Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 6/2023

10.06.2022

Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges

verfasst von: Yingjie Zhang, Wentao Yan

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The continuous development of metal additive manufacturing (AM) promises the flexible and customized production, spurring AM research towards end-use part fabrication rather than prototyping, but inability to well control process defects and variability has precluded the widespread applications of AM. To solve these issues, process monitoring and control is a powerful approach. Recently, a variety of monitoring methods have been proposed and integrated with metal AM machines, which enables a large volume of data to be collected during the process. However, the data analytics faces great challenges due to the complexity of the process, bringing difficulties on developing effective models for defects detection as well as feedback control to improve quality. To overcome these challenges, machine learning methods have been frequently employed in the model development. By using machine learning methods, the models can be built based on the collected dataset, while it is not necessary to fully understand the process. This paper reviews the applications of machine learning methods in metal powder-bed fusion process monitoring and control, illuminates the challenges to be solved, and outlooks possible solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ali, M. Z., Nasmus, S. M., Khan, S., Liang, X., Zhang, Yu., & Hu, T. (2019). Machine learning-based fault diagnosis for single-and multi-faults in induction motors using measured stator currents and vibration signals. IEEE Transactions on Industry Applications, 55(3), 2378–2391.CrossRef Ali, M. Z., Nasmus, S. M., Khan, S., Liang, X., Zhang, Yu., & Hu, T. (2019). Machine learning-based fault diagnosis for single-and multi-faults in induction motors using measured stator currents and vibration signals. IEEE Transactions on Industry Applications, 55(3), 2378–2391.CrossRef
Zurück zum Zitat Adnan, M., Lu, Y., Jones, A., & Cheng, F. T. (2019). Application of the Fog computing paradigm to additive manufacturing process monitoring and control. SSRN 3785854. Adnan, M., Lu, Y., Jones, A., & Cheng, F. T. (2019). Application of the Fog computing paradigm to additive manufacturing process monitoring and control. SSRN 3785854.
Zurück zum Zitat Baumgartl, H., Tomas, J., Buettner, R., & Merkel, M. (2020). A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring. Progress in Additive Manufacturing, 5(3), 277–285.CrossRef Baumgartl, H., Tomas, J., Buettner, R., & Merkel, M. (2020). A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring. Progress in Additive Manufacturing, 5(3), 277–285.CrossRef
Zurück zum Zitat Berumen, S., Bechmann, F., Lindner, S., Kruth, J.-P., & Craeghs, T. (2010). Quality control of laser-and powder bed-based Additive Manufacturing (AM) technologies. Physics Procedia, 5, 617–622.CrossRef Berumen, S., Bechmann, F., Lindner, S., Kruth, J.-P., & Craeghs, T. (2010). Quality control of laser-and powder bed-based Additive Manufacturing (AM) technologies. Physics Procedia, 5, 617–622.CrossRef
Zurück zum Zitat Bidare, P., Maier, R. R., Josef, B., Rainer, J., Shephard, J. D., & Moore, A. J. (2017). An open-architecture metal powder bed fusion system for in-situ process measurements. Additive Manufacturing, 16, 177–185.CrossRef Bidare, P., Maier, R. R., Josef, B., Rainer, J., Shephard, J. D., & Moore, A. J. (2017). An open-architecture metal powder bed fusion system for in-situ process measurements. Additive Manufacturing, 16, 177–185.CrossRef
Zurück zum Zitat Bisht, M., Ray, N., Verbist, F., & Coeck, S. (2018). Correlation of selective laser melting-melt pool events with the tensile properties of Ti-6Al-4V ELI processed by laser powder bed fusion. Additive Manufacturing, 22, 302–306.CrossRef Bisht, M., Ray, N., Verbist, F., & Coeck, S. (2018). Correlation of selective laser melting-melt pool events with the tensile properties of Ti-6Al-4V ELI processed by laser powder bed fusion. Additive Manufacturing, 22, 302–306.CrossRef
Zurück zum Zitat Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R., & Teti, R. (2019). Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Annals, 68(1), 451–454.CrossRef Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R., & Teti, R. (2019). Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Annals, 68(1), 451–454.CrossRef
Zurück zum Zitat Cain, V., Thijs, L., Van Humbeeck, J., Van Hooreweder, B., & Knutsen, R. (2015). Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Additive Manufacturing, 5, 68–76.CrossRef Cain, V., Thijs, L., Van Humbeeck, J., Van Hooreweder, B., & Knutsen, R. (2015). Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Additive Manufacturing, 5, 68–76.CrossRef
Zurück zum Zitat Calta, N. P., Wang, J., Kiss, A. M., Martin, A. A., Depond, P. J., Guss, G. M., Thampy, V., Fong, A. Y., Weker, J. N., Stone, K. H., Tassone, C. J., Kramer, M. J., Toney, M. F., Van Buuren, A., & Matthews, M. J. (2018). An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. Review of Scientific Instruments, 89(5), 055101.CrossRef Calta, N. P., Wang, J., Kiss, A. M., Martin, A. A., Depond, P. J., Guss, G. M., Thampy, V., Fong, A. Y., Weker, J. N., Stone, K. H., Tassone, C. J., Kramer, M. J., Toney, M. F., Van Buuren, A., & Matthews, M. J. (2018). An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. Review of Scientific Instruments, 89(5), 055101.CrossRef
Zurück zum Zitat Carroll, B. E., Palmer, T. A., & Beese, A. M. (2015). Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Materialia, 87, 309–320.CrossRef Carroll, B. E., Palmer, T. A., & Beese, A. M. (2015). Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Materialia, 87, 309–320.CrossRef
Zurück zum Zitat Carter, L. N., Attallah, M. M., & Reed, R. C. (2012). Laser powder bed fabrication of nickel-base superalloys: Influence of parameters; characterisation, quantification and mitigation of cracking. Superalloys, 2012, 577–586.CrossRef Carter, L. N., Attallah, M. M., & Reed, R. C. (2012). Laser powder bed fabrication of nickel-base superalloys: Influence of parameters; characterisation, quantification and mitigation of cracking. Superalloys, 2012, 577–586.CrossRef
Zurück zum Zitat Chen, D., Wang, P., Pan, Ri., Zha, C., Fan, J., Kong, S., Li, Na., Li, J., & Zeng, Z. (2021). Research on in situ monitoring of selective laser melting: A state of the art review. The International Journal of Advanced Manufacturing Technology, 113(11), 3121–3138.CrossRef Chen, D., Wang, P., Pan, Ri., Zha, C., Fan, J., Kong, S., Li, Na., Li, J., & Zeng, Z. (2021). Research on in situ monitoring of selective laser melting: A state of the art review. The International Journal of Advanced Manufacturing Technology, 113(11), 3121–3138.CrossRef
Zurück zum Zitat Chen, Y., Zhang, K., Huang, J., Hosseini, S. R. E., & Li, Z. (2016). Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718. Materials & Design, 90, 586–594.CrossRef Chen, Y., Zhang, K., Huang, J., Hosseini, S. R. E., & Li, Z. (2016). Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718. Materials & Design, 90, 586–594.CrossRef
Zurück zum Zitat Cheng, B., Lei, J., & Xiao, H. (2019). A photoacoustic imaging method for in-situ monitoring of laser assisted ceramic additive manufacturing. Optics & Laser Technology, 115, 459–464.CrossRef Cheng, B., Lei, J., & Xiao, H. (2019). A photoacoustic imaging method for in-situ monitoring of laser assisted ceramic additive manufacturing. Optics & Laser Technology, 115, 459–464.CrossRef
Zurück zum Zitat Clijsters, S., Craeghs, T., Buls, S., Kempen, K., & Kruth, J.-P. (2014). In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. The International Journal of Advanced Manufacturing Technology, 75(5–8), 1089–1101.CrossRef Clijsters, S., Craeghs, T., Buls, S., Kempen, K., & Kruth, J.-P. (2014). In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. The International Journal of Advanced Manufacturing Technology, 75(5–8), 1089–1101.CrossRef
Zurück zum Zitat Coeck, S., Bisht, M., Plas, J., & Verbist, F. (2019). Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data. Additive Manufacturing, 25, 347–356.CrossRef Coeck, S., Bisht, M., Plas, J., & Verbist, F. (2019). Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data. Additive Manufacturing, 25, 347–356.CrossRef
Zurück zum Zitat Craeghs, T., Bechmann, F., Berumen, S., & Kruth, J.-P. (2010). Feedback control of Layerwise Laser Melting using optical sensors. Physics Procedia, 5, 505–514.CrossRef Craeghs, T., Bechmann, F., Berumen, S., & Kruth, J.-P. (2010). Feedback control of Layerwise Laser Melting using optical sensors. Physics Procedia, 5, 505–514.CrossRef
Zurück zum Zitat Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T., & Rollett, A. D. (2019). Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science, 363(6429), 849–852.CrossRef Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T., & Rollett, A. D. (2019). Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science, 363(6429), 849–852.CrossRef
Zurück zum Zitat DePond, P. J., Guss, G., Ly, S., Calta, N. P., Deane, D., Khairallah, S., & Matthews, M. J. (2018). In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry. Materials & Design, 154, 347–359.CrossRef DePond, P. J., Guss, G., Ly, S., Calta, N. P., Deane, D., Khairallah, S., & Matthews, M. J. (2018). In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry. Materials & Design, 154, 347–359.CrossRef
Zurück zum Zitat Dryburgh, P., Patel, R., Pieris, D. M., Hirsch, M., Li, W., Sharples, S. D., Smith, R. J., Clare, A. T., & Clark, M. (2019). Spatially resolved acoustic spectroscopy for texture imaging in powder bed fusion nickel superalloys. Paper presented at the AIP Conference Proceedings. Dryburgh, P., Patel, R., Pieris, D. M., Hirsch, M., Li, W., Sharples, S. D., Smith, R. J., Clare, A. T., & Clark, M. (2019). Spatially resolved acoustic spectroscopy for texture imaging in powder bed fusion nickel superalloys. Paper presented at the AIP Conference Proceedings.
