Skip to main content
Erschienen in: Journal of Materials Science 8/2016

08.01.2016 | Original Paper

Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance

verfasst von: Huabo Huang, Junlong Yao, Hongyan Chen, Xiaoping Zeng, Changlian Chen, Xiao She, Liang Li

Erschienen in: Journal of Materials Science | Ausgabe 8/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The functionalization of halloysite nanotubes (HNTs) has attracted much attention in recent years due to the nano-tubular structure and particular features. Here, we report a conductive nanohybrids of HNTs, polyaniline (PANI), and poly(sodium-p-styrenesulfonate) (PSS) with high electrical conductivity (0.11 S/cm) prepared by in situ polymerization and layer-by-layer assembly. The chemical structures and morphologies were characterized by FT-IR, UV–Vis, FE-SEM, and TEM, which confirmed that the layers of PANI, PSS, and PANI were sequentially coated onto the HNTs as expected. A study of cyclic voltammetry suggested the typical pseudocapacitance and good rate performance of the as-prepared nanocomposites. The results of galvanostatic charge/discharge and electrochemical impedance spectroscopy further demonstrated its favorable capacitive behavior and low resistance. The easily fabricated halloysite/polyaniline nanocomposites show great potential as electrode materials for supercapacitors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yuan P, Southon PD, Liu ZW, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751CrossRef Yuan P, Southon PD, Liu ZW, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751CrossRef
2.
Zurück zum Zitat Abdullayev E, Joshi A, Wei W, Zhao Y, Lvov Y (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6:7216–7226CrossRef Abdullayev E, Joshi A, Wei W, Zhao Y, Lvov Y (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6:7216–7226CrossRef
3.
Zurück zum Zitat Arcudi F, Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Riela S (2014) Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films. J Phys Chem C 118:15095–15101CrossRef Arcudi F, Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Riela S (2014) Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films. J Phys Chem C 118:15095–15101CrossRef
4.
Zurück zum Zitat Fu H, Wang Y, Chen W, Xiao J (2015) Reinforcement of waterborne polyurethane with chitosan-modified halloysite nanotubes. Appl Surf Sci 346:372–378CrossRef Fu H, Wang Y, Chen W, Xiao J (2015) Reinforcement of waterborne polyurethane with chitosan-modified halloysite nanotubes. Appl Surf Sci 346:372–378CrossRef
5.
Zurück zum Zitat Cai N, Dai Q, Wang Z, Luo X, Xue Y, Yu F (2015) Toughening of electrospun poly(L-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. J Mater Sci 50:1435–1445. doi:10.1007/s10853-014-8703-4 CrossRef Cai N, Dai Q, Wang Z, Luo X, Xue Y, Yu F (2015) Toughening of electrospun poly(L-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. J Mater Sci 50:1435–1445. doi:10.​1007/​s10853-014-8703-4 CrossRef
6.
Zurück zum Zitat Abdullayev E, Price R, Shchukin D, Lvov Y (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Appl Mater Interfaces 1:1437–1443CrossRef Abdullayev E, Price R, Shchukin D, Lvov Y (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Appl Mater Interfaces 1:1437–1443CrossRef
7.
Zurück zum Zitat Zheng P, Du Y, Chang PR, Ma X (2015) Amylose–halloysite–TiO2 composites: preparation, characterization and photodegradation. Appl Surf Sci 329:256–261CrossRef Zheng P, Du Y, Chang PR, Ma X (2015) Amylose–halloysite–TiO2 composites: preparation, characterization and photodegradation. Appl Surf Sci 329:256–261CrossRef
8.
Zurück zum Zitat Dong F, Wang J, Wang Y, Ren S (2012) Synthesis and humidity controlling properties of halloysite/poly(sodium acrylate-acrylamide) composite. J Mater Chem 22:11093–11100CrossRef Dong F, Wang J, Wang Y, Ren S (2012) Synthesis and humidity controlling properties of halloysite/poly(sodium acrylate-acrylamide) composite. J Mater Chem 22:11093–11100CrossRef
9.
Zurück zum Zitat Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Parisi F, Riela S (2015) Biocompatible poly(N-isopropylacrylamide)-halloysite nanotubes for thermoresponsive curcumin release. J Phys Chem C 119:8944–8951CrossRef Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Parisi F, Riela S (2015) Biocompatible poly(N-isopropylacrylamide)-halloysite nanotubes for thermoresponsive curcumin release. J Phys Chem C 119:8944–8951CrossRef
10.
