering of a nanostructure plasmonic sensing platform for ultrasensitive biomaterial detection. Opt. Commun. 474, 126178 (2020)CrossRef
16.
Zurück zum Zitat Rakhshani, M.R., Mansouri-Birjandi, M.A.: Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection. IEEE Trans. Nanotechnol. 17, 475–481 (2018)CrossRef Rakhshani, M.R., Mansouri-Birjandi, M.A.: Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection. IEEE Trans. Nanotechnol. 17, 475–481 (2018)CrossRef
17.
Zurück zum Zitat Saifur Rahman, M., et al.: Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Opt. Commun. 357, 106–112 (2015)CrossRef Saifur Rahman, M., et al.: Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Opt. Commun. 357, 106–112 (2015)CrossRef
18.
Zurück zum Zitat Naderi, A., Ghodrati, M., Baniardalani, S.: The use of a Gaussian doping distribution in the channel region to improve the performance of a tunneling carbon nanotube field-effect transistor. J. Comput. Electron. 19, 283–290 (2020)CrossRef Naderi, A., Ghodrati, M., Baniardalani, S.: The use of a Gaussian doping distribution in the channel region to improve the performance of a tunneling carbon nanotube field-effect transistor. J. Comput. Electron. 19, 283–290 (2020)CrossRef
19.
Zurück zum Zitat Verma, A., Prakash, A., Tripathi, R.: Sensitivity improvement of graphene based surface plasmon resonance biosensors with chaclogenide prism. Optik 127, 1787–1791 (2016)CrossRef Verma, A., Prakash, A., Tripathi, R.: Sensitivity improvement of graphene based surface plasmon resonance biosensors with chaclogenide prism. Optik 127, 1787–1791 (2016)CrossRef
20.
Zurück zum Zitat Berdiyorova, G.R.: Optical properties of functionalized Ti3C2Tx (T = F, O, OH) MXene: first-principles calculations. AIP Adv. 6, 055105 (2016)CrossRef Berdiyorova, G.R.: Optical properties of functionalized Ti3C2Tx (T = F, O, OH) MXene: first-principles calculations. AIP Adv. 6, 055105 (2016)CrossRef
21.
Zurück zum Zitat Wu, L., et al.: Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity. Sens. Actuators B Chem. 277, 210–215 (2018)CrossRef Wu, L., et al.: Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity. Sens. Actuators B Chem. 277, 210–215 (2018)CrossRef
22.
Zurück zum Zitat Kumar, R., Pal, S., Prajapati, Y.K., Saini, J.P.: Sensitivity enhancement of MXene based SPR sensor using silicon: theoretical analysis. SILICON 13, 1887–1894 (2020)CrossRef Kumar, R., Pal, S., Prajapati, Y.K., Saini, J.P.: Sensitivity enhancement of MXene based SPR sensor using silicon: theoretical analysis. SILICON 13, 1887–1894 (2020)CrossRef
23.
Zurück zum Zitat Kumar, R., Pal, S., Verma, A., Prajapati, Y.K., Saini, J.P.: Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct. 145, 106591 (2020)CrossRef Kumar, R., Pal, S., Verma, A., Prajapati, Y.K., Saini, J.P.: Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct. 145, 106591 (2020)CrossRef
24.
Zurück zum Zitat Zeng, S., et al.: Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B Chem. 207, 801–810 (2015)CrossRef Zeng, S., et al.: Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B Chem. 207, 801–810 (2015)CrossRef
25.
Zurück zum Zitat Wu, L., et al.: Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B 249, 542–548 (2017)CrossRef Wu, L., et al.: Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B 249, 542–548 (2017)CrossRef
26.
Zurück zum Zitat Ouyang, Q., et al.: Two-dimensional transition metal dichalcogenide enhanced phase-sensitive plasmonic biosensors: theoretical insight. J. Phys. Chem. C 121, 6282–6289 (2017)CrossRef Ouyang, Q., et al.: Two-dimensional transition metal dichalcogenide enhanced phase-sensitive plasmonic biosensors: theoretical insight. J. Phys. Chem. C 121, 6282–6289 (2017)CrossRef
27.
Zurück zum Zitat Shi, C., et al.: Structure of nanocrystalline Ti3C2 mxene using atomic pair distribution function. Phys. Rev. Lett. 112, 125501 (2014)CrossRef Shi, C., et al.: Structure of nanocrystalline Ti3C2 mxene using atomic pair distribution function. Phys. Rev. Lett. 112, 125501 (2014)CrossRef
28.