Zurück zum Zitat Duman, B., & Özsoy, K. (2022). A deep learning-based approach for defect detection in powder bed fusion additive manufacturing using transfer learning. Journal of the Faculty of Engineering, & University, Architecture of Gazi, 37(1), 361–375. Duman, B., & Özsoy, K. (2022). A deep learning-based approach for defect detection in powder bed fusion additive manufacturing using transfer learning. Journal of the Faculty of Engineering, & University, Architecture of Gazi, 37(1), 361–375.
Zurück zum Zitat Dunbar, Alexander J, Nassar, Abdalla R, Reutzel, Edward W, & Blecher, Jared J. (2016). A real-time communication architecture for metal powder bed fusion additive manufacturing. Paper presented at the Solid Freeform Fabrication Symposium (SFF), Austin, TX. Dunbar, Alexander J, Nassar, Abdalla R, Reutzel, Edward W, & Blecher, Jared J. (2016). A real-time communication architecture for metal powder bed fusion additive manufacturing. Paper presented at the Solid Freeform Fabrication Symposium (SFF), Austin, TX.
Zurück zum Zitat Edwards, P., O’conner, A., & Ramulu, M. (2013). Electron beam additive manufacturing of titanium components: Properties and performance. Journal of Manufacturing Science and Engineering, 135(6), 061016.CrossRef Edwards, P., O’conner, A., & Ramulu, M. (2013). Electron beam additive manufacturing of titanium components: Properties and performance. Journal of Manufacturing Science and Engineering, 135(6), 061016.CrossRef
Zurück zum Zitat Eschner, N, Weiser, L, Häfner, B, & Lanza, G. (2018). Development of an acoustic process monitoring system for selective laser melting (SLM). Paper presented at the Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference Reviewed Paper. Eschner, N, Weiser, L, Häfner, B, & Lanza, G. (2018). Development of an acoustic process monitoring system for selective laser melting (SLM). Paper presented at the Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference Reviewed Paper.
Zurück zum Zitat Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., & Clare, A. T. (2016). Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials, & Design, 95, 431–445.CrossRef Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., & Clare, A. T. (2016). Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials, & Design, 95, 431–445.CrossRef
Zurück zum Zitat Fathizadan, S., Ju, F., & Lu, Y. (2021). Deep representation learning for process variation management in laser powder bed fusion. Additive Manufacturing, 42, 101961.CrossRef Fathizadan, S., Ju, F., & Lu, Y. (2021). Deep representation learning for process variation management in laser powder bed fusion. Additive Manufacturing, 42, 101961.CrossRef
Zurück zum Zitat Fisher, B. A., Lane, B., Yeung, Ho., & Beuth, J. (2018). Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion. Manufacturing Letters, 15, 119–121.CrossRef Fisher, B. A., Lane, B., Yeung, Ho., & Beuth, J. (2018). Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion. Manufacturing Letters, 15, 119–121.CrossRef
Zurück zum Zitat Foster, B, Reutzel, E, Nassar, A, Hall, B, Brown, S, & Dickman, C. (2015). Optical, layerwise monitoring of powder bed fusion. Paper presented at the Solid Freeform Fabrication Symposium, Austin, TX, Aug. Foster, B, Reutzel, E, Nassar, A, Hall, B, Brown, S, & Dickman, C. (2015). Optical, layerwise monitoring of powder bed fusion. Paper presented at the Solid Freeform Fabrication Symposium, Austin, TX, Aug.
Zurück zum Zitat Furumoto, T., Ueda, T., Alkahari, M. R., & Hosokawa, A. (2013). Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera. CIRP Annals, 62(1), 223–226.CrossRef Furumoto, T., Ueda, T., Alkahari, M. R., & Hosokawa, A. (2013). Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera. CIRP Annals, 62(1), 223–226.CrossRef
Zurück zum Zitat Gaikwad, A., Giera, B., Guss, G. M., Forien, J.-B., Matthews, M. J., & Rao, P. (2020). Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion–a single-track study. Additive Manufacturing, 36, 101659.CrossRef Gaikwad, A., Giera, B., Guss, G. M., Forien, J.-B., Matthews, M. J., & Rao, P. (2020). Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion–a single-track study. Additive Manufacturing, 36, 101659.CrossRef
Zurück zum Zitat Gaikwad, A., Yavari, R., Montazeri, M., Cole, K., Bian, L., & Rao, P. (2020). Toward the digital twin of additive manufacturing: Integrating thermal simulations, sensing, and analytics to detect process faults. IISE Transactions, 52(11), 1204–1217.CrossRef Gaikwad, A., Yavari, R., Montazeri, M., Cole, K., Bian, L., & Rao, P. (2020). Toward the digital twin of additive manufacturing: Integrating thermal simulations, sensing, and analytics to detect process faults. IISE Transactions, 52(11), 1204–1217.CrossRef
Zurück zum Zitat Garanger, K., Khamvilai, T., & Feron, E. (2020). Validating feedback control to meet stiffness requirements in additive manufacturing. IEEE Transactions on Control Systems Technology, 28(5), 2053–2060.CrossRef Garanger, K., Khamvilai, T., & Feron, E. (2020). Validating feedback control to meet stiffness requirements in additive manufacturing. IEEE Transactions on Control Systems Technology, 28(5), 2053–2060.CrossRef
Zurück zum Zitat Gobert, C., Reutzel, E. W., Petrich, J., Nassar, A. R., & Phoha, S. (2018). Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Additive Manufacturing, 21, 517–528.CrossRef Gobert, C., Reutzel, E. W., Petrich, J., Nassar, A. R., & Phoha, S. (2018). Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Additive Manufacturing, 21, 517–528.CrossRef
Zurück zum Zitat Gökhan Demir, A., De Giorgi, C., & Previtali, B. (2018). Design and implementation of a multisensor coaxial monitoring system with correction strategies for selective laser melting of a maraging steel. Journal of Manufacturing Science, & Engineering 140(4), 041003. Gökhan Demir, A., De Giorgi, C., & Previtali, B. (2018). Design and implementation of a multisensor coaxial monitoring system with correction strategies for selective laser melting of a maraging steel. Journal of Manufacturing Science, & Engineering 140(4), 041003.
Zurück zum Zitat Gong, H., Gu, H., Zeng, K., Dilip, J., Deepankar, P., Stucker, B., Christiansen, D., Beuth, J., & Lewandowski, J. J. (2014). Melt pool characterization for selective laser melting of Ti–6Al–4V pre-alloyed powder. Paper presented at the Solid freeform fabrication symposium. Gong, H., Gu, H., Zeng, K., Dilip, J., Deepankar, P., Stucker, B., Christiansen, D., Beuth, J., & Lewandowski, J. J. (2014). Melt pool characterization for selective laser melting of Ti–6Al–4V pre-alloyed powder. Paper presented at the Solid freeform fabrication symposium.
