Skip to main content
Erschienen in: Journal of Materials Science 8/2014

01.04.2014

Thermal and electrical conductivity of binary magnesium alloys

verfasst von: Hucheng Pan, Fusheng Pan, Rumin Yang, Jian Peng, Chaoyong Zhao, Jia She, Zhengyuan Gao, Aitao Tang

Erschienen in: Journal of Materials Science | Ausgabe 8/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermal conductivity is a key parameter for thermal design and management of the electronic components in their passive cooling processes. In this work, thermal and electrical conductivities of six groups of binary Mg alloys (Mg–Al, Mg–Zn, Mg–Sn, Mg–Zr, Mg–Mn, and Mg–Ca) in as-cast, as-solution, and annealed states were measured and the corresponding microstructures were observed. In both as-cast and as-solution states, thermal/electrical conductivities of the six groups of Mg alloys decreased with composition. Effects of solution treatment and annealing on thermal/electrical conductivities of the as-cast samples were also investigated and discussed. Moreover, the specific thermal/electrical resistivity (thermal/electrical resistivity increment of the alloy derived from one atom addition) of the solute elements for Mg alloys was drawn as follows, Zn < Al < Ca < Sn < Mn < Zr. Atomic volume difference of the solute elements with Mg atom (ΔV/V Mg), valency, and configuration of extra-nuclear electron of the solute were believed as the main reasons for the differences.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cheng HH, Huang D-S, Lin M-T (2012) Heat dissipation design and analysis of high power LED array using the finite element method. Microelectron Reliab 52(5):905–911 Cheng HH, Huang D-S, Lin M-T (2012) Heat dissipation design and analysis of high power LED array using the finite element method. Microelectron Reliab 52(5):905–911
2.
Zurück zum Zitat Christensen A, Graham S (2009) Thermal effects in packaging high power light emitting diode arrays. Appl Therm Eng 29(2):364–371CrossRef Christensen A, Graham S (2009) Thermal effects in packaging high power light emitting diode arrays. Appl Therm Eng 29(2):364–371CrossRef
3.
Zurück zum Zitat Deng Y, Liu J (2010) A liquid metal cooling system for the thermal management of high power LEDs. Int Commun Heat Mass Transf 37(7):788–791CrossRef Deng Y, Liu J (2010) A liquid metal cooling system for the thermal management of high power LEDs. Int Commun Heat Mass Transf 37(7):788–791CrossRef
4.
Zurück zum Zitat Kumano Y, Ogura T, Yamada T (2009) High-accuracy thermal analysis methodology for semiconductor junction temperatures by considering line patterns of three-dimensional modules. J Electron Packag 131(2):021007–021013CrossRef Kumano Y, Ogura T, Yamada T (2009) High-accuracy thermal analysis methodology for semiconductor junction temperatures by considering line patterns of three-dimensional modules. J Electron Packag 131(2):021007–021013CrossRef
5.
Zurück zum Zitat Min C, Nuofu C, Xiaoli Y, Yu W, Yiming B, Xingwang Z (2009) Thermal analysis and test for single concentrator solar cells. J Semicond 30(4):44011–44014CrossRef Min C, Nuofu C, Xiaoli Y, Yu W, Yiming B, Xingwang Z (2009) Thermal analysis and test for single concentrator solar cells. J Semicond 30(4):44011–44014CrossRef
6.
Zurück zum Zitat Chen X, Liu J, Zhang Z, Pan F (2012) Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy. Mater Des 42:327–333CrossRef Chen X, Liu J, Zhang Z, Pan F (2012) Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy. Mater Des 42:327–333CrossRef
7.
Zurück zum Zitat Song B, Xin R, Chen G, Zhang X, Liu Q (2012) Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling. Scripta Mater 66:1061–1064CrossRef Song B, Xin R, Chen G, Zhang X, Liu Q (2012) Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling. Scripta Mater 66:1061–1064CrossRef
8.