Zurück zum Zitat Srivastava, A., Verma, A., Das, R., Prajapati, Y.K.: A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus. Optik 203, 163430 (2020)CrossRef Srivastava, A., Verma, A., Das, R., Prajapati, Y.K.: A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus. Optik 203, 163430 (2020)CrossRef
29.
Zurück zum Zitat Xu, Y., Ang, Y.S., Wu, L., Ang, L.K.: High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study. Nanomaterials 9, 1–11 (2019)CrossRef Xu, Y., Ang, Y.S., Wu, L., Ang, L.K.: High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study. Nanomaterials 9, 1–11 (2019)CrossRef
31.
Zurück zum Zitat Ghodrati, M., Mir, A.: Improving the performance of a doping-less carbon nanotube FET with dual junction source and drain regions: numerical studies. J. Circuits Syst. Comput. 31, 2250182 (2022)CrossRef Ghodrati, M., Mir, A.: Improving the performance of a doping-less carbon nanotube FET with dual junction source and drain regions: numerical studies. J. Circuits Syst. Comput. 31, 2250182 (2022)CrossRef
32.
Zurück zum Zitat Naderi, A., Ghodrati, M.: An efficient structure for T-CNTFETs with intrinsic-n-doped impurity distribution pattern in drain region. Turk. J. Electr. Eng. Comput. Sci. 26, 2335–2346 (2018)CrossRef Naderi, A., Ghodrati, M.: An efficient structure for T-CNTFETs with intrinsic-n-doped impurity distribution pattern in drain region. Turk. J. Electr. Eng. Comput. Sci. 26, 2335–2346 (2018)CrossRef
33.
Zurück zum Zitat Naderi, A., Ghodrati, M.: Improving band-to-band tunneling in a tunneling carbon nanotube field effect transistor by multi-level development of impurities in the drain region. Eur. Phys. J. Plus 132, 510 (2017)CrossRef Naderi, A., Ghodrati, M.: Improving band-to-band tunneling in a tunneling carbon nanotube field effect transistor by multi-level development of impurities in the drain region. Eur. Phys. J. Plus 132, 510 (2017)CrossRef
34.
Zurück zum Zitat Naderi, A., Ghodrati, M.: Cut off frequency variation by ambient heating in tunneling p-i-n CNTFETs. ECS J. Solid State Sci. Technol. 7, M6–M10 (2018)CrossRef Naderi, A., Ghodrati, M.: Cut off frequency variation by ambient heating in tunneling p-i-n CNTFETs. ECS J. Solid State Sci. Technol. 7, M6–M10 (2018)CrossRef
36.
Zurück zum Zitat Yupapin, P., Trabelsi, Y., Vigneswaran, D., et al.: Ultra-high-sensitive sensor based on surface plasmon resonance structure having Si and graphene layers for the detection of Chikungunya virus. Plasmonics 17, 1315–1321 (2022)CrossRef Yupapin, P., Trabelsi, Y., Vigneswaran, D., et al.: Ultra-high-sensitive sensor based on surface plasmon resonance structure having Si and graphene layers for the detection of Chikungunya virus. Plasmonics 17, 1315–1321 (2022)CrossRef
37.
Zurück zum Zitat Almawgani, A., Taya, S.A., Daher, M.G., Colak, I., Wu, F., Patel, S.: Detection of glucose concentration using a surface plasmon resonance biosensor based on barium titanate layers and molybdenum disulphide sheets. Physica Scri. 97, 065501 (2022)CrossRef Almawgani, A., Taya, S.A., Daher, M.G., Colak, I., Wu, F., Patel, S.: Detection of glucose concentration using a surface plasmon resonance biosensor based on barium titanate layers and molybdenum disulphide sheets. Physica Scri. 97, 065501 (2022)CrossRef
38.
Zurück zum Zitat Daher, M.G., Taya, S.A., Colak, I., Patel, S.K., Olaimat, M.M., Ramahi, O.: Surface plasmon resonance biosensor based on graphene layer for the detection of waterborne bacteria. J Biophotonics. 15, e202200001 (2022)CrossRef Daher, M.G., Taya, S.A., Colak, I., Patel, S.K., Olaimat, M.M., Ramahi, O.: Surface plasmon resonance biosensor based on graphene layer for the detection of waterborne bacteria. J Biophotonics. 15, e202200001 (2022)CrossRef
39.
Zurück zum Zitat Taya, S.A., Al-Ashi, N., Ramahi, O., Colak, I., Amiri, I.: Surface plasmon resonance-based optical sensor using a thin layer of plasma. J. Opt. Soc. Am. B. 38, 2362–2367 (2021)CrossRef Taya, S.A., Al-Ashi, N., Ramahi, O., Colak, I., Amiri, I.: Surface plasmon resonance-based optical sensor using a thin layer of plasma. J. Opt. Soc. Am. B. 38, 2362–2367 (2021)CrossRef
40.