Zurück zum Zitat Gong, H., Rafi, K., Gu, H., Starr, T., & Stucker, B. (2014). Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing, 1, 87–98.CrossRef Gong, H., Rafi, K., Gu, H., Starr, T., & Stucker, B. (2014). Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing, 1, 87–98.CrossRef
Zurück zum Zitat Grasso, M., Laguzza, V., Semeraro, Q., & Colosimo, B. M. (2017). In-process monitoring of selective laser melting: spatial detection of defects via image data analysis. Journal of Manufacturing Science, & Engineering. 139(5). Grasso, M., Laguzza, V., Semeraro, Q., & Colosimo, B. M. (2017). In-process monitoring of selective laser melting: spatial detection of defects via image data analysis. Journal of Manufacturing Science, & Engineering. 139(5).
Zurück zum Zitat Grasso, M., & Colosimo, B. M. (2017). Process defects and in situ monitoring methods in metal powder bed fusion: A review. Measurement Science, & Technology, 4, 044005.CrossRef Grasso, M., & Colosimo, B. M. (2017). Process defects and in situ monitoring methods in metal powder bed fusion: A review. Measurement Science, & Technology, 4, 044005.CrossRef
Zurück zum Zitat Grasso, M., Demir, A. G., Previtali, B., & Colosimo, B. M. (2018). In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume. Robotics and Computer-Integrated Manufacturing, 49, 229–239.CrossRef Grasso, M., Demir, A. G., Previtali, B., & Colosimo, B. M. (2018). In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume. Robotics and Computer-Integrated Manufacturing, 49, 229–239.CrossRef
Zurück zum Zitat Grasso, M., Gallina, F., & Colosimo, B. M. (2018). Data fusion methods for statistical process monitoring and quality characterization in metal additive manufacturing. Procedia CIRP, 75, 103–107.CrossRef Grasso, M., Gallina, F., & Colosimo, B. M. (2018). Data fusion methods for statistical process monitoring and quality characterization in metal additive manufacturing. Procedia CIRP, 75, 103–107.CrossRef
Zurück zum Zitat Grasso, M. L. G., Remani, A., Dickins, A., Colosimo, B. M., & Leach, R. K. (2021). In-situ measurement and monitoring methods for metal powder bed fusion—an updated review. Measurement Science, & Technology, 32, 112001.CrossRef Grasso, M. L. G., Remani, A., Dickins, A., Colosimo, B. M., & Leach, R. K. (2021). In-situ measurement and monitoring methods for metal powder bed fusion—an updated review. Measurement Science, & Technology, 32, 112001.CrossRef
Zurück zum Zitat Gu, H., Gong, H., Pal, D., Rafi, K., Starr, T., & Stucker, B. (2013). Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel. Paper presented at the 2013 solid freeform fabrication symposium. Gu, H., Gong, H., Pal, D., Rafi, K., Starr, T., & Stucker, B. (2013). Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel. Paper presented at the 2013 solid freeform fabrication symposium.
Zurück zum Zitat Han, X., Zhu, H., Nie, X., Wang, G., & Zeng, X. (2018). Investigation on selective laser melting AlSi10Mg cellular lattice strut: Molten pool morphology, surface roughness and dimensional accuracy. Materials, 11(3), 392.CrossRef Han, X., Zhu, H., Nie, X., Wang, G., & Zeng, X. (2018). Investigation on selective laser melting AlSi10Mg cellular lattice strut: Molten pool morphology, surface roughness and dimensional accuracy. Materials, 11(3), 392.CrossRef
Zurück zum Zitat Hojjatzadeh, S. M., Parab, H., Niranjan D, Yan, Wentao, Guo, Qilin, Xiong, Lianghua, Zhao, Cang, Qu, L., Escano, L. I., Xiao, X., Fezzaa, Kamel, Everhart, W., Sun, T., Chen, L. (2019). Pore elimination mechanisms during 3D printing of metals. Nature Communications, 10(1), 3088. Hojjatzadeh, S. M., Parab, H., Niranjan D, Yan, Wentao, Guo, Qilin, Xiong, Lianghua, Zhao, Cang, Qu, L., Escano, L. I., Xiao, X., Fezzaa, Kamel, Everhart, W., Sun, T., Chen, L. (2019). Pore elimination mechanisms during 3D printing of metals. Nature Communications, 10(1), 3088.
Zurück zum Zitat Hrabe, N., & Quinn, T. (2013). Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location. Materials Science and Engineering: A, 573, 271–277.CrossRef Hrabe, N., & Quinn, T. (2013). Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location. Materials Science and Engineering: A, 573, 271–277.CrossRef
Zurück zum Zitat Imani, F., Chen, R., Diewald, E., Reutzel, E., & Yang, H. (2019). Deep learning of variant geometry in layerwise imaging profiles for additive manufacturing quality control. Journal of Manufacturing Science and Engineering, 141(11), 1–16.CrossRef Imani, F., Chen, R., Diewald, E., Reutzel, E., & Yang, H. (2019). Deep learning of variant geometry in layerwise imaging profiles for additive manufacturing quality control. Journal of Manufacturing Science and Engineering, 141(11), 1–16.CrossRef
Zurück zum Zitat Jayasinghe, S., Paoletti, P., Sutcliffe, C., Dardis, J., Jones, N., & Green, P. L. (2021). Automatic quality assessments of laser powder bed fusion builds from photodiode sensor measurements. Progress in Additive Manufacturing, 7(2), 143–160.CrossRef Jayasinghe, S., Paoletti, P., Sutcliffe, C., Dardis, J., Jones, N., & Green, P. L. (2021). Automatic quality assessments of laser powder bed fusion builds from photodiode sensor measurements. Progress in Additive Manufacturing, 7(2), 143–160.CrossRef
Zurück zum Zitat Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.CrossRef Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.CrossRef
Zurück zum Zitat Kalms, M., Narita, R., Thomy, C., Vollertsen, F., & Bergmann, R. B. (2019). New approach to evaluate 3D laser printed parts in powder bed fusion-based additive manufacturing in-line within closed space. Additive Manufacturing, 26, 161–165.CrossRef Kalms, M., Narita, R., Thomy, C., Vollertsen, F., & Bergmann, R. B. (2019). New approach to evaluate 3D laser printed parts in powder bed fusion-based additive manufacturing in-line within closed space. Additive Manufacturing, 26, 161–165.CrossRef
Zurück zum Zitat Kanko, J. A., Sibley, A. P., & Fraser, J. M. (2016). In situ morphology-based defect detection of selective laser melting through inline coherent imaging. Journal of Materials Processing Technology, 231, 488–500.CrossRef Kanko, J. A., Sibley, A. P., & Fraser, J. M. (2016). In situ morphology-based defect detection of selective laser melting through inline coherent imaging. Journal of Materials Processing Technology, 231, 488–500.CrossRef
Zurück zum Zitat Karniadakis, G. E., Kevrekidis, I. G., Lu, Lu., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440.CrossRef Karniadakis, G. E., Kevrekidis, I. G., Lu, Lu., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440.CrossRef
Zurück zum Zitat Kasperovich, G., Haubrich, J., Gussone, J., & Requena, G. (2016). Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Materials, & Design, 105, 160–170.CrossRef Kasperovich, G., Haubrich, J., Gussone, J., & Requena, G. (2016). Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Materials, & Design, 105, 160–170.CrossRef
Zurück zum Zitat Kats, D., Wang, Z., Gan, Z., Liu, W. K., Wagner, G. J., & Lian, Y. (2022). A physics-informed machine learning method for predicting grain structure characteristics in directed energy deposition. Computational Materials Science, 202, 110958.CrossRef Kats, D., Wang, Z., Gan, Z., Liu, W. K., Wagner, G. J., & Lian, Y. (2022). A physics-informed machine learning method for predicting grain structure characteristics in directed energy deposition. Computational Materials Science, 202, 110958.CrossRef
Zurück zum Zitat Khairallah, S. A., Anderson, A. T., Rubenchik, A., & King, W. E. (2016a). Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Materialia, 108, 36–45.CrossRef Khairallah, S. A., Anderson, A. T., Rubenchik, A., & King, W. E. (2016a). Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Materialia, 108, 36–45.CrossRef
Zurück zum Zitat Khanzadeh, M., Chowdhury, S., Marufuzzaman, M., Tschopp, M. A., & Bian, L. (2018). Porosity prediction: Supervised-learning of thermal history for direct laser deposition. Journal of Manufacturing Systems, 47, 69–82.CrossRef Khanzadeh, M., Chowdhury, S., Marufuzzaman, M., Tschopp, M. A., & Bian, L. (2018). Porosity prediction: Supervised-learning of thermal history for direct laser deposition. Journal of Manufacturing Systems, 47, 69–82.CrossRef
Zurück zum Zitat Khanzadeh, M., Chowdhury, S., Tschopp, M. A., Doude, H. R., Marufuzzaman, M., & Bian, L. (2019). In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Transactions, 51(5), 437–455.CrossRef Khanzadeh, M., Chowdhury, S., Tschopp, M. A., Doude, H. R., Marufuzzaman, M., & Bian, L. (2019). In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Transactions, 51(5), 437–455.CrossRef
Zurück zum Zitat Kleszczynski, S., Zur Jacobsmühlen, J., Sehrt, J., & Witt, G. (2012). Error detection in laser beam melting systems by high resolution imaging. Paper presented at the Proceedings of the Solid Freeform Fabrication Symposium. Kleszczynski, S., Zur Jacobsmühlen, J., Sehrt, J., & Witt, G. (2012). Error detection in laser beam melting systems by high resolution imaging. Paper presented at the Proceedings of the Solid Freeform Fabrication Symposium.