Zurück zum Zitat Luo S-Q, Tang A-T, Pan F-S, Song K, Wang W-Q (2011) Effect of mole ratio of Y to Zn on phase constituent of Mg-Zn-Zr-Y alloys. Trans Nonferrous Metals Soc China 21(4):795–800CrossRef Luo S-Q, Tang A-T, Pan F-S, Song K, Wang W-Q (2011) Effect of mole ratio of Y to Zn on phase constituent of Mg-Zn-Zr-Y alloys. Trans Nonferrous Metals Soc China 21(4):795–800CrossRef
9.
Zurück zum Zitat Wang J, Lu R, Wei W, Huang X, Pan F (2012) Effect of Long period stacking ordered (LPSO) structure on the damping capacities of Mg–Cu–Mn–Zn–Y alloys. J Alloy Compd 537:1–5CrossRef Wang J, Lu R, Wei W, Huang X, Pan F (2012) Effect of Long period stacking ordered (LPSO) structure on the damping capacities of Mg–Cu–Mn–Zn–Y alloys. J Alloy Compd 537:1–5CrossRef
12.
Zurück zum Zitat Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39(9):851–865CrossRef Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39(9):851–865CrossRef
13.
Zurück zum Zitat Luo AA (2013) Magnesium casting technology for structural applications. J Magnes Alloy 1:2–22CrossRef Luo AA (2013) Magnesium casting technology for structural applications. J Magnes Alloy 1:2–22CrossRef
14.
Zurück zum Zitat Lv B, Peng J, Peng Y, Tang A (2013) The effect of addition of Nd and Ce on the microstructure and mechanical properties of ZM21 Mg alloy. J Magnes Alloy 1:94–100CrossRef Lv B, Peng J, Peng Y, Tang A (2013) The effect of addition of Nd and Ce on the microstructure and mechanical properties of ZM21 Mg alloy. J Magnes Alloy 1:94–100CrossRef
15.
Zurück zum Zitat Ping-li M, Jin-cheng Y, Zheng L, Yang D (2013) Microstructure evolution of extruded Mg–Gd–Y magnesium alloy under dynamic compression. J Magnes Alloy 1:64–75CrossRef Ping-li M, Jin-cheng Y, Zheng L, Yang D (2013) Microstructure evolution of extruded Mg–Gd–Y magnesium alloy under dynamic compression. J Magnes Alloy 1:64–75CrossRef
16.
Zurück zum Zitat Zhang J, Li W, Guo Z (2013) Static recrystallization and grain growth during annealing of an extruded Mg–Zn–Zr–Er magnesium alloy. J Magnes Alloy 1:31–38CrossRef Zhang J, Li W, Guo Z (2013) Static recrystallization and grain growth during annealing of an extruded Mg–Zn–Zr–Er magnesium alloy. J Magnes Alloy 1:31–38CrossRef
17.
Zurück zum Zitat Rudajevova A, Lukac P (2005) Comparison of the thermal properties of AM20 and AS21 magnesium alloys. Mater Sci Eng A 397(1–2):16–21CrossRef Rudajevova A, Lukac P (2005) Comparison of the thermal properties of AM20 and AS21 magnesium alloys. Mater Sci Eng A 397(1–2):16–21CrossRef
18.
Zurück zum Zitat Rudajevova A, Staněk M, Lukáč P (2003) Determination of thermal diffusivity and thermal conductivity of Mg–Al alloys. Mater Sci Eng A 341(1):152–157CrossRef Rudajevova A, Staněk M, Lukáč P (2003) Determination of thermal diffusivity and thermal conductivity of Mg–Al alloys. Mater Sci Eng A 341(1):152–157CrossRef
19.
