Skip to main content
Erschienen in: Journal of Materials Science 15/2017

30.01.2017 | In Honor of Larry Hench

Structure, thermal properties, dissolution behaviour and biomedical applications of phosphate glasses and fibres: a review

verfasst von: Nusrat Sharmin, Chris D. Rudd

Erschienen in: Journal of Materials Science | Ausgabe 15/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For the last few decades, there has been a growing interest in using glasses for biomedical applications. Bioactive glasses are a group of surface reactive glasses which can initiate a range of biological responses by releasing ions into the local environment. Silicate, borate and phosphate glasses are known to show good bioactive characteristics and could be potentially used as favourable templates for bone-tissue formation. Phosphate glasses are unique group of materials that offer great potential for hard and soft tissue engineering over other types of bioactive glasses due to their fully resorbable characteristics, with some formulations possessing chemical composition similar to the mineral phase of natural bone. Moreover, these phosphate glasses can be prepared as fibres which could be used for soft tissue engineering and as fibrous reinforcement for resorbable polymers such as poly-(lactic acid) for fracture fixation applications. This review details some of the properties of phosphate glasses, such as thermal, viscosity/temperature, dissolution and biocompatibility of and how different factors can effectively alter these properties. The effect of the addition of different modifier oxides on the structure in terms of chain length is included. This review also reports on the manufacturing process, mechanical properties and biomedical application of phosphate glass fibres. A brief comparison between three different types of bioactive glasses has also been presented in this review. The main aim of this review is to present the factors affecting the properties of phosphate glasses and glass fibres and how these may be exploited in the design of a biomaterial.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press, Liverpool Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press, Liverpool
2.
Zurück zum Zitat Hench LL, Thompson I (2010) Twenty-first century challenges for biomaterials. J R Soc Interface 7(Suppl 4):S379–S391CrossRef Hench LL, Thompson I (2010) Twenty-first century challenges for biomaterials. J R Soc Interface 7(Suppl 4):S379–S391CrossRef
4.
Zurück zum Zitat Rea SM, Bonfield W (2004) Biocomposites for medical applications. J Aust Ceram Soc 40:43–57 Rea SM, Bonfield W (2004) Biocomposites for medical applications. J Aust Ceram Soc 40:43–57
5.
Zurück zum Zitat Knowles JC (2003) Phosphate based glasses for biomedical applications. J Mater Chem 13(10):2395–2401CrossRef Knowles JC (2003) Phosphate based glasses for biomedical applications. J Mater Chem 13(10):2395–2401CrossRef
6.
Zurück zum Zitat Abou Neel EA et al (2009) Bioactive functional materials: a perspective on phosphate-based glasses. J Mater Chem 19(6):690–701CrossRef Abou Neel EA et al (2009) Bioactive functional materials: a perspective on phosphate-based glasses. J Mater Chem 19(6):690–701CrossRef
7.
Zurück zum Zitat Ahmed I et al (2004) Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25(3):491–499CrossRef Ahmed I et al (2004) Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25(3):491–499CrossRef
8.
Zurück zum Zitat Abou Neel EA et al (2009) Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interface 6(34):435–446CrossRef Abou Neel EA et al (2009) Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interface 6(34):435–446CrossRef
9.
Zurück zum Zitat Brauer DS et al (2010) Effect of TiO2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications. J Non-Cryst Solids 356(44–49):2626–2633CrossRef Brauer DS et al (2010) Effect of TiO2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications. J Non-Cryst Solids 356(44–49):2626–2633CrossRef
10.
Zurück zum Zitat Bunker BC, Arnold GW, Wilder JA (1984) Phosphate glass dissolution in aqueous solutions. J Non-Cryst Solids 64(3):291–316CrossRef Bunker BC, Arnold GW, Wilder JA (1984) Phosphate glass dissolution in aqueous solutions. J Non-Cryst Solids 64(3):291–316CrossRef
11.
Zurück zum Zitat Donald IW et al (2006) The influence of Fe2O3 and B2O3 additions on the thermal properties, crystallization kinetics and durability of a sodium aluminum phosphate glass. J Non-Cryst Solids 352(28–29):2993–3001CrossRef Donald IW et al (2006) The influence of Fe2O3 and B2O3 additions on the thermal properties, crystallization kinetics and durability of a sodium aluminum phosphate glass. J Non-Cryst Solids 352(28–29):2993–3001CrossRef
12.