Zurück zum Zitat Tan WL, Salehabadi A, Mohd Isa MH, Abu Bakar M, Abu Bakar NHH (2016) Synthesis and physicochemical characterization of organomodified halloysite/epoxidized natural rubber nanocomposites: a potential flame-resistant adhesive. J Mater Sci 51:1121–1132. doi:10.1007/s10853-015-9443-9 CrossRef Tan WL, Salehabadi A, Mohd Isa MH, Abu Bakar M, Abu Bakar NHH (2016) Synthesis and physicochemical characterization of organomodified halloysite/epoxidized natural rubber nanocomposites: a potential flame-resistant adhesive. J Mater Sci 51:1121–1132. doi:10.​1007/​s10853-015-9443-9 CrossRef
11.
Zurück zum Zitat Liu Y, Jiang X, Li B, Zhang X, Liu T, Yan X, Ding J, Cai Q, Zhang J (2014) Halloysite nanotubes@reduced graphene oxide composite for removal of dyes from water and as supercapacitors. J Mater Chem A 2:4264–4269CrossRef Liu Y, Jiang X, Li B, Zhang X, Liu T, Yan X, Ding J, Cai Q, Zhang J (2014) Halloysite nanotubes@reduced graphene oxide composite for removal of dyes from water and as supercapacitors. J Mater Chem A 2:4264–4269CrossRef
12.
Zurück zum Zitat Liang J, Dong B, Ding S, Li C, Li BQ, Li J, Yang G (2014) Facile construction of ultrathin standing α-Ni(OH)2 nanosheets on halloysite nanotubes and their enhanced electrochemical capacitance. J Mater Chem A 2:11299–11304CrossRef Liang J, Dong B, Ding S, Li C, Li BQ, Li J, Yang G (2014) Facile construction of ultrathin standing α-Ni(OH)2 nanosheets on halloysite nanotubes and their enhanced electrochemical capacitance. J Mater Chem A 2:11299–11304CrossRef
13.
Zurück zum Zitat Liang J, Tan H, Xiao C, Zhou G, Guo S, Ding S (2015) Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor. J Power Sources 285:210–216CrossRef Liang J, Tan H, Xiao C, Zhou G, Guo S, Ding S (2015) Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor. J Power Sources 285:210–216CrossRef
14.
Zurück zum Zitat MacDiarmid AG (2001) “Synthetic Metals”: a novel role for organic polymers (nobel lecture). Angew Chem Int Ed 40:2581–2590CrossRef MacDiarmid AG (2001) “Synthetic Metals”: a novel role for organic polymers (nobel lecture). Angew Chem Int Ed 40:2581–2590CrossRef
15.
Zurück zum Zitat Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth Met 125:23–42CrossRef Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth Met 125:23–42CrossRef
16.
Zurück zum Zitat Liu F, Yuan Y, Li L, Shang S, Yu X, Zhang Q, Jiang S, Wu Y (2015) Synthesis of polypyrrole nanocomposites decorated with silver nanoparticles with electrocatalysis and antibacterial property. Compos Part B 69:232–236CrossRef Liu F, Yuan Y, Li L, Shang S, Yu X, Zhang Q, Jiang S, Wu Y (2015) Synthesis of polypyrrole nanocomposites decorated with silver nanoparticles with electrocatalysis and antibacterial property. Compos Part B 69:232–236CrossRef
17.
Zurück zum Zitat Jeon JW, Kwon SR, Li F, Lutkenhaus JL (2015) Spray-on polyaniline/poly(acrylic acid) electrodes with enhanced electrochemical stability. ACS Appl Mater Interfaces 7:24150–24158CrossRef Jeon JW, Kwon SR, Li F, Lutkenhaus JL (2015) Spray-on polyaniline/poly(acrylic acid) electrodes with enhanced electrochemical stability. ACS Appl Mater Interfaces 7:24150–24158CrossRef
18.
Zurück zum Zitat Wei D, Lin X, Li L, Shang S, Yuen MC, Yan G, Yua X (2013) Controlled growth of polypyrrole hydrogels. Soft Matter 9:2832–2836CrossRef Wei D, Lin X, Li L, Shang S, Yuen MC, Yan G, Yua X (2013) Controlled growth of polypyrrole hydrogels. Soft Matter 9:2832–2836CrossRef
19.
Zurück zum Zitat Lu X, Zhang W, Wang C, Wen TC, Wei Y (2011) One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog Polym Sci 36:671–712CrossRef Lu X, Zhang W, Wang C, Wen TC, Wei Y (2011) One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog Polym Sci 36:671–712CrossRef
20.
Zurück zum Zitat Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810CrossRef Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810CrossRef
22.
Zurück zum Zitat Zhang L, Wang T, Liu P (2008) Polyaniline-coated halloysite nanotubes via in situ chemical polymerization. Appl Surf Sci 255:2091–2097CrossRef Zhang L, Wang T, Liu P (2008) Polyaniline-coated halloysite nanotubes via in situ chemical polymerization. Appl Surf Sci 255:2091–2097CrossRef
23.
Zurück zum Zitat Yah WO, Takahara A, Lvov YM (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134:1853–1859CrossRef Yah WO, Takahara A, Lvov YM (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134:1853–1859CrossRef
24.
Zurück zum Zitat Liu YS, Nan HM, Cai Q, Li HD (2012) Fabrication of halloysite@polypyrrole composite particles and polypyrrole nanotubes on halloysite templates. J Appl Polym Sci 125:E638–E643CrossRef Liu YS, Nan HM, Cai Q, Li HD (2012) Fabrication of halloysite@polypyrrole composite particles and polypyrrole nanotubes on halloysite templates. J Appl Polym Sci 125:E638–E643CrossRef
25.