Zurück zum Zitat Rudajevová A, Von Buch F, Mordike B (1999) Thermal diffusivity and thermal conductivity of MgSc alloys. J Alloy Compd 292(1):27–30CrossRef Rudajevová A, Von Buch F, Mordike B (1999) Thermal diffusivity and thermal conductivity of MgSc alloys. J Alloy Compd 292(1):27–30CrossRef
20.
Zurück zum Zitat Yamasaki M, Kawamura Y (2009) Thermal diffusivity and thermal conductivity of Mg–Zn–rare earth element alloys with long-period stacking ordered phase. Scripta Mater 60(4):264–267CrossRef Yamasaki M, Kawamura Y (2009) Thermal diffusivity and thermal conductivity of Mg–Zn–rare earth element alloys with long-period stacking ordered phase. Scripta Mater 60(4):264–267CrossRef
21.
Zurück zum Zitat Chen CJ, Wang QD, Yin DD (2009) Thermal properties of Mg–11Y–5Gd–2Zn–0.5Zr (wt%) alloy. J Alloy Compd 487(1–2):560–563CrossRef Chen CJ, Wang QD, Yin DD (2009) Thermal properties of Mg–11Y–5Gd–2Zn–0.5Zr (wt%) alloy. J Alloy Compd 487(1–2):560–563CrossRef
22.
Zurück zum Zitat Lee S, Ham HJ, Kwon SY, Kim SW, Suh CM (2012) Thermal conductivity of magnesium alloys in the temperature range from −125 °C to 400 °C. Int J Thermophys. doi:1007/s10765-011-1145-1 Lee S, Ham HJ, Kwon SY, Kim SW, Suh CM (2012) Thermal conductivity of magnesium alloys in the temperature range from −125 °C to 400 °C. Int J Thermophys. doi:1007/​s10765-011-1145-1
23.
Zurück zum Zitat Yuan J, Zhang K, Li T, Li X, Li Y, Ma M, Luo P, Luo G, Hao Y (2012) Anisotropy of thermal conductivity and mechanical properties in Mg–5Zn–1Mn alloy. Mater Des 40:257–261CrossRef Yuan J, Zhang K, Li T, Li X, Li Y, Ma M, Luo P, Luo G, Hao Y (2012) Anisotropy of thermal conductivity and mechanical properties in Mg–5Zn–1Mn alloy. Mater Des 40:257–261CrossRef
24.
Zurück zum Zitat Yuan J, Zhang K, Zhang X, Li X, Li T, Li Y, Ma M, Shi G (2013) Thermal characteristics of Mg–Zn–Mn alloys with high specific strength and high thermal conductivity. J Alloy Compd 578:32–36CrossRef Yuan J, Zhang K, Zhang X, Li X, Li T, Li Y, Ma M, Shi G (2013) Thermal characteristics of Mg–Zn–Mn alloys with high specific strength and high thermal conductivity. J Alloy Compd 578:32–36CrossRef
25.
Zurück zum Zitat Pan H, Pan F, Peng J, Tang A, Gou J, Wu L, Dong H (2013) High-conductivity binary Mg–Zn sheet processed by cold rolling and subsequent aging. J Alloy Compd 578:493–500CrossRef Pan H, Pan F, Peng J, Tang A, Gou J, Wu L, Dong H (2013) High-conductivity binary Mg–Zn sheet processed by cold rolling and subsequent aging. J Alloy Compd 578:493–500CrossRef
26.
Zurück zum Zitat Pan H, Pan F, Wang X, Peng J, Tang A, She J, Gou J (2013) Correlation on the electrical and thermal conductivity for binary Mg–Al and Mg–Zn alloy. Int J Thermophys 34:1336–1346CrossRef Pan H, Pan F, Wang X, Peng J, Tang A, She J, Gou J (2013) Correlation on the electrical and thermal conductivity for binary Mg–Al and Mg–Zn alloy. Int J Thermophys 34:1336–1346CrossRef
27.