Zurück zum Zitat Ahmed I et al (2004) Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass fibre system. Biomaterials 25(3):501–507CrossRef Ahmed I et al (2004) Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass fibre system. Biomaterials 25(3):501–507CrossRef
13.
Zurück zum Zitat Ahmed I et al (2011) Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture. J Mater Sci Mater Med 22(8):1825–1834CrossRef Ahmed I et al (2011) Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture. J Mater Sci Mater Med 22(8):1825–1834CrossRef
14.
Zurück zum Zitat Han N et al (2013) Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates. J Biomater Appl 27(8):990–1002CrossRef Han N et al (2013) Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates. J Biomater Appl 27(8):990–1002CrossRef
15.
Zurück zum Zitat Khan RA, Parsons AJ, Jones IA, Walker GS, Rudd CD (2010) Degradation and interfacial properties of iron phosphate glass fiber-reinforced PCL-based composite for synthetic bone replacement materials. Polym Plast Technol Eng 49(12):1265–1274CrossRef Khan RA, Parsons AJ, Jones IA, Walker GS, Rudd CD (2010) Degradation and interfacial properties of iron phosphate glass fiber-reinforced PCL-based composite for synthetic bone replacement materials. Polym Plast Technol Eng 49(12):1265–1274CrossRef
16.
Zurück zum Zitat Felfel RM et al (2012) Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates. J Biomater Appl 26(7):765–789CrossRef Felfel RM et al (2012) Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates. J Biomater Appl 26(7):765–789CrossRef
17.
Zurück zum Zitat Kruger R, Groll J (2012) Fiber reinforced calcium phosphate cements—on the way to degradable load bearing bone substitutes? Biomaterials 33(25):5887–5900CrossRef Kruger R, Groll J (2012) Fiber reinforced calcium phosphate cements—on the way to degradable load bearing bone substitutes? Biomaterials 33(25):5887–5900CrossRef
18.
Zurück zum Zitat Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater 2(Part I):117–141CrossRef Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater 2(Part I):117–141CrossRef
19.
Zurück zum Zitat Hench LL, Clark AE, Schaake JR, Schaake HF (1972) Effects of microstructure on the radiation stability of amorphous semiconductors. J Non-Cryst Solids 8–10:837–843CrossRef Hench LL, Clark AE, Schaake JR, Schaake HF (1972) Effects of microstructure on the radiation stability of amorphous semiconductors. J Non-Cryst Solids 8–10:837–843CrossRef
20.
Zurück zum Zitat Shelby JE (2005) Introduction to glass science and technology. Royal Society of Chemistry, London Shelby JE (2005) Introduction to glass science and technology. Royal Society of Chemistry, London
21.
Zurück zum Zitat Aguiar H et al (2009) Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non-Cryst Solids 355(8):475–480CrossRef Aguiar H et al (2009) Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non-Cryst Solids 355(8):475–480CrossRef
22.
Zurück zum Zitat Rao KJ (2002) Structural chemistry of glasses. Elsevier, Amsterdam Rao KJ (2002) Structural chemistry of glasses. Elsevier, Amsterdam
23.
Zurück zum Zitat Clark AE, Pantano CG, Hench LL (1976) Auger spectroscopic analysis of bioglass corrosion films. J Am Ceram Soc 59(1–2):37–39CrossRef Clark AE, Pantano CG, Hench LL (1976) Auger spectroscopic analysis of bioglass corrosion films. J Am Ceram Soc 59(1–2):37–39CrossRef
24.
Zurück zum Zitat Hench LL, Splinter RJ, Allen WC, Greenlee TG (1971) Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater 2:117–141CrossRef Hench LL, Splinter RJ, Allen WC, Greenlee TG (1971) Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater 2:117–141CrossRef
25.
Zurück zum Zitat Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017CrossRef Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017CrossRef
26.
27.
Zurück zum Zitat Wilson J, Pigott GH, Schoen FJ, Hench LL (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15(6):805–817CrossRef Wilson J, Pigott GH, Schoen FJ, Hench LL (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15(6):805–817CrossRef
28.
Zurück zum Zitat Haimi S, Gorianc G, Moimas L, Lindroos B, Huthala H (2009) Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater 2009(5):3122–3231CrossRef Haimi S, Gorianc G, Moimas L, Lindroos B, Huthala H (2009) Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater 2009(5):3122–3231CrossRef
29.
Zurück zum Zitat Cannillo V, Sola A (2009) Potassium-based composition for a bioactive glass. Ceram Int 35:3389–3393CrossRef Cannillo V, Sola A (2009) Potassium-based composition for a bioactive glass. Ceram Int 35:3389–3393CrossRef
30.