Zurück zum Zitat Liu H, Xu B, Jia M, Zhang M, Cao B, Zhao X, Wang Y (2015) Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors. Appl Surf Sci 332:40–46CrossRef Liu H, Xu B, Jia M, Zhang M, Cao B, Zhao X, Wang Y (2015) Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors. Appl Surf Sci 332:40–46CrossRef
26.
Zurück zum Zitat Fan H, Wang H, Zhao N, Zhang X, Xu J (2012) Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. J Mater Chem 22:2774–2780CrossRef Fan H, Wang H, Zhao N, Zhang X, Xu J (2012) Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. J Mater Chem 22:2774–2780CrossRef
27.
Zurück zum Zitat Li Y, Zhao X, Xu Q, Zhang Q, Chen D (2011) Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27:6458–6463CrossRef Li Y, Zhao X, Xu Q, Zhang Q, Chen D (2011) Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27:6458–6463CrossRef
28.
Zurück zum Zitat Kong H, Luo P, Gao C, Yan D (2005) Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly. Polymer 46:2472–2485CrossRef Kong H, Luo P, Gao C, Yan D (2005) Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly. Polymer 46:2472–2485CrossRef
29.
Zurück zum Zitat Liang J, Fan Z, Chen S, Ding S, Yang G (2014) Hierarchical NiCo2O4 nanosheets@halloysite nanotubes with ultrahigh capacitance and long cycle stability as electrochemical pseudocapacitor materials. Chem Mater 26:4354–4360CrossRef Liang J, Fan Z, Chen S, Ding S, Yang G (2014) Hierarchical NiCo2O4 nanosheets@halloysite nanotubes with ultrahigh capacitance and long cycle stability as electrochemical pseudocapacitor materials. Chem Mater 26:4354–4360CrossRef
30.
Zurück zum Zitat Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRef Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRef
31.
Zurück zum Zitat Dai T, Jia Y (2011) Supramolecular hydrogels of polyaniline-poly(styrene sulfonate) prepared in concentrated solutions. Polymer 52:2550–2558CrossRef Dai T, Jia Y (2011) Supramolecular hydrogels of polyaniline-poly(styrene sulfonate) prepared in concentrated solutions. Polymer 52:2550–2558CrossRef
32.
Zurück zum Zitat Guo H, He W, Lu Y, Zhang X (2015) Self-crosslinked polyaniline hydrogel electrodes for electrochemical energy storage. Carbon 92:133–141CrossRef Guo H, He W, Lu Y, Zhang X (2015) Self-crosslinked polyaniline hydrogel electrodes for electrochemical energy storage. Carbon 92:133–141CrossRef
33.
Zurück zum Zitat Li M, Xue J (2014) Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J Phys Chem C 118:2507–2517CrossRef Li M, Xue J (2014) Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J Phys Chem C 118:2507–2517CrossRef
34.
Zurück zum Zitat Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086–6091CrossRef Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086–6091CrossRef
35.
Zurück zum Zitat Huang H, Zeng X, Li W, Wang H, Wang Q, Yang Y (2014) Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate. J Mater Chem A 2:16516–16522CrossRef Huang H, Zeng X, Li W, Wang H, Wang Q, Yang Y (2014) Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate. J Mater Chem A 2:16516–16522CrossRef
36.
Zurück zum Zitat Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493CrossRef Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493CrossRef
37.
Zurück zum Zitat Fan W, Zhang C, Tjiu WW, Pramoda KP, He C, Liu T (2013) Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl Mater Interfaces 5:3382–3391CrossRef Fan W, Zhang C, Tjiu WW, Pramoda KP, He C, Liu T (2013) Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl Mater Interfaces 5:3382–3391CrossRef
38.
Zurück zum Zitat Miao YE, Fan W, Chen D, Liu T (2013) High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. ACS Appl Mater Interfaces 5:4423–4428CrossRef Miao YE, Fan W, Chen D, Liu T (2013) High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. ACS Appl Mater Interfaces 5:4423–4428CrossRef
39.
Zurück zum Zitat Lin LY, Yeh MH, Tsai JT, Huang YH, Sun CL, Ho KC (2013) A novel core-shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. J Mater Chem A 1:11237–11245CrossRef Lin LY, Yeh MH, Tsai JT, Huang YH, Sun CL, Ho KC (2013) A novel core-shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. J Mater Chem A 1:11237–11245CrossRef
40.
Zurück zum Zitat Zhang L, Shi GQ (2011) Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J Phys Chem C 115:17206–17212CrossRef Zhang L, Shi GQ (2011) Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J Phys Chem C 115:17206–17212CrossRef
Metadaten
Titel
Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance
verfasst von
Huabo Huang
Junlong Yao
Hongyan Chen
Xiaoping Zeng
Changlian Chen
Xiao She
Liang Li
Publikationsdatum
08.01.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9724-y

Weitere Artikel der Ausgabe 8/2016

Journal of Materials Science 8/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.