Skip to main content
Erschienen in: Journal of Materials Science 6/2017

28.11.2016 | Original Paper

Hydrogen-induced increase in phase stability in metastable austenite of various grain sizes under strain

verfasst von: Arnaud Macadre, Toshihiro Tsuchiyama, Setsuo Takaki

Erschienen in: Journal of Materials Science | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Martensitic transformation is a pressing issue in austenitic steels in the context of hydrogen embrittlement; strain-induced martensite formation may increase the level of hydrogen embrittlement in metastable austenite. Therefore, the effect of hydrogen on phase stability was investigated. An austenitic stainless steel with several grain sizes was charged with various hydrogen contents, and the mechanical stability of austenite under cold-rolling was studied. Grain size did not affect the amount of martensite formed in the material for any condition. Increasing hydrogen contents decreased the amount of strain-induced martensite at each tested strain. The results were confirmed with magnetization saturation, X-ray diffraction, and electron backscattered diffraction measurements. Hydrogen appears to both change the deformation mechanism and the martensite forming rate. The stabilization is caused by a lower population of martensite nucleation locations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Han G, He J, Fukuyama S, Yokogawa K (1998) Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures. Acta Mater 46:4559–4570CrossRef Han G, He J, Fukuyama S, Yokogawa K (1998) Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures. Acta Mater 46:4559–4570CrossRef
2.
Zurück zum Zitat Zhang L, Wen M, Imade M, Fukuyama S, Yokogawa K (2008) Effects of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures. Acta Mater 56:3414–3421CrossRef Zhang L, Wen M, Imade M, Fukuyama S, Yokogawa K (2008) Effects of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures. Acta Mater 56:3414–3421CrossRef
3.
Zurück zum Zitat Hardie D, Butler JJF (1990) Effect of hydrogen charging on fracture behavior of 304L stainless steel. J Mater Sci Technol 6:441–446CrossRef Hardie D, Butler JJF (1990) Effect of hydrogen charging on fracture behavior of 304L stainless steel. J Mater Sci Technol 6:441–446CrossRef
4.
Zurück zum Zitat San Marchi C, Yang NYC, Headley TJ, Michael J (2010) Hydrogen-assisted fracture of low nickel content 304 and 316L austenitic stainless steels. In: Proceedings of the 18th European Conference on Fracture (ECF18), Aug. 30th–Sept. 3rd, 2010, Dresden, Germany San Marchi C, Yang NYC, Headley TJ, Michael J (2010) Hydrogen-assisted fracture of low nickel content 304 and 316L austenitic stainless steels. In: Proceedings of the 18th European Conference on Fracture (ECF18), Aug. 30th–Sept. 3rd, 2010, Dresden, Germany
5.
Zurück zum Zitat Mine Y, Horita Z (2012) Hydrogen effects on ultrafine-grained steels processed by high-pressure torsion. Mater Trans 53:773–785CrossRef Mine Y, Horita Z (2012) Hydrogen effects on ultrafine-grained steels processed by high-pressure torsion. Mater Trans 53:773–785CrossRef
6.
Zurück zum Zitat Macadre A, Nakada N, Tsuchiyama T, Takaki S (2015) Critical grain size to limit the hydrogen-induced ductility drop in a metastable austenitic steel. Int J Hydrogen Energy 40:10697–10703CrossRef Macadre A, Nakada N, Tsuchiyama T, Takaki S (2015) Critical grain size to limit the hydrogen-induced ductility drop in a metastable austenitic steel. Int J Hydrogen Energy 40:10697–10703CrossRef
7.
Zurück zum Zitat Macadre A, Tsuboi K, Nakada N, Tsuchiyama T, Takaki S (2014) Ultra-grain refinement effect on tensile and phase transformation behavior in a metastable austenitic steel charged in hydrogen gas. Procedia Mater Sci 3:350–356CrossRef Macadre A, Tsuboi K, Nakada N, Tsuchiyama T, Takaki S (2014) Ultra-grain refinement effect on tensile and phase transformation behavior in a metastable austenitic steel charged in hydrogen gas. Procedia Mater Sci 3:350–356CrossRef
8.
Zurück zum Zitat Shrinivas V, Varma SK, Murr LE (1995) Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling. Metall Mater Trans A 26:661–671CrossRef Shrinivas V, Varma SK, Murr LE (1995) Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling. Metall Mater Trans A 26:661–671CrossRef
9.
Zurück zum Zitat Herms E, Olive JM, Puiggali M (1999) Hydrogen embrittlement of 316L type stainless steel. Mater Sci Eng, A 272:279–283CrossRef Herms E, Olive JM, Puiggali M (1999) Hydrogen embrittlement of 316L type stainless steel. Mater Sci Eng, A 272:279–283CrossRef