Zurück zum Zitat Knaak, C., Masseling, L., Duong, E., Abels, P., & Gillner, A. (2021). Improving Build Quality in Laser Powder Bed Fusion Using High Dynamic Range Imaging and Model-Based Reinforcement Learning. IEEE Access, 9, 55214–55231.CrossRef Knaak, C., Masseling, L., Duong, E., Abels, P., & Gillner, A. (2021). Improving Build Quality in Laser Powder Bed Fusion Using High Dynamic Range Imaging and Model-Based Reinforcement Learning. IEEE Access, 9, 55214–55231.CrossRef
Zurück zum Zitat Koester, Lucas W, Taheri, Hossein, Bigelow, Timothy A, Bond, Leonard J, & Faierson, Eric J. (2018). In-situ acoustic signature monitoring in additive manufacturing processes. Paper presented at the AIP Conference Proceedings. Koester, Lucas W, Taheri, Hossein, Bigelow, Timothy A, Bond, Leonard J, & Faierson, Eric J. (2018). In-situ acoustic signature monitoring in additive manufacturing processes. Paper presented at the AIP Conference Proceedings.
Zurück zum Zitat Koga, S., Krstic, M., & Beaman, J. (2020). Laser Sintering Control for Metal Additive Manufacturing by PDE Backstepping. IEEE Transactions on Control Systems Technology, 28(5), 1928–1939.CrossRef Koga, S., Krstic, M., & Beaman, J. (2020). Laser Sintering Control for Metal Additive Manufacturing by PDE Backstepping. IEEE Transactions on Control Systems Technology, 28(5), 1928–1939.CrossRef
Zurück zum Zitat Kok, Y., Tan, X. P., Wang, P., Nai, M. L. S., Loh, N. H., Liu, E., & Tor, S. B. (2018). Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Materials & Design, 139, 565–586.CrossRef Kok, Y., Tan, X. P., Wang, P., Nai, M. L. S., Loh, N. H., Liu, E., & Tor, S. B. (2018). Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Materials & Design, 139, 565–586.CrossRef
Zurück zum Zitat Krauss, H., Zeugner, T., & Zaeh, M. F. (2014). Layerwise monitoring of the selective laser melting process by thermography. Physics Procedia, 56, 64–71.CrossRef Krauss, H., Zeugner, T., & Zaeh, M. F. (2014). Layerwise monitoring of the selective laser melting process by thermography. Physics Procedia, 56, 64–71.CrossRef
Zurück zum Zitat Kriczky, D. A., Irwin, J., Reutzel, E. W., Michaleris, P., Nassar, A. R., & Craig, J. (2015). 3D spatial reconstruction of thermal characteristics in directed energy deposition through optical thermal imaging. Journal of Materials Processing Technology, 221, 172–186.CrossRef Kriczky, D. A., Irwin, J., Reutzel, E. W., Michaleris, P., Nassar, A. R., & Craig, J. (2015). 3D spatial reconstruction of thermal characteristics in directed energy deposition through optical thermal imaging. Journal of Materials Processing Technology, 221, 172–186.CrossRef
Zurück zum Zitat Kruth, J.-P., Mercelis, P., Van Vaerenbergh, J., & Craeghs, T. (2007). Feedback control of selective laser melting. Paper presented at the Proceedings of the 3rd international conference on advanced research in virtual and rapid prototyping. Kruth, J.-P., Mercelis, P., Van Vaerenbergh, J., & Craeghs, T. (2007). Feedback control of selective laser melting. Paper presented at the Proceedings of the 3rd international conference on advanced research in virtual and rapid prototyping.
Zurück zum Zitat Kwon, O., Kim, H. G., Kim, W., Kim, G.-H., & Kim, K. (2020). A convolutional neural network for prediction of laser power using melt-pool images in laser powder bed fusion. IEEE Access, 8, 23255–23263.CrossRef Kwon, O., Kim, H. G., Kim, W., Kim, G.-H., & Kim, K. (2020). A convolutional neural network for prediction of laser power using melt-pool images in laser powder bed fusion. IEEE Access, 8, 23255–23263.CrossRef
Zurück zum Zitat Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., & Maier, H. J. (2013). On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue, 48, 300–307.CrossRef Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., & Maier, H. J. (2013). On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue, 48, 300–307.CrossRef
Zurück zum Zitat Leung, C. L., Alex, M., Sebastian, A., Robert, C., Towrie, M., Withers, P. J., & Lee, P. D. (2018). In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nature Communications, 9(1), 1355.CrossRef Leung, C. L., Alex, M., Sebastian, A., Robert, C., Towrie, M., Withers, P. J., & Lee, P. D. (2018). In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nature Communications, 9(1), 1355.CrossRef
Zurück zum Zitat Li, J., Zhou, Q., Huang, X., Li, M., & Cao, L. (2021). In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting. Journal of Intelligent Manufacturing 1–15. Li, J., Zhou, Q., Huang, X., Li, M., & Cao, L. (2021). In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting. Journal of Intelligent Manufacturing 1–15.
Zurück zum Zitat Li, Z., Liu, X., Wen, S., He, P., Zhong, K., Wei, Q., Shi, Y., & Liu, S. (2018). In situ 3d monitoring of geometric signatures in the powder-bed-fusion additive manufacturing process via vision sensing methods. Sensors, 18(4), 1180.CrossRef Li, Z., Liu, X., Wen, S., He, P., Zhong, K., Wei, Q., Shi, Y., & Liu, S. (2018). In situ 3d monitoring of geometric signatures in the powder-bed-fusion additive manufacturing process via vision sensing methods. Sensors, 18(4), 1180.CrossRef
Zurück zum Zitat Liu, C., Le Roux, L., Körner, C., Tabaste, O., Lacan, F., & Bigot, S. (2020). Digital tin-enabled collaborative data management for metal additive manufacturing systems. Journal of Manufacturing Systems, 62, 857–874. Liu, C., Le Roux, L., Körner, C., Tabaste, O., Lacan, F., & Bigot, S. (2020). Digital tin-enabled collaborative data management for metal additive manufacturing systems. Journal of Manufacturing Systems, 62, 857–874.
Zurück zum Zitat Liu, R., Liu, S., & Zhang, X. (2021). A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing. The International Journal of Advanced Manufacturing Technology, 113(7), 1943–1958.CrossRef Liu, R., Liu, S., & Zhang, X. (2021). A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing. The International Journal of Advanced Manufacturing Technology, 113(7), 1943–1958.CrossRef
Zurück zum Zitat Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47.CrossRef Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47.CrossRef
Zurück zum Zitat Ly, S., Rubenchik, A. M., Khairallah, S. A., Guss, G., & Matthews, M. J. (2017). Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Scientific Reports, 7(1), 4085.CrossRef Ly, S., Rubenchik, A. M., Khairallah, S. A., Guss, G., & Matthews, M. J. (2017). Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Scientific Reports, 7(1), 4085.CrossRef
Zurück zum Zitat Mahmoudi, M., Ezzat, A. A., & Elwany, A. (2019). Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing. Journal of Manufacturing Science and Engineering, 141(3), 031002.CrossRef Mahmoudi, M., Ezzat, A. A., & Elwany, A. (2019). Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing. Journal of Manufacturing Science and Engineering, 141(3), 031002.CrossRef
Zurück zum Zitat Mani, M., Feng, S., Lane, B., Donmez, A., Moylan, S., & Fesperman, R. (2015). Measurement science needs for real-time control of additive manufacturing powder bed fusion processes. In Additive manufacturing handbook. Tayor & Francis. Mani, M., Feng, S., Lane, B., Donmez, A., Moylan, S., & Fesperman, R. (2015). Measurement science needs for real-time control of additive manufacturing powder bed fusion processes. In Additive manufacturing handbook. Tayor & Francis.