Zurück zum Zitat Vitale-Brovarone C, Verne E, Bosetti M, Appendino P, Cannas M (2005) Microstructural and in vitro characterization of SiO2–Na2O–CaO–MgO glass-ceramic bioactive scaffolds for bone substitutes. J Mater Sci Mater Med 16:909–917CrossRef Vitale-Brovarone C, Verne E, Bosetti M, Appendino P, Cannas M (2005) Microstructural and in vitro characterization of SiO2–Na2O–CaO–MgO glass-ceramic bioactive scaffolds for bone substitutes. J Mater Sci Mater Med 16:909–917CrossRef
31.
Zurück zum Zitat Vitale-Brovarone C, Miola M, Balagna C, Verne E (2008) 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chem Eng J 2008(137):129–136CrossRef Vitale-Brovarone C, Miola M, Balagna C, Verne E (2008) 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chem Eng J 2008(137):129–136CrossRef
32.
Zurück zum Zitat Kim CY, Clark AE, Hench LL (1992) Compositional dependence of calcium phosphate layer formation in fluoride Bioglasses. J Biomed Mater Res 26(9):1147–1161CrossRef Kim CY, Clark AE, Hench LL (1992) Compositional dependence of calcium phosphate layer formation in fluoride Bioglasses. J Biomed Mater Res 26(9):1147–1161CrossRef
33.
Zurück zum Zitat Hsi CS, Cheng HZ, Hsu HJ, Chen YS, Wang MC (2007) Crystallization kinetics and magnetic properties of iron oxide contained 25Li2O–8MnO2–20CaO–2P2O5–45SiO2 glasses. J Eur Ceram Soc 27:3171–3176CrossRef Hsi CS, Cheng HZ, Hsu HJ, Chen YS, Wang MC (2007) Crystallization kinetics and magnetic properties of iron oxide contained 25Li2O–8MnO2–20CaO–2P2O5–45SiO2 glasses. J Eur Ceram Soc 27:3171–3176CrossRef
34.
Zurück zum Zitat Gorriti MF, Lopez JMP, Boccaccini AR, Audisio C, Gorustovich AA (2009) In vitro study of the antibacterial activity of bioactive glass-ceramic scaffolds. Adv Eng Mater 11:67–70CrossRef Gorriti MF, Lopez JMP, Boccaccini AR, Audisio C, Gorustovich AA (2009) In vitro study of the antibacterial activity of bioactive glass-ceramic scaffolds. Adv Eng Mater 11:67–70CrossRef
35.
Zurück zum Zitat Greenspan DC, Hench LL (1976) Chemical and mechanical behavior of bioglasscoated alumina. J Biomed Mater Res 10:503–509CrossRef Greenspan DC, Hench LL (1976) Chemical and mechanical behavior of bioglasscoated alumina. J Biomed Mater Res 10:503–509CrossRef
36.
Zurück zum Zitat Cao WH, Larry L (1996) Bioactive materials. Ceram Int 22(6):493–507CrossRef Cao WH, Larry L (1996) Bioactive materials. Ceram Int 22(6):493–507CrossRef
37.
Zurück zum Zitat Gross UMSV (1980) The anchoring of glass ceramics of different solubility in the femur of the rat. J Biomed Mater Res 1980(14):607–618CrossRef Gross UMSV (1980) The anchoring of glass ceramics of different solubility in the femur of the rat. J Biomed Mater Res 1980(14):607–618CrossRef
38.
Zurück zum Zitat Li P et al (1992) Apatite formation induced by silica gel in a simulated body fluid. J Am Ceram Soc 75(8):2094–2097CrossRef Li P et al (1992) Apatite formation induced by silica gel in a simulated body fluid. J Am Ceram Soc 75(8):2094–2097CrossRef
39.
Zurück zum Zitat Liang W et al (2006) Bioactive comparison of a borate, phosphate and silicate glass. J Mater Res 21(01):125–131CrossRef Liang W et al (2006) Bioactive comparison of a borate, phosphate and silicate glass. J Mater Res 21(01):125–131CrossRef
40.
Zurück zum Zitat Filho OP, La Torre GP, Hench LL (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res 30(4):509–514CrossRef Filho OP, La Torre GP, Hench LL (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res 30(4):509–514CrossRef
41.