10.
Zurück zum Zitat Aubert I, Olive JM, Saintier N (2010) The effect of internal hydrogen on surface slip localisation on polycrystalline AISI 316L stainless steel. Mater Sci Eng, A 527:5858–5866CrossRef Aubert I, Olive JM, Saintier N (2010) The effect of internal hydrogen on surface slip localisation on polycrystalline AISI 316L stainless steel. Mater Sci Eng, A 527:5858–5866CrossRef
11.
Zurück zum Zitat Narita N, Altstetter CJ, Birnbaum HK (1982) Hydrogen-related phase transformations in austenitic stainless steels. Metall Trans A 13:1355–1365CrossRef Narita N, Altstetter CJ, Birnbaum HK (1982) Hydrogen-related phase transformations in austenitic stainless steels. Metall Trans A 13:1355–1365CrossRef
12.
Zurück zum Zitat Mine Y, Horita Z, Murakami Y (2009) Effect of hydrogen on martensite formation in austenitic stainless steels in high-pressure torsion. Acta Mater 57:2993–3002CrossRef Mine Y, Horita Z, Murakami Y (2009) Effect of hydrogen on martensite formation in austenitic stainless steels in high-pressure torsion. Acta Mater 57:2993–3002CrossRef
13.
Zurück zum Zitat Tomimura K, Takaki S, Tanimoto S, Tokunaga Y (1991) Optimal chemical composition in Fe–Cr–Ni alloys for ultra grain refining by reversion from deformation induced martensite. ISIJ Int 31:721–727CrossRef Tomimura K, Takaki S, Tanimoto S, Tokunaga Y (1991) Optimal chemical composition in Fe–Cr–Ni alloys for ultra grain refining by reversion from deformation induced martensite. ISIJ Int 31:721–727CrossRef
14.
Zurück zum Zitat Murakami Y, Kanezaki T, Mine Y (2010) Hydrogen effect against hydrogen embrittlement. Metall Mater Trans A 41:2548–2562CrossRef Murakami Y, Kanezaki T, Mine Y (2010) Hydrogen effect against hydrogen embrittlement. Metall Mater Trans A 41:2548–2562CrossRef
15.
Zurück zum Zitat Matsuoka Y, Iwasaki T, Nakada N, Tsuchiyama T, Takaki S (2013) Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel. ISIJ Int 53:1224–1230CrossRef Matsuoka Y, Iwasaki T, Nakada N, Tsuchiyama T, Takaki S (2013) Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel. ISIJ Int 53:1224–1230CrossRef
16.
Zurück zum Zitat Olson GB, Cohen M (1972) A mechanism for the strain-induced nucleation of martensitic transformations. J Less-Common Met 28:107–118CrossRef Olson GB, Cohen M (1972) A mechanism for the strain-induced nucleation of martensitic transformations. J Less-Common Met 28:107–118CrossRef
17.
Zurück zum Zitat Olson GB, Cohen M (1975) Kinetics of strain-induced martensitic nucleation. Metall Trans A 6:791–795CrossRef Olson GB, Cohen M (1975) Kinetics of strain-induced martensitic nucleation. Metall Trans A 6:791–795CrossRef
18.
Zurück zum Zitat De AK, Speer JG, Matlock DK, Murdock DC, Mataya MC, Comstock RJ Jr (2006) Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel. Metall Mater Trans A 37:1875–1886CrossRef De AK, Speer JG, Matlock DK, Murdock DC, Mataya MC, Comstock RJ Jr (2006) Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel. Metall Mater Trans A 37:1875–1886CrossRef
19.
Zurück zum Zitat Masumura T, Nakada N, Tsuchiyama T, Takaki S, Koyano T, Adachi K (2015) The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels. Acta Mater 84:330–338CrossRef Masumura T, Nakada N, Tsuchiyama T, Takaki S, Koyano T, Adachi K (2015) The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels. Acta Mater 84:330–338CrossRef
20.
Zurück zum Zitat Lehnhoff GR, Findley KO (2014) The martensitic transformation and strain-hardening behavior of austenitic steels during fatigue and tensile loading. JOM 66:756–764CrossRef Lehnhoff GR, Findley KO (2014) The martensitic transformation and strain-hardening behavior of austenitic steels during fatigue and tensile loading. JOM 66:756–764CrossRef
21.
Zurück zum Zitat Mine Y, Kimoto T (2011) Hydrogen uptake in austenitic stainless steels by exposure to gaseous hydrogen and its effect on tensile deformation. Corros Sci 53:2619–2629CrossRef Mine Y, Kimoto T (2011) Hydrogen uptake in austenitic stainless steels by exposure to gaseous hydrogen and its effect on tensile deformation. Corros Sci 53:2619–2629CrossRef
Metadaten
Titel
Hydrogen-induced increase in phase stability in metastable austenite of various grain sizes under strain
verfasst von
Arnaud Macadre
Toshihiro Tsuchiyama
Setsuo Takaki
Publikationsdatum
28.11.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0630-0

Weitere Artikel der Ausgabe 6/2017

Journal of Materials Science 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.