Zurück zum Zitat Matthews, M. J., Guss, G., Khairallah, S. A., Rubenchik, A. M., Depond, P. J., & King, W. E. (2016). Denudation of metal powder layers in laser powder bed fusion processes. Acta Materialia, 114, 33–42.CrossRef Matthews, M. J., Guss, G., Khairallah, S. A., Rubenchik, A. M., Depond, P. J., & King, W. E. (2016). Denudation of metal powder layers in laser powder bed fusion processes. Acta Materialia, 114, 33–42.CrossRef
Zurück zum Zitat McCann, R., Obeidi, M. A., Hughes, C., McCarthy, É., Egan, D. S., Vijayaraghavan, R. K., Joshi, A. M., Garzon, V. A., Dowling, T. P., McNally, P. J., & Brabazon, D. (2021). In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review. Additive Manufacturing, 45, 102058.CrossRef McCann, R., Obeidi, M. A., Hughes, C., McCarthy, É., Egan, D. S., Vijayaraghavan, R. K., Joshi, A. M., Garzon, V. A., Dowling, T. P., McNally, P. J., & Brabazon, D. (2021). In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review. Additive Manufacturing, 45, 102058.CrossRef
Zurück zum Zitat Mercelis, P., & Kruth, J.-P. (2006). Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 12(5), 254–265.CrossRef Mercelis, P., & Kruth, J.-P. (2006). Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 12(5), 254–265.CrossRef
Zurück zum Zitat Mondal, S., Gwynn, D., Ray, A., & Basak, A. (2020). Investigation of Melt Pool Geometry Control in Additive Manufacturing Using Hybrid Modeling. Metals, 10(5), 683.CrossRef Mondal, S., Gwynn, D., Ray, A., & Basak, A. (2020). Investigation of Melt Pool Geometry Control in Additive Manufacturing Using Hybrid Modeling. Metals, 10(5), 683.CrossRef
Zurück zum Zitat Montazeri, M., Nassar, A. R., Dunbar, A. J., & Rao, P. (2020). In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy. IISE Transactions, 52(5), 500–515.CrossRef Montazeri, M., Nassar, A. R., Dunbar, A. J., & Rao, P. (2020). In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy. IISE Transactions, 52(5), 500–515.CrossRef
Zurück zum Zitat Montazeri, M., & Rao, P. (2018). Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach. Journal of Manufacturing Science, & Engineering. 140(9), 091002. Montazeri, M., & Rao, P. (2018). Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach. Journal of Manufacturing Science, & Engineering. 140(9), 091002.
Zurück zum Zitat Mousa, A. A. (2016). Experimental investigations of curling phenomenon in selective laser sintering process. Rapid Prototyping Journal, 22, 405–415.CrossRef Mousa, A. A. (2016). Experimental investigations of curling phenomenon in selective laser sintering process. Rapid Prototyping Journal, 22, 405–415.CrossRef
Zurück zum Zitat Murr, L. E., Quinones, S. A., Gaytan, S. M., Lopez, M. I., Rodela, A., Martinez, E. Y., Hernandez, D. H., Martinez, E., Medina, F., & Wicker, R. B. (2009). Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2(1), 20–32.CrossRef Murr, L. E., Quinones, S. A., Gaytan, S. M., Lopez, M. I., Rodela, A., Martinez, E. Y., Hernandez, D. H., Martinez, E., Medina, F., & Wicker, R. B. (2009). Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2(1), 20–32.CrossRef
Zurück zum Zitat Nassar, A. R., Gundermann, M. A., Reutzel, E. W., Guerrier, P., Krane, M. H., & Weldon, M. J. (2019). Formation processes for large ejecta and interactions with melt pool formation in powder bed fusion additive manufacturing. Scientific Reports, 9(1), 5038.CrossRef Nassar, A. R., Gundermann, M. A., Reutzel, E. W., Guerrier, P., Krane, M. H., & Weldon, M. J. (2019). Formation processes for large ejecta and interactions with melt pool formation in powder bed fusion additive manufacturing. Scientific Reports, 9(1), 5038.CrossRef
Zurück zum Zitat O’Loughlin, S., Dutton, B., Semaj, G., Snell, E., Rindler, J., & Groeber, M. A. (2021). Towards In-process Prediction of Voids in Laser Powder Bed Fusion. JOM Journal of the Minerals Metals and Materials Society, 73(11), 3240–3249.CrossRef O’Loughlin, S., Dutton, B., Semaj, G., Snell, E., Rindler, J., & Groeber, M. A. (2021). Towards In-process Prediction of Voids in Laser Powder Bed Fusion. JOM Journal of the Minerals Metals and Materials Society, 73(11), 3240–3249.CrossRef
Zurück zum Zitat Okaro, I. A., Jayasinghe, S., Sutcliffe, C., Black, K., Paoletti, P., & Green, P. L. (2019). Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Additive Manufacturing, 27, 42–53.CrossRef Okaro, I. A., Jayasinghe, S., Sutcliffe, C., Black, K., Paoletti, P., & Green, P. L. (2019). Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Additive Manufacturing, 27, 42–53.CrossRef
Zurück zum Zitat Pagani, L., Grasso, M., Scott, P. J., & Colosimo, B. M. (2020). Automated layerwise detection of geometrical distortions in laser powder bed fusion. Additive Manufacturing, 36, 101435.CrossRef Pagani, L., Grasso, M., Scott, P. J., & Colosimo, B. M. (2020). Automated layerwise detection of geometrical distortions in laser powder bed fusion. Additive Manufacturing, 36, 101435.CrossRef
Zurück zum Zitat Pandiyan, V., Drissi-Daoudi, R., Shevchik, S., Masinelli, G., Le-Quang, T., Logé, R., & Wasmer, K. (2021). Semi-Supervised Monitoring of Laser Powder Bed Fusion Process Based on Acoustic Emissions, 16(4), 481–497. Pandiyan, V., Drissi-Daoudi, R., Shevchik, S., Masinelli, G., Le-Quang, T., Logé, R., & Wasmer, K. (2021). Semi-Supervised Monitoring of Laser Powder Bed Fusion Process Based on Acoustic Emissions, 16(4), 481–497.
Zurück zum Zitat Pandiyan, V., Drissi-Daoudi, R., Shevchik, S., Masinelli, G., Le-Quang, T., Logé, R., & Wasmer, K. (2022). Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process. Journal of Materials Processing Technology, 303, 117531.CrossRef Pandiyan, V., Drissi-Daoudi, R., Shevchik, S., Masinelli, G., Le-Quang, T., Logé, R., & Wasmer, K. (2022). Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process. Journal of Materials Processing Technology, 303, 117531.CrossRef
Zurück zum Zitat Paul, R., Anand, S., & Gerner, F. (2014). Effect of thermal deformation on part errors in metal powder based additive manufacturing processes. Journal of Manufacturing Science and Engineering, 136(3), 031009.CrossRef Paul, R., Anand, S., & Gerner, F. (2014). Effect of thermal deformation on part errors in metal powder based additive manufacturing processes. Journal of Manufacturing Science and Engineering, 136(3), 031009.CrossRef
Zurück zum Zitat Qiu, C., Panwisawas, C., Ward, M., Basoalto, H. C., Brooks, J. W., & Attallah, M. M. (2015). On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Materialia, 96, 72–79.CrossRef Qiu, C., Panwisawas, C., Ward, M., Basoalto, H. C., Brooks, J. W., & Attallah, M. M. (2015). On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Materialia, 96, 72–79.CrossRef
Zurück zum Zitat Repossini, G., Laguzza, V., Grasso, M., & Colosimo, B. M. (2017). On the use of spatter signature for in-situ monitoring of Laser Powder Bed Fusion. Additive Manufacturing, 16, 35–48.CrossRef Repossini, G., Laguzza, V., Grasso, M., & Colosimo, B. M. (2017). On the use of spatter signature for in-situ monitoring of Laser Powder Bed Fusion. Additive Manufacturing, 16, 35–48.CrossRef
Zurück zum Zitat Riaño, C., Rodriguez, E., & Alvares, A. J. (2019). A Closed-Loop Inspection Architecture for Additive Manufacturing Based on STEP Standard. IFAC-PapersOnLine, 52(13), 2782–2787.CrossRef Riaño, C., Rodriguez, E., & Alvares, A. J. (2019). A Closed-Loop Inspection Architecture for Additive Manufacturing Based on STEP Standard. IFAC-PapersOnLine, 52(13), 2782–2787.CrossRef
Zurück zum Zitat Rieder, H., Dillhöfer, A., Spies, M., Bamberg, J., & Hess, T. (2015). Ultrasonic online monitoring of additive manufacturing processes based on selective laser melting. Paper presented at the AIP Conference Proceedings. Rieder, H., Dillhöfer, A., Spies, M., Bamberg, J., & Hess, T. (2015). Ultrasonic online monitoring of additive manufacturing processes based on selective laser melting. Paper presented at the AIP Conference Proceedings.