Zurück zum Zitat Day DE et al (2003) Transformation of borate glasses into biologically useful materials. Glass Technol 44(2):75–81 Day DE et al (2003) Transformation of borate glasses into biologically useful materials. Glass Technol 44(2):75–81
42.
Zurück zum Zitat Ahmed AA et al (2011) Preparation and characterization of antibacterial P2O5–CaO–Na2O–Ag2O glasses. J Biomed Mater Res, Part A 98A(1):132–142CrossRef Ahmed AA et al (2011) Preparation and characterization of antibacterial P2O5–CaO–Na2O–Ag2O glasses. J Biomed Mater Res, Part A 98A(1):132–142CrossRef
43.
Zurück zum Zitat Huang W et al (2006) Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 17(7):583–596CrossRef Huang W et al (2006) Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 17(7):583–596CrossRef
44.
Zurück zum Zitat Karabulut M et al (2011) Effect of boron addition on the structure and properties of iron phosphate glasses. J Non-Cryst Solids 357(5):1455–1462CrossRef Karabulut M et al (2011) Effect of boron addition on the structure and properties of iron phosphate glasses. J Non-Cryst Solids 357(5):1455–1462CrossRef
45.
Zurück zum Zitat Yao A et al (2007) In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. J Am Ceram Soc 90(1):303–306CrossRef Yao A et al (2007) In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. J Am Ceram Soc 90(1):303–306CrossRef
46.
Zurück zum Zitat Pan HB et al (2010) Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interface 7(48):1025–1031CrossRef Pan HB et al (2010) Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interface 7(48):1025–1031CrossRef
47.
Zurück zum Zitat George JL, Brow RK (2015) In-situ characterization of borate glass dissolution kinetics by μ-Raman spectroscopy. J Non-Cryst Solids 426:116–124CrossRef George JL, Brow RK (2015) In-situ characterization of borate glass dissolution kinetics by μ-Raman spectroscopy. J Non-Cryst Solids 426:116–124CrossRef
48.
Zurück zum Zitat Dzondo-Gadet M et al (2002) Action of boron at the molecular level: effects on transcription and translation in an acellular system. Biol Trace Elem Res 85(1):23–33CrossRef Dzondo-Gadet M et al (2002) Action of boron at the molecular level: effects on transcription and translation in an acellular system. Biol Trace Elem Res 85(1):23–33CrossRef
49.
Zurück zum Zitat Liu X et al (2009) Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. J Mater Sci Mater Med 20(1):365–372CrossRef Liu X et al (2009) Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. J Mater Sci Mater Med 20(1):365–372CrossRef
50.
Zurück zum Zitat Yang X et al (2012) Incorporation of B2O3 in CaO–SiO2–P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J Non-Cryst Solids 358(9):1171–1179CrossRef Yang X et al (2012) Incorporation of B2O3 in CaO–SiO2–P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J Non-Cryst Solids 358(9):1171–1179CrossRef
51.
Zurück zum Zitat Uysal T et al (2009) Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod 79(5):984–990CrossRef Uysal T et al (2009) Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod 79(5):984–990CrossRef
52.
Zurück zum Zitat Takebe H, Harada T, Kuwabara M (2006) Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses. J Non-Cryst Solids 352(6–7):709–713CrossRef Takebe H, Harada T, Kuwabara M (2006) Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses. J Non-Cryst Solids 352(6–7):709–713CrossRef
53.
Zurück zum Zitat Carta D et al (2009) Sol-gel synthesis and structural characterisation of P2O5–B2O3–Na2O glasses for biomedical applications. J Mater Chem 19(1):150–158CrossRef Carta D et al (2009) Sol-gel synthesis and structural characterisation of P2O5–B2O3–Na2O glasses for biomedical applications. J Mater Chem 19(1):150–158CrossRef
54.
Zurück zum Zitat Sharmin N et al (2016) Effect of boron oxide addition on the viscosity-temperature behaviour and structure of phosphate-based glasses. J Biomed Mater Res Part B Appl Biomater doi:10.1002/jbm.b.33610 Sharmin N et al (2016) Effect of boron oxide addition on the viscosity-temperature behaviour and structure of phosphate-based glasses. J Biomed Mater Res Part B Appl Biomater doi:10.​1002/​jbm.​b.​33610
55.
Zurück zum Zitat Sharmin N et al (2013) Effect of boron addition on the thermal, degradation, and cytocompatibility properties of phosphate-based glasses. BioMed Res Int 2013:12CrossRef Sharmin N et al (2013) Effect of boron addition on the thermal, degradation, and cytocompatibility properties of phosphate-based glasses. BioMed Res Int 2013:12CrossRef
56.