Zurück zum Zitat Kim BH, Lee SW, Park YH, Park IM (2010) The microstructure, tensile properties, and creep behavior of AZ91, AS52 and TAS652 alloy. J Alloy Compd 493(1):502–506CrossRef Kim BH, Lee SW, Park YH, Park IM (2010) The microstructure, tensile properties, and creep behavior of AZ91, AS52 and TAS652 alloy. J Alloy Compd 493(1):502–506CrossRef
28.
Zurück zum Zitat Zhang H, Zhang D, Ma C, Guo S (2012) Improving mechanical properties and corrosion resistance of Mg6ZnMn magnesium alloy by rapid solidification. Mater Lett 92:45–48CrossRef Zhang H, Zhang D, Ma C, Guo S (2012) Improving mechanical properties and corrosion resistance of Mg6ZnMn magnesium alloy by rapid solidification. Mater Lett 92:45–48CrossRef
29.
Zurück zum Zitat Huang XF, Zhang WZ (2012) Improved age-hardening behavior of Mg–Sn–Mn alloy by addition of Ag and Zn. Mater Sci Eng A 552:211–221CrossRef Huang XF, Zhang WZ (2012) Improved age-hardening behavior of Mg–Sn–Mn alloy by addition of Ag and Zn. Mater Sci Eng A 552:211–221CrossRef
30.
Zurück zum Zitat Park S, You B (2011) Low-temperature superplasticity of extruded Mg–Sn–Al–Zn alloy. Scripta Mater 65(3):202–205CrossRef Park S, You B (2011) Low-temperature superplasticity of extruded Mg–Sn–Al–Zn alloy. Scripta Mater 65(3):202–205CrossRef
31.
Zurück zum Zitat Fang X, Yi D, Nie J, Zhang X, Wang B, Xiao L (2009) Effect of Zr, Mn and Sc additions on the grain size of Mg–Gd alloy. J Alloy Compd 470(1):311–316CrossRef Fang X, Yi D, Nie J, Zhang X, Wang B, Xiao L (2009) Effect of Zr, Mn and Sc additions on the grain size of Mg–Gd alloy. J Alloy Compd 470(1):311–316CrossRef
32.
Zurück zum Zitat Lv B, Peng J, Shi D, Tang A, Pan F (2012) Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg–2.0Zn–0.3Zr alloy based on true stress-strain curves. Mater Sci Eng A 560:727–733CrossRef Lv B, Peng J, Shi D, Tang A, Pan F (2012) Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg–2.0Zn–0.3Zr alloy based on true stress-strain curves. Mater Sci Eng A 560:727–733CrossRef
33.
Zurück zum Zitat Cho SY, Chae SW, Choi KW, Seok HK, Kim YC, Jung JY, Yang SJ, Kwon GJ, Kim JT, Assad M (2013) Biocompatibility and strength retention of biodegradable Mg–Ca–Zn alloy bone implants. J Biomed Mater Res B 101(2):201–212CrossRef Cho SY, Chae SW, Choi KW, Seok HK, Kim YC, Jung JY, Yang SJ, Kwon GJ, Kim JT, Assad M (2013) Biocompatibility and strength retention of biodegradable Mg–Ca–Zn alloy bone implants. J Biomed Mater Res B 101(2):201–212CrossRef
34.
Zurück zum Zitat Kittel C (1976) Introduction to solid state physics, 5th edn. Wiley, New York Kittel C (1976) Introduction to solid state physics, 5th edn. Wiley, New York
35.
Zurück zum Zitat Leitner J, Voňka P, Sedmidubský D, Svoboda P (2010) Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim Acta 497(1):7–13CrossRef Leitner J, Voňka P, Sedmidubský D, Svoboda P (2010) Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim Acta 497(1):7–13CrossRef
36.
Zurück zum Zitat Lindemann A, Schmidt J, Todte M, Zeuner T (2002) Thermal analytical investigations of the magnesium alloys AM 60 and AZ 91 including the melting range. Thermochim Acta 382(1):269–275CrossRef Lindemann A, Schmidt J, Todte M, Zeuner T (2002) Thermal analytical investigations of the magnesium alloys AM 60 and AZ 91 including the melting range. Thermochim Acta 382(1):269–275CrossRef
37.