Zurück zum Zitat Rodriguez, E., Mireles, J., Terrazas, C. A., Espalin, D., Perez, M. A., & Wicker, R. B. (2015). Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography. Additive Manufacturing, 5, 31–39.CrossRef Rodriguez, E., Mireles, J., Terrazas, C. A., Espalin, D., Perez, M. A., & Wicker, R. B. (2015). Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography. Additive Manufacturing, 5, 31–39.CrossRef
Zurück zum Zitat Sammons, P. M., Gegel, M. L., Bristow, D. A., & Landers, R. G. (2018). Repetitive process control of additive manufacturing with application to laser metal deposition. IEEE Transactions on Control Systems Technology, 27(2), 566–575.CrossRef Sammons, P. M., Gegel, M. L., Bristow, D. A., & Landers, R. G. (2018). Repetitive process control of additive manufacturing with application to laser metal deposition. IEEE Transactions on Control Systems Technology, 27(2), 566–575.CrossRef
Zurück zum Zitat Scime, L., & Beuth, J. (2018a). Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Additive Manufacturing, 19, 114–126.CrossRef Scime, L., & Beuth, J. (2018a). Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Additive Manufacturing, 19, 114–126.CrossRef
Zurück zum Zitat Scime, L., & Beuth, J. (2018b). A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 24, 273–286.CrossRef Scime, L., & Beuth, J. (2018b). A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 24, 273–286.CrossRef
Zurück zum Zitat Scime, L., & Beuth, J. (2019). Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 25, 151–165.CrossRef Scime, L., & Beuth, J. (2019). Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 25, 151–165.CrossRef
Zurück zum Zitat Seifi, S. H., Tian, W., Doude, H., Tschopp, M. A., & Bian, L. (2019). Layer-wise modeling and anomaly detection for laser-based additive manufacturing. Journal of Manufacturing Science & Engineering, 141(8), 081013. Seifi, S. H., Tian, W., Doude, H., Tschopp, M. A., & Bian, L. (2019). Layer-wise modeling and anomaly detection for laser-based additive manufacturing. Journal of Manufacturing Science & Engineering, 141(8), 081013.
Zurück zum Zitat Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press. Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.
Zurück zum Zitat Sharratt, B. M. (2015). Non-destructive techniques and technologies for qualification of additive manufactured parts and processes. Literature Review. Sharratt, B. M. (2015). Non-destructive techniques and technologies for qualification of additive manufactured parts and processes. Literature Review.
Zurück zum Zitat Shevchik, S. A., Kenel, C., Leinenbach, C., & Wasmer, K. (2018). Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks. Additive Manufacturing, 21, 598–604.CrossRef Shevchik, S. A., Kenel, C., Leinenbach, C., & Wasmer, K. (2018). Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks. Additive Manufacturing, 21, 598–604.CrossRef
Zurück zum Zitat Slotwinski, J. A., Garboczi, E. J., & Hebenstreit, K. M. (2014). Porosity measurements and analysis for metal additive manufacturing process control. Journal of Research of the National Institute of Standards and Technology, 119, 494.CrossRef Slotwinski, J. A., Garboczi, E. J., & Hebenstreit, K. M. (2014). Porosity measurements and analysis for metal additive manufacturing process control. Journal of Research of the National Institute of Standards and Technology, 119, 494.CrossRef
Zurück zum Zitat Smith, R. J., Hirsch, M., Patel, R., Li, W., Clare, A. T., & Sharples, S. D. (2016). Spatially resolved acoustic spectroscopy for selective laser melting. Journal of Materials Processing Technology, 236, 93–102.CrossRef Smith, R. J., Hirsch, M., Patel, R., Li, W., Clare, A. T., & Sharples, S. D. (2016). Spatially resolved acoustic spectroscopy for selective laser melting. Journal of Materials Processing Technology, 236, 93–102.CrossRef
Zurück zum Zitat Snow, Z., Diehl, B., Reutzel, E. W., & Nassar, A. (2021). Toward in-situ flaw detection in laser powder bed fusion additive manufacturing through layerwise imagery and machine learning. Journal of Manufacturing Systems, 59, 12–26.CrossRef Snow, Z., Diehl, B., Reutzel, E. W., & Nassar, A. (2021). Toward in-situ flaw detection in laser powder bed fusion additive manufacturing through layerwise imagery and machine learning. Journal of Manufacturing Systems, 59, 12–26.CrossRef
Zurück zum Zitat Spears, T. G., & Gold, S. A. (2016). In-process sensing in selective laser melting (SLM) additive manufacturing. Integrating Materials, & Innovation, Manufacturing, 5(1), 16–40.CrossRef Spears, T. G., & Gold, S. A. (2016). In-process sensing in selective laser melting (SLM) additive manufacturing. Integrating Materials, & Innovation, Manufacturing, 5(1), 16–40.CrossRef
Zurück zum Zitat Sterling, A. J., Torries, B., Shamsaei, N., Thompson, S. M., & Seely, D. W. (2016). Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4V. Materials Science and Engineering: A, 655, 100–112.CrossRef Sterling, A. J., Torries, B., Shamsaei, N., Thompson, S. M., & Seely, D. W. (2016). Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4V. Materials Science and Engineering: A, 655, 100–112.CrossRef
Zurück zum Zitat Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., John, K., & Nenadic, G. (2018). Machine learning methods for wind turbine condition monitoring: A review. Renewable Energy, 133, 620–635. Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., John, K., & Nenadic, G. (2018). Machine learning methods for wind turbine condition monitoring: A review. Renewable Energy, 133, 620–635.
Zurück zum Zitat Strano, G., Hao, L., Everson, R. M., & Evans, K. E. (2013). Surface roughness analysis, modelling and prediction in selective laser melting. Journal of Materials Processing Technology, 213(4), 589–597.CrossRef Strano, G., Hao, L., Everson, R. M., & Evans, K. E. (2013). Surface roughness analysis, modelling and prediction in selective laser melting. Journal of Materials Processing Technology, 213(4), 589–597.CrossRef
Zurück zum Zitat Sun, S.-H., Koizumi, Y., Kurosu, S., Li, Y.-P., & Chiba, A. (2015). Phase and grain size inhomogeneity and their influences on creep behavior of Co–Cr–Mo alloy additive manufactured by electron beam melting. Acta Materialia, 86, 305–318.CrossRef Sun, S.-H., Koizumi, Y., Kurosu, S., Li, Y.-P., & Chiba, A. (2015). Phase and grain size inhomogeneity and their influences on creep behavior of Co–Cr–Mo alloy additive manufactured by electron beam melting. Acta Materialia, 86, 305–318.CrossRef
Zurück zum Zitat Taheri, H., Koester, L. W., Bigelow, T. A., Faierson, E. J., & Bond, L. J. (2019). In situ additive manufacturing process monitoring with an acoustic technique: Clustering performance evaluation using K-means algorithm. Journal of Manufacturing Science & Engineering, 141(4), 041011. Taheri, H., Koester, L. W., Bigelow, T. A., Faierson, E. J., & Bond, L. J. (2019). In situ additive manufacturing process monitoring with an acoustic technique: Clustering performance evaluation using K-means algorithm. Journal of Manufacturing Science & Engineering, 141(4), 041011.