Zurück zum Zitat Moustafa YM, El-Egili K (1998) Infrared spectra of sodium phosphate glasses. J Non-Cryst Solids 240(1–3):144–153CrossRef Moustafa YM, El-Egili K (1998) Infrared spectra of sodium phosphate glasses. J Non-Cryst Solids 240(1–3):144–153CrossRef
57.
Zurück zum Zitat Martin SW (1991) Review of the structures of phosphate glasses. Eur J Solid State Inorg Chem 28:163–205 Martin SW (1991) Review of the structures of phosphate glasses. Eur J Solid State Inorg Chem 28:163–205
58.
Zurück zum Zitat Ahmed I et al (2004) Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25(3):491–499CrossRef Ahmed I et al (2004) Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25(3):491–499CrossRef
59.
Zurück zum Zitat Cruickshank DWJ (1077) The role of 3d-orbitals in [small pi]-bonds between (a) silicon, phosphorus, sulphur, or chlorine and (b) oxygen or nitrogen. J Chem Soc (Resumed) 1961:5486–5504 Cruickshank DWJ (1077) The role of 3d-orbitals in [small pi]-bonds between (a) silicon, phosphorus, sulphur, or chlorine and (b) oxygen or nitrogen. J Chem Soc (Resumed) 1961:5486–5504
60.
Zurück zum Zitat Mitchell KAR (1969) Use of outer d orbitals in bonding. Chem Rev 69(2):157–178CrossRef Mitchell KAR (1969) Use of outer d orbitals in bonding. Chem Rev 69(2):157–178CrossRef
61.
Zurück zum Zitat Van Wazer JR (1958) Phosphorus and its compounds. Interscience Publishers Ltd., London Van Wazer JR (1958) Phosphorus and its compounds. Interscience Publishers Ltd., London
62.
Zurück zum Zitat Brow RK (2000) Review: the structure of simple phosphate glasses. J Non-Cryst Solids 263–264:1–28CrossRef Brow RK (2000) Review: the structure of simple phosphate glasses. J Non-Cryst Solids 263–264:1–28CrossRef
63.
Zurück zum Zitat Gresch R, Müller-Warmuth W, Dutz H (1979) X-ray photoelectron spectroscopy of sodium phosphate glasses. J Non-Cryst Solids 34(1):127–136CrossRef Gresch R, Müller-Warmuth W, Dutz H (1979) X-ray photoelectron spectroscopy of sodium phosphate glasses. J Non-Cryst Solids 34(1):127–136CrossRef
64.
Zurück zum Zitat Hoppe U et al (2000) Structural specifics of phosphate glasses probed by diffraction methods: a review. J Non-Cryst Solids 263–264:29–47CrossRef Hoppe U et al (2000) Structural specifics of phosphate glasses probed by diffraction methods: a review. J Non-Cryst Solids 263–264:29–47CrossRef
65.
Zurück zum Zitat Kirkpatrick RJ, Brow RK (1995) Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: a review. Solid State Nucl Magn Reson 5(1):9–21CrossRef Kirkpatrick RJ, Brow RK (1995) Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: a review. Solid State Nucl Magn Reson 5(1):9–21CrossRef
66.
Zurück zum Zitat Walter G, Goerigk G, Rüssel C (2006) The structure of phosphate glass evidenced by small angle X-ray scattering. J Non-Cryst Solids 352(38–39):4051–4061CrossRef Walter G, Goerigk G, Rüssel C (2006) The structure of phosphate glass evidenced by small angle X-ray scattering. J Non-Cryst Solids 352(38–39):4051–4061CrossRef
67.
Zurück zum Zitat Jäger C et al (2000) New 2D NMR experiments for determining the structure of phosphate glasses: a review. J Non-Cryst Solids 263–264:61–72CrossRef Jäger C et al (2000) New 2D NMR experiments for determining the structure of phosphate glasses: a review. J Non-Cryst Solids 263–264:61–72CrossRef
68.
Zurück zum Zitat Wetherall KM, Pickup DM, Newport RJ, Mountjoy G (2009) The structure of calcium metaphosphate glass obtained from X-ray and neutron diffraction and reverse Monte Carlo modelling. J Phys: Condens Matter 21(3):035109 Wetherall KM, Pickup DM, Newport RJ, Mountjoy G (2009) The structure of calcium metaphosphate glass obtained from X-ray and neutron diffraction and reverse Monte Carlo modelling. J Phys: Condens Matter 21(3):035109
69.
Zurück zum Zitat Joseph K, Premila M, Amarendra G, Govindan Kutty KG, Sundar CS, Vasudeva Rao PR (2012) Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study. J Nucl Mater 420(1–3):49–53CrossRef Joseph K, Premila M, Amarendra G, Govindan Kutty KG, Sundar CS, Vasudeva Rao PR (2012) Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study. J Nucl Mater 420(1–3):49–53CrossRef
70.
Zurück zum Zitat Hoppe U, Walter G, Stachel D (1992) Short range order of metaphosphate glasses investigated by x-ray diffraction. Phys Chem Glasses 33(6):216–221 Hoppe U, Walter G, Stachel D (1992) Short range order of metaphosphate glasses investigated by x-ray diffraction. Phys Chem Glasses 33(6):216–221
71.
Zurück zum Zitat Bionducci M et al (1996) The structure of a Zn(II) metaphosphate glass. I. The cation coordination by a Combination of X-Ray and Neutron diffraction, EXAFS and X-Ray anomalous scattering. Z fur Naturforschung Sect A J Phys Sci 51(12):1209–1215 Bionducci M et al (1996) The structure of a Zn(II) metaphosphate glass. I. The cation coordination by a Combination of X-Ray and Neutron diffraction, EXAFS and X-Ray anomalous scattering. Z fur Naturforschung Sect A J Phys Sci 51(12):1209–1215
72.
Zurück zum Zitat Hoppe U et al (1996) Short-range order in KPO3 glass studied by neutron and X-ray diffraction. Z fur Naturforschung Sect A J Phys Sci 51(3):179–186 Hoppe U et al (1996) Short-range order in KPO3 glass studied by neutron and X-ray diffraction. Z fur Naturforschung Sect A J Phys Sci 51(3):179–186
73.
Zurück zum Zitat Meyer K (1998) Characterisation of the structure of binary calcium ultraphosphate glasses by infrared and Raman spectroscopy. Phys Chem Glasses 39(2):108–117 Meyer K (1998) Characterisation of the structure of binary calcium ultraphosphate glasses by infrared and Raman spectroscopy. Phys Chem Glasses 39(2):108–117
74.
Zurück zum Zitat Meyer K, Barz A, Stachel D (1995) Effects of atmospheric humidity on the infrared reflectivity of vitreous P2O5 and ultraphosphate glasses. J Non-Cryst Solids 191(1–2):71–78CrossRef Meyer K, Barz A, Stachel D (1995) Effects of atmospheric humidity on the infrared reflectivity of vitreous P2O5 and ultraphosphate glasses. J Non-Cryst Solids 191(1–2):71–78CrossRef
75.
Zurück zum Zitat Matsubara E et al (1988) Structural study of binary phosphate glasses with MgO, ZnO, and CaO by X-ray diffraction. J Non-Cryst Solids 103(1):117–124CrossRef Matsubara E et al (1988) Structural study of binary phosphate glasses with MgO, ZnO, and CaO by X-ray diffraction. J Non-Cryst Solids 103(1):117–124CrossRef
76.
Zurück zum Zitat Hudgens JJ et al (1998) Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses. J Non-Cryst Solids 223(1–2):21–31CrossRef Hudgens JJ et al (1998) Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses. J Non-Cryst Solids 223(1–2):21–31CrossRef
77.
Zurück zum Zitat Karabulut M et al (2002) An investigation of the local iron environment in iron phosphate glasses having different Fe(II) concentrations. J Non-Cryst Solids 306(2):182–192CrossRef Karabulut M et al (2002) An investigation of the local iron environment in iron phosphate glasses having different Fe(II) concentrations. J Non-Cryst Solids 306(2):182–192CrossRef
78.
Zurück zum Zitat Lee ETY, Taylor ERM (2006) Optical and thermal properties of binary calcium phosphate and barium phosphate glasses. Opt Mater 28(3):200–206CrossRef Lee ETY, Taylor ERM (2006) Optical and thermal properties of binary calcium phosphate and barium phosphate glasses. Opt Mater 28(3):200–206CrossRef
79.
Zurück zum Zitat Moustafa YM, El-Egili K (1998) Infrared spectra of sodium phosphate glasses. J Non-Cryst Solids 240(1–3):144–153CrossRef Moustafa YM, El-Egili K (1998) Infrared spectra of sodium phosphate glasses. J Non-Cryst Solids 240(1–3):144–153CrossRef
80.
Zurück zum Zitat Brow RK et al (1