Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 5/2020

30.10.2019

Effective automatic defect classification process based on CNN with stacking ensemble model for TFT-LCD panel

verfasst von: Myeongso Kim, Minyoung Lee, Minjeong An, Hongchul Lee

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The classification of defect types during LCD panel production is very important because it is closely related to deciding whether a defect panel is restorable. But since defect areas are very small compared to the panel area, it is hard to classify defect types by images. Therefore, we need to eliminate the background pattern of the panel, but this is not an easy task because the brightness and saturation of the background varies, even in a single image. In this paper, we propose an indicator that can distinguish between defect and background area, which is robust to brightness change and minor noises. With this indicator, we got useful defect information and images with patterns eliminated to make a more efficient defect classifier. The convolutional neural network with stacked ensemble techniques played a great role in improving defect classification performance, when various information from image preprocessing was combined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Cheng, H., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., et al. (2016). Wide and deep learning for recommender systems. arXiv:1606.07792v1. Cheng, H., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., et al. (2016). Wide and deep learning for recommender systems. arXiv:​1606.​07792v1.
Zurück zum Zitat Clevert, D., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (ELUs). arXiv:1511.07289v5. Clevert, D., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (ELUs). arXiv:​1511.​07289v5.
Zurück zum Zitat Das, R., Turkoglu, I., & Sengur, A. (2009). Effective diagnosis of heart disease through neural network ensembles. Expert Systems with Applications, 36, 3976–3982. Das, R., Turkoglu, I., & Sengur, A. (2009). Effective diagnosis of heart disease through neural network ensembles. Expert Systems with Applications, 36, 3976–3982.
Zurück zum Zitat Faghih-Roohi, S., Hajizadeh, S., Nunez, A., Babuska R., & De Schutter, B. (2016). Deep convolutional neural networks for detection of rail surface defects. In International joint conference on neural networks (IJCNN). Faghih-Roohi, S., Hajizadeh, S., Nunez, A., Babuska R., & De Schutter, B. (2016). Deep convolutional neural networks for detection of rail surface defects. In International joint conference on neural networks (IJCNN).
Zurück zum Zitat Holliday, A., Barekatain, M., Laurmaa, J., Kandaswamy, C., & Prendinger, H. (2017). Speedup of deep learning ensembles for semantic segmentation using model compression technique. Computer Vision and Image Understanding IJC, 164, 16–26. Holliday, A., Barekatain, M., Laurmaa, J., Kandaswamy, C., & Prendinger, H. (2017). Speedup of deep learning ensembles for semantic segmentation using model compression technique. Computer Vision and Image Understanding IJC, 164, 16–26.
Zurück zum Zitat Ju, C., Bibaut, A., & van der Laan, M. J. (2017). The relative performance of ensemble methods with deep convolutional neural networks for image classification. ArXiv:1704.01664v1. Ju, C., Bibaut, A., & van der Laan, M. J. (2017). The relative performance of ensemble methods with deep convolutional neural networks for image classification. ArXiv:​1704.​01664v1.
Zurück zum Zitat Kameyama, K., Kosugi, Y., Okahahi, T., & Izumita, M. (1998). Automatic defect classification in visual inspection of semiconductors using neural networks. IEICE Transactions on Information and Systems, 81(11), 1261–1271. Kameyama, K., Kosugi, Y., Okahahi, T., & Izumita, M. (1998). Automatic defect classification in visual inspection of semiconductors using neural networks. IEICE Transactions on Information and Systems, 81(11), 1261–1271.
Zurück zum Zitat Kim, J., Kim, S., Kwon, N., Kang, H., Kim Y., & Lee, C. (2018). Deep learning based automatic defect classification in through-silicon via process: FA: Factory automation. In 29th annual SEMI advanced semiconductor manufacturing conference (ASMC). Kim, J., Kim, S., Kwon, N., Kang, H., Kim Y., & Lee, C. (2018). Deep learning based automatic defect classification in through-silicon via process: FA: Factory automation. In 29th annual SEMI advanced semiconductor manufacturing conference (ASMC).
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In NIPS12 proceedings of the 25th international conference on neural information processing systems (Vol. 1). Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In NIPS12 proceedings of the 25th international conference on neural information processing systems (Vol. 1).
Zurück zum Zitat Lee, K., Chang, M., & Park, P. (2007). Periodic comparison method for defects inspection of TFT-LCD panel. In Proceedings of the 7th WSEAS international conference on robotics, control & manufacturing technology, Hangzhou, China Lee, K., Chang, M., & Park, P. (2007). Periodic comparison method for defects inspection of TFT-LCD panel. In Proceedings of the 7th WSEAS international conference on robotics, control & manufacturing technology, Hangzhou, China
Zurück zum Zitat Lee, K., Ko, M., Lee, J., Koo, T., & Park, K. (2004). Defect detection method for TFT-LCD panel based on saliency map model. In IEEE region 10 conference TENCON. Lee, K., Ko, M., Lee, J., Koo, T., & Park, K. (2004). Defect detection method for TFT-LCD panel based on saliency map model. In IEEE region 10 conference TENCON.
Zurück zum Zitat Li, T., Tsai, J., Chang, R., Ho, L., & Yang, C. (2013). Pretest gap Mura on TFT LCDs using the optical interference pattern sensing method and neural network classification. IEEE Transactions on Industrial Electronics, 60(9), 3976–3982. Li, T., Tsai, J., Chang, R., Ho, L., & Yang, C. (2013). Pretest gap Mura on TFT LCDs using the optical interference pattern sensing method and neural network classification. IEEE Transactions on Industrial Electronics, 60(9), 3976–3982.