Zurück zum Zitat Tammas-Williams, S., Zhao, H., Léonard, F., Derguti, F., Todd, I., & Prangnell, P. B. (2015). XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting. Materials Characterization, 102, 47–61.CrossRef Tammas-Williams, S., Zhao, H., Léonard, F., Derguti, F., Todd, I., & Prangnell, P. B. (2015). XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting. Materials Characterization, 102, 47–61.CrossRef
Zurück zum Zitat Tang, L., & Landers, R. G. (2011). Layer-to-layer height control for laser metal deposition process. Journal of Manufacturing Science & Engineering, 133(2), 021009. Tang, L., & Landers, R. G. (2011). Layer-to-layer height control for laser metal deposition process. Journal of Manufacturing Science & Engineering, 133(2), 021009.
Zurück zum Zitat Tapia, G., & Elwany, A. (2014). A review on process monitoring and control in metal-based additive manufacturing. Journal of Manufacturing Science & Engineering, 136(6), 60801–60811. Tapia, G., & Elwany, A. (2014). A review on process monitoring and control in metal-based additive manufacturing. Journal of Manufacturing Science & Engineering, 136(6), 60801–60811.
Zurück zum Zitat Technologies, ASTM Committee F42 on Additive Manufacturing, & Terminology, ASTM Committee F42 on Additive Manufacturing Technologies. (2012). Subcommittee F42. 91. Standard terminology for additive manufacturing technologies: ASTM International. Technologies, ASTM Committee F42 on Additive Manufacturing, & Terminology, ASTM Committee F42 on Additive Manufacturing Technologies. (2012). Subcommittee F42. 91. Standard terminology for additive manufacturing technologies: ASTM International.
Zurück zum Zitat Thomas, D. (2009). The development of design rules for selective laser melting. University of Wales. Thomas, D. (2009). The development of design rules for selective laser melting. University of Wales.
Zurück zum Zitat Tian, Q., Guo, S., & Guo, Y. (2020). A physics-driven deep learning model for process-porosity causal relationship and porosity prediction with interpretability in laser metal deposition. CIRP Annals, 69(1), 205–208.CrossRef Tian, Q., Guo, S., & Guo, Y. (2020). A physics-driven deep learning model for process-porosity causal relationship and porosity prediction with interpretability in laser metal deposition. CIRP Annals, 69(1), 205–208.CrossRef
Zurück zum Zitat Tucho, W. M., Cuvillier, P., Sjolyst-Kverneland, A., & Hansen, V. (2017). Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Materials Science and Engineering: A, 689, 220–232.CrossRef Tucho, W. M., Cuvillier, P., Sjolyst-Kverneland, A., & Hansen, V. (2017). Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Materials Science and Engineering: A, 689, 220–232.CrossRef
Zurück zum Zitat van Hooreweder, B., Moens, D., Boonen, R., Kruth, J.-P., & Sas, P. (2012). Analysis of fracture toughness and crack propagation of Ti6Al4V produced by selective laser melting. Advanced Engineering Materials, 14(1–2), 92–97.CrossRef van Hooreweder, B., Moens, D., Boonen, R., Kruth, J.-P., & Sas, P. (2012). Analysis of fracture toughness and crack propagation of Ti6Al4V produced by selective laser melting. Advanced Engineering Materials, 14(1–2), 92–97.CrossRef
Zurück zum Zitat Wang, Di., Yang, Y., Yi, Z., & Su, X. (2013). Research on the fabricating quality optimization of the overhanging surface in SLM process. The International Journal of Advanced Manufacturing Technology, 65(9–12), 1471–1484.CrossRef Wang, Di., Yang, Y., Yi, Z., & Su, X. (2013). Research on the fabricating quality optimization of the overhanging surface in SLM process. The International Journal of Advanced Manufacturing Technology, 65(9–12), 1471–1484.CrossRef
Zurück zum Zitat Wang, N., Mokadem, S., Rappaz, M., & Kurz, W. (2004). Solidification cracking of superalloy single-and bi-crystals. Acta Materialia, 52(11), 3173–3182.CrossRef Wang, N., Mokadem, S., Rappaz, M., & Kurz, W. (2004). Solidification cracking of superalloy single-and bi-crystals. Acta Materialia, 52(11), 3173–3182.CrossRef
Zurück zum Zitat Wang, R., Cheung, C. F., Wang, C., & Cheng, M. N. (2022). Deep learning characterization of surface defects in the selective laser melting process. Computers in Industry, 140, 103662.CrossRef Wang, R., Cheung, C. F., Wang, C., & Cheng, M. N. (2022). Deep learning characterization of surface defects in the selective laser melting process. Computers in Industry, 140, 103662.CrossRef
Zurück zum Zitat Wang, Z., Palmer, T. A., & Beese, A. M. (2016). Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Materialia, 110, 226–235.CrossRef Wang, Z., Palmer, T. A., & Beese, A. M. (2016). Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Materialia, 110, 226–235.CrossRef
Zurück zum Zitat Wasmer, K., Le-Quang, T., Meylan, B., & Shevchik, S. A. (2019). In situ quality monitoring in AM using acoustic emission: A reinforcement learning approach. Journal of Materials Engineering, & Performance, 28(2), 666–672.CrossRef Wasmer, K., Le-Quang, T., Meylan, B., & Shevchik, S. A. (2019). In situ quality monitoring in AM using acoustic emission: A reinforcement learning approach. Journal of Materials Engineering, & Performance, 28(2), 666–672.CrossRef
Zurück zum Zitat Waterman, N. A., & Dickens, P. (1994). Rapid product development in the USA, Europe and Japan. World Class Design to Manufacture, 1(3), 27–36.CrossRef Waterman, N. A., & Dickens, P. (1994). Rapid product development in the USA, Europe and Japan. World Class Design to Manufacture, 1(3), 27–36.CrossRef
Zurück zum Zitat Wei, X., Xu, M., Wang, Q., Zhang, M., Liu, W., Xu, J., Chen, J., Lu, H., & Yu, C. (2016). Effect of local texture and precipitation on the ductility dip cracking of ERNiCrFe-7A Ni-based overlay. Materials & Design, 110, 90–98.CrossRef Wei, X., Xu, M., Wang, Q., Zhang, M., Liu, W., Xu, J., Chen, J., Lu, H., & Yu, C. (2016). Effect of local texture and precipitation on the ductility dip cracking of ERNiCrFe-7A Ni-based overlay. Materials & Design, 110, 90–98.CrossRef
Zurück zum Zitat Weingarten, C., Buchbinder, D., Pirch, N., Meiners, W., Wissenbach, K., & Poprawe, R. (2015). Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. Journal of Materials Processing Technology, 221, 112–120.CrossRef Weingarten, C., Buchbinder, D., Pirch, N., Meiners, W., Wissenbach, K., & Poprawe, R. (2015). Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. Journal of Materials Processing Technology, 221, 112–120.CrossRef
Zurück zum Zitat Xiong, J., Liu, G., & Pi, Y. (2019). Increasing stability in robotic GTA-based additive manufacturing through optical measurement and feedback control. Robotics, & Manufacturing, Computer-Integrated, 59, 385–393.CrossRef Xiong, J., Liu, G., & Pi, Y. (2019). Increasing stability in robotic GTA-based additive manufacturing through optical measurement and feedback control. Robotics, & Manufacturing, Computer-Integrated, 59, 385–393.CrossRef
Zurück zum Zitat Xiong, J., Yin, Z., & Zhang, W. (2016). Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing. Journal of Materials Processing Technology, 233, 100–106.CrossRef Xiong, J., Yin, Z., & Zhang, W. (2016). Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing. Journal of Materials Processing Technology, 233, 100–106.CrossRef
Zurück zum Zitat Yadollahi, A., Shamsaei, N., Thompson, S. M., Elwany, A., & Bian, L. (2017). Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel. International Journal of Fatigue, 94, 218–235.CrossRef Yadollahi, A., Shamsaei, N., Thompson, S. M., Elwany, A., & Bian, L. (2017). Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel. International Journal of Fatigue, 94, 218–235.CrossRef
Zurück zum Zitat Yadroitsev, I., & Smurov, I. (2011). Surface morphology in selective laser melting of metal powders. Physics Procedia, 12, 264–270.CrossRef Yadroitsev, I., & Smurov, I. (2011). Surface morphology in selective laser melting of metal powders. Physics Procedia, 12, 264–270.CrossRef
Zurück zum Zitat Yang, C., Liu, J., Zeng, Y., & Xie, G. (2019). Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model. Renewable Energy, 133, 433–441.CrossRef Yang, C., Liu, J., Zeng, Y., & Xie, G. (2019). Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model. Renewable Energy, 133, 433–441.CrossRef
Zurück zum Zitat Yang, J., Li, F., Wang, Z., & Zeng, X. (2015). Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication. Journal of Materials Processing Technology, 225, 229–239.CrossRef Yang, J., Li, F., Wang, Z., & Zeng, X. (2015). Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication. Journal of Materials Processing Technology, 225, 229–239.CrossRef
Zurück zum Zitat Yao, B., Imani, F., & Yang, H. (2018). Markov decision process for image-guided additive manufacturing. IEEE Robotics, & Letters, Automation, 3(4), 2792–2798.CrossRef Yao, B., Imani, F., & Yang, H. (2018). Markov decision process for image-guided additive manufacturing. IEEE Robotics, & Letters, Automation, 3(4), 2792–2798.CrossRef
Zurück zum Zitat Yasa, Evren, Deckers, Jan, Craeghs, Tom, Badrossamay, Mohsen, & Kruth, Jean-Pierre. (2009). Investigation on occurrence of elevated edges in selective laser melting. Paper presented at the International Solid Freeform Fabrication Symposium, Austin, TX, USA. Yasa, Evren, Deckers, Jan, Craeghs, Tom, Badrossamay, Mohsen, & Kruth, Jean-Pierre. (2009). Investigation on occurrence of elevated edges in selective laser melting. Paper presented at the International Solid Freeform Fabrication Symposium, Austin, TX, USA.