Zurück zum Zitat Oh-Ishi K, Watanabe R, Mendis C, Hono K (2009) Age-hardening response of Mg–0.3 at.% Ca alloys with different Zn contents. Mater Sci Eng A 526(1):177–184CrossRef Oh-Ishi K, Watanabe R, Mendis C, Hono K (2009) Age-hardening response of Mg–0.3 at.% Ca alloys with different Zn contents. Mater Sci Eng A 526(1):177–184CrossRef
38.
Zurück zum Zitat Klemens P, Williams R (1986) Thermal conductivity of metals and alloys. Int Metals Rev 31(1):197–215 Klemens P, Williams R (1986) Thermal conductivity of metals and alloys. Int Metals Rev 31(1):197–215
39.
Zurück zum Zitat Goonewardene A, Karunamuni J, Kurtz R, Stockbauer R (2002) An STM study of the oxidation of Mg (0001). Surf Sci 501(1):102–111CrossRef Goonewardene A, Karunamuni J, Kurtz R, Stockbauer R (2002) An STM study of the oxidation of Mg (0001). Surf Sci 501(1):102–111CrossRef
40.
Zurück zum Zitat Callister DW Jr (2000) Materials science and engineering: an introduction, 5th edn. Wiley, New York Callister DW Jr (2000) Materials science and engineering: an introduction, 5th edn. Wiley, New York
41.
Zurück zum Zitat Eivani A, Ahmed H, Zhou J, Duszczyk J (2009) Correlation between electrical resistivity, particle dissolution, precipitation of dispersoids, and recrystallization behavior of AA7020 aluminum alloy. Metallurg Mater Trans A 40(10):2435–2446CrossRef Eivani A, Ahmed H, Zhou J, Duszczyk J (2009) Correlation between electrical resistivity, particle dissolution, precipitation of dispersoids, and recrystallization behavior of AA7020 aluminum alloy. Metallurg Mater Trans A 40(10):2435–2446CrossRef
42.
Zurück zum Zitat ASM International (1992) Alloy phase diagram, ASM handbook. ASM International. The Materials Information Company, Materials Park ASM International (1992) Alloy phase diagram, ASM handbook. ASM International. The Materials Information Company, Materials Park
43.
Zurück zum Zitat Salkovitz EI, Schindler AI, Kammer EW (1957) Transport properties of dilute binary magnesium alloys. Phys Rev 105(3):887–896CrossRef Salkovitz EI, Schindler AI, Kammer EW (1957) Transport properties of dilute binary magnesium alloys. Phys Rev 105(3):887–896CrossRef
44.
Zurück zum Zitat Schindler A, Salkovitz E (1953) Brillouin zone investigation of Mg Alloys. I. Hall effect and conductivity. Phys Rev 91(6):1320–1322CrossRef Schindler A, Salkovitz E (1953) Brillouin zone investigation of Mg Alloys. I. Hall effect and conductivity. Phys Rev 91(6):1320–1322CrossRef
45.
Zurück zum Zitat Noble B, Pike T (2000) Deviations from Matthiessen’s rule in some magnesium-based alloys. J Phys F 11(3):587–595CrossRef Noble B, Pike T (2000) Deviations from Matthiessen’s rule in some magnesium-based alloys. J Phys F 11(3):587–595CrossRef
Metadaten
Titel
Thermal and electrical conductivity of binary magnesium alloys
verfasst von
Hucheng Pan
Fusheng Pan
Rumin Yang
Jian Peng
Chaoyong Zhao
Jia She
Zhengyuan Gao
Aitao Tang
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-8012-3

Weitere Artikel der Ausgabe 8/2014

Journal of Materials Science 8/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.