Zurück zum Zitat Lim, T. Y., Ratnam, M. M., & Khalid, M. (2007). Automatic classification of weld defects using simulated data and MLP neural network. Insight, 49(3), 154–159. Lim, T. Y., Ratnam, M. M., & Khalid, M. (2007). Automatic classification of weld defects using simulated data and MLP neural network. Insight, 49(3), 154–159.
Zurück zum Zitat Lin, H., Li, B., Wang, X., Shu, Y., & Niu, S. (2018). Automated defect inspection of LED chip using deep convolutional neural network. Journal of Intelligent Manufacturing, 30(6), 2525–2534. Lin, H., Li, B., Wang, X., Shu, Y., & Niu, S. (2018). Automated defect inspection of LED chip using deep convolutional neural network. Journal of Intelligent Manufacturing, 30(6), 2525–2534.
Zurück zum Zitat Lu, C., & Tsai, D. (2005). Automatic defect inspection for LCDs using singular value decomposition. The International Journal of Advanced Manufacturing Technology, 25(1–2), 53–61. Lu, C., & Tsai, D. (2005). Automatic defect inspection for LCDs using singular value decomposition. The International Journal of Advanced Manufacturing Technology, 25(1–2), 53–61.
Zurück zum Zitat Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., & Fricout, G. (2012). Steel defect classification with max-pooling convolutional neural networks. In The 2012 international joint conference on neural networks (IJCNN), Brisbane, QLD, pp. 1–6. https://doi.org/10.1109/IJCNN.2012.6252468. Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., & Fricout, G. (2012). Steel defect classification with max-pooling convolutional neural networks. In The 2012 international joint conference on neural networks (IJCNN), Brisbane, QLD, pp. 1–6. https://​doi.​org/​10.​1109/​IJCNN.​2012.​6252468.
Zurück zum Zitat Nakazawa, T., & Kulkarni, D. V. (2018). Wafer map defect pattern classification and image retrieval using convolutional neural network. IEEE Transactions on Semiconductor Manufacturing, 31(2), 309–314. Nakazawa, T., & Kulkarni, D. V. (2018). Wafer map defect pattern classification and image retrieval using convolutional neural network. IEEE Transactions on Semiconductor Manufacturing, 31(2), 309–314.
Zurück zum Zitat Park, E., Han, X., Berg, T. L., & Berg, A. C. (2016). Combining multiple sources of knowledge in deep CNNs for action recognition. In IEEE winter conference on applications of computer vision (WACV). Park, E., Han, X., Berg, T. L., & Berg, A. C. (2016). Combining multiple sources of knowledge in deep CNNs for action recognition. In IEEE winter conference on applications of computer vision (WACV).
Zurück zum Zitat Song, Y., Choi, D., & Park, K. (2004). Morphological Blob-Mura defect detection method for TFT-LCD panel inspection. In KES: knowledge-based intelligent information and engineering systems (pp. 862–868). Song, Y., Choi, D., & Park, K. (2004). Morphological Blob-Mura defect detection method for TFT-LCD panel inspection. In KES: knowledge-based intelligent information and engineering systems (pp. 862–868).
Zurück zum Zitat Tsai, D. M., & Hung, C. Y. (2005). Automatic defect inspection of patterned thin film transistor-liquid crystal display (TFT-LCD) panels using one-dimensional Fourier reconstruction and wavelet decomposition. International Journal of Production Research, 43(21), 4589–4607 . Tsai, D. M., & Hung, C. Y. (2005). Automatic defect inspection of patterned thin film transistor-liquid crystal display (TFT-LCD) panels using one-dimensional Fourier reconstruction and wavelet decomposition. International Journal of Production Research, 43(21), 4589–4607 .
Zurück zum Zitat Tsai, K., & Luo, J. (2017). An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm. Journal of Intelligent Manufacturing, 28(2), 473–487. Tsai, K., & Luo, J. (2017). An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm. Journal of Intelligent Manufacturing, 28(2), 473–487.
Zurück zum Zitat Wang, T., Chen, Y., Qiao, M., & Snoussi, H. (2017). A fast and robust convolutional neural network-based defect detection model in product quality control. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3465–3471. Wang, T., Chen, Y., Qiao, M., & Snoussi, H. (2017). A fast and robust convolutional neural network-based defect detection model in product quality control. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3465–3471.
Zurück zum Zitat Weiner, D., Thamer, H., & Scholz-Reiter, B. (2013). Learning defect classifiers for textured surfaces using neural networks and statistical feature representations. Procedia CIRP, 7, 347–352. Weiner, D., Thamer, H., & Scholz-Reiter, B. (2013). Learning defect classifiers for textured surfaces using neural networks and statistical feature representations. Procedia CIRP, 7, 347–352.
Zurück zum Zitat Yanh, H., Mei, S., Song, K., Tao, B., & Yin, Z. (2018). Transfer-learning-based online Mura defect classification. IEEE Transactions on Semiconductor Manufacturing, 31(1), 116–123. Yanh, H., Mei, S., Song, K., Tao, B., & Yin, Z. (2018). Transfer-learning-based online Mura defect classification. IEEE Transactions on Semiconductor Manufacturing, 31(1), 116–123.
Zurück zum Zitat Zhang, Y. F., & Bresee, R. R. (1995). Fabric defect detection and classification using image analysis. Textile Research Journal, 65(1), 1–9. Zhang, Y. F., & Bresee, R. R. (1995). Fabric defect detection and classification using image analysis. Textile Research Journal, 65(1), 1–9.
Metadaten
Titel
Effective automatic defect classification process based on CNN with stacking ensemble model for TFT-LCD panel
verfasst von
Myeongso Kim
Minyoung Lee
Minjeong An
Hongchul Lee
Publikationsdatum
30.10.2019
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 5/2020
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-019-01502-y

Weitere Artikel der Ausgabe 5/2020

Journal of Intelligent Manufacturing 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.