Zurück zum Zitat Zhang, R., Pu, S., Li, X.: Gold-film-thickness dependent SPR refractive index and temperature sensing with Hetero-core optical fiber structure. Sensors. 19, 4345 (2019)CrossRef Zhang, R., Pu, S., Li, X.: Gold-film-thickness dependent SPR refractive index and temperature sensing with Hetero-core optical fiber structure. Sensors. 19, 4345 (2019)CrossRef
41.
Zurück zum Zitat Hao, Z., Li, Y., Pu, S., Wang, J., Chen, F., Lahoubi, M.: Ultrahigh-performance vector magnetic field sensor with wedge-shaped fiber tip based on surface plasmon resonance and magnetic fluid. Nanophotonics 11, 3519–3528 (2022)CrossRef Hao, Z., Li, Y., Pu, S., Wang, J., Chen, F., Lahoubi, M.: Ultrahigh-performance vector magnetic field sensor with wedge-shaped fiber tip based on surface plasmon resonance and magnetic fluid. Nanophotonics 11, 3519–3528 (2022)CrossRef
42.
Zurück zum Zitat Cai, H., Wang, M., Wu, Z., Liu, J., Wang, X.: Theoretical and experimental study of a highly sensitive SPR biosensor based on Au grating and Au film coupling structure. Opt. Express. 30, 26136–26148 (2022)CrossRef Cai, H., Wang, M., Wu, Z., Liu, J., Wang, X.: Theoretical and experimental study of a highly sensitive SPR biosensor based on Au grating and Au film coupling structure. Opt. Express. 30, 26136–26148 (2022)CrossRef
43.
Zurück zum Zitat Menon, P.S., et al.: Multilayer CVD-graphene and MoS2 ethanol sensing and characterization using Kretschmann-based SPR. IEEE J. Electron Devices Soc 8, 1227–1235 (2020)CrossRef Menon, P.S., et al.: Multilayer CVD-graphene and MoS2 ethanol sensing and characterization using Kretschmann-based SPR. IEEE J. Electron Devices Soc 8, 1227–1235 (2020)CrossRef
44.
Zurück zum Zitat Arora, P., Talker, E., Mazurski, N., et al.: Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing. Sci. Rep. 8, 9060 (2018)CrossRef Arora, P., Talker, E., Mazurski, N., et al.: Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing. Sci. Rep. 8, 9060 (2018)CrossRef
45.
Zurück zum Zitat Cai, H., Wang, M., Wu, Z., Liu, J., Wang, X.: Performance enhancement of SPR biosensor using graphene–MoS2 hybrid structure. Nanomaterials 12, 2219 (2022)CrossRef Cai, H., Wang, M., Wu, Z., Liu, J., Wang, X.: Performance enhancement of SPR biosensor using graphene–MoS2 hybrid structure. Nanomaterials 12, 2219 (2022)CrossRef
46.
Zurück zum Zitat Han, L., Hu, Z., Pan, J., Huang, T., Luo, D.: High-sensitivity Goos-Hänchen shifts sensor based on BlueP-TMDCs-graphene heterostructure. Sensors. 20, 3605 (2020)CrossRef Han, L., Hu, Z., Pan, J., Huang, T., Luo, D.: High-sensitivity Goos-Hänchen shifts sensor based on BlueP-TMDCs-graphene heterostructure. Sensors. 20, 3605 (2020)CrossRef
47.
Zurück zum Zitat You, Q., Shan, Y., Gan, S., Zhao, Y., Dai, X., Xiang, Y.: Giant and controllable Goos-Hanchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure. Opt. Mater. Express. 8, 3036–3048 (2018)CrossRef You, Q., Shan, Y., Gan, S., Zhao, Y., Dai, X., Xiang, Y.: Giant and controllable Goos-Hanchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure. Opt. Mater. Express. 8, 3036–3048 (2018)CrossRef
Metadaten
Titel
Proposing of SPR biosensor based on 2D Ti3C2Tx MXene for uric acid detection ımmobilized by uricase enzyme
verfasst von
Maryam Ghodrati
Ali Mir
Ali Farmani
Publikationsdatum
11.10.2022
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2023
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-022-01959-w

Weitere Artikel der Ausgabe 1/2023

Journal of Computational Electronics 1/2023 Zur Ausgabe