Zurück zum Zitat Yazdi, R. M., Imani, F., & Yang, H. (2020). A hybrid deep learning model of process-build interactions in additive manufacturing. Journal of Manufacturing Systems, 57, 460–468.CrossRef Yazdi, R. M., Imani, F., & Yang, H. (2020). A hybrid deep learning model of process-build interactions in additive manufacturing. Journal of Manufacturing Systems, 57, 460–468.CrossRef
Zurück zum Zitat Ye, D., Hong, G. S., Zhang, Y., Zhu, K., & Fuh, J. Y. H. (2018). Defect detection in selective laser melting technology by acoustic signals with deep belief networks. The International Journal of Advanced Manufacturing Technology, 96(5), 2791–2801.CrossRef Ye, D., Hong, G. S., Zhang, Y., Zhu, K., & Fuh, J. Y. H. (2018). Defect detection in selective laser melting technology by acoustic signals with deep belief networks. The International Journal of Advanced Manufacturing Technology, 96(5), 2791–2801.CrossRef
Zurück zum Zitat Yuan, B., Giera, B., Guss, G., Matthews, I., & McMains, S. (2019). Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting. Paper presented at the 2019 IEEE winter conference on applications of computer vision (WACV). Yuan, B., Giera, B., Guss, G., Matthews, I., & McMains, S. (2019). Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting. Paper presented at the 2019 IEEE winter conference on applications of computer vision (WACV).
Zurück zum Zitat Zäh, M. F., & Lutzmann, S. (2010). Modelling and simulation of electron beam melting. Production Engineering, 4(1), 15–23.CrossRef Zäh, M. F., & Lutzmann, S. (2010). Modelling and simulation of electron beam melting. Production Engineering, 4(1), 15–23.CrossRef
Zurück zum Zitat Zhang, B., Ziegert, J., Farahi, F., & Davies, A. (2016). In situ surface topography of laser powder bed fusion using fringe projection. Additive Manufacturing, 12, 100–107.CrossRef Zhang, B., Ziegert, J., Farahi, F., & Davies, A. (2016). In situ surface topography of laser powder bed fusion using fringe projection. Additive Manufacturing, 12, 100–107.CrossRef
Zurück zum Zitat Zhang, J., Wang, P., Yan, R., & Gao, R. X. (2018). Long short-term memory for machine remaining life prediction. Journal of Manufacturing Systems, 48, 78–86.CrossRef Zhang, J., Wang, P., Yan, R., & Gao, R. X. (2018). Long short-term memory for machine remaining life prediction. Journal of Manufacturing Systems, 48, 78–86.CrossRef
Zurück zum Zitat Zhang, L., Chen, X., Zhou, W., Cheng, T., Chen, L., Guo, Z., Han, B., & Lu, L. (2020). Digital twins for additive manufacturing: A state-of-the-art review. Applied Sciences, 10(23), 8350.CrossRef Zhang, L., Chen, X., Zhou, W., Cheng, T., Chen, L., Guo, Z., Han, B., & Lu, L. (2020). Digital twins for additive manufacturing: A state-of-the-art review. Applied Sciences, 10(23), 8350.CrossRef
Zurück zum Zitat Zhang, Y., Hong, G. S., Ye, D., Zhu, K., & Fuh, J. Y. H. (2018). Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Materials & Design, 156, 458–469.CrossRef Zhang, Y., Hong, G. S., Ye, D., Zhu, K., & Fuh, J. Y. H. (2018). Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Materials & Design, 156, 458–469.CrossRef
Zurück zum Zitat Zhang, Y., Soon, H. G., Ye, D., Fuh, J. Y. H., & Zhu, K. (2019). Powder-bed fusion process monitoring by machine vision with hybrid convolutional neural networks. IEEE Transactions on Industrial Informatics, 16(9), 5769–5779.CrossRef Zhang, Y., Soon, H. G., Ye, D., Fuh, J. Y. H., & Zhu, K. (2019). Powder-bed fusion process monitoring by machine vision with hybrid convolutional neural networks. IEEE Transactions on Industrial Informatics, 16(9), 5769–5779.CrossRef
Zurück zum Zitat Zhao, C., Fezzaa, K., Cunningham, R. W., Wen, H., De Carlo, F., Chen, L., Rollett, A. D., & Sun, T. (2017). Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Scientific Reports, 7(1), 3602.CrossRef Zhao, C., Fezzaa, K., Cunningham, R. W., Wen, H., De Carlo, F., Chen, L., Rollett, A. D., & Sun, T. (2017). Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Scientific Reports, 7(1), 3602.CrossRef
Zurück zum Zitat Zhong, M., Sun, H., Liu, W., Zhu, X., & He, J. (2005). Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scripta Materialia, 53(2), 159–164.CrossRef Zhong, M., Sun, H., Liu, W., Zhu, X., & He, J. (2005). Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scripta Materialia, 53(2), 159–164.CrossRef
Zurück zum Zitat Zhou, Z., Huang, L., Shang, Y., Li, Y., Jiang, L., & Lei, Q. (2018). Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing. Materials & Design, 160, 1238–1249.CrossRef Zhou, Z., Huang, L., Shang, Y., Li, Y., Jiang, L., & Lei, Q. (2018). Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing. Materials & Design, 160, 1238–1249.CrossRef
Zurück zum Zitat Zhu, Q., Liu, Z., & Yan, J. (2021). Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Computational Mechanics, 67(2), 619–635.CrossRef Zhu, Q., Liu, Z., & Yan, J. (2021). Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Computational Mechanics, 67(2), 619–635.CrossRef
Zurück zum Zitat zur Jacobsmühlen, J., Kleszczynski, S., Schneider, D., & Witt, Gerd. (2013). High resolution imaging for inspection of laser beam melting systems. Paper presented at the 2013 IEEE international instrumentation and measurement technology conference (I2MTC). zur Jacobsmühlen, J., Kleszczynski, S., Schneider, D., & Witt, Gerd. (2013). High resolution imaging for inspection of laser beam melting systems. Paper presented at the 2013 IEEE international instrumentation and measurement technology conference (I2MTC).
Zurück zum Zitat zur Jacobsmühlen, J., Kleszczynski, S., Witt, G., & Merhof, D. (2014). Robustness analysis of imaging system for inspection of laser beam melting systems. Paper presented at the Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA). zur Jacobsmühlen, J., Kleszczynski, S., Witt, G., & Merhof, D. (2014). Robustness analysis of imaging system for inspection of laser beam melting systems. Paper presented at the Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA).
Metadaten
Titel
Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges
verfasst von
Yingjie Zhang
Wentao Yan
Publikationsdatum
10.06.2022
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 6/2023
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-022-01972-7

Weitere Artikel der Ausgabe 6/2023

Journal of Intelligent Manufacturing 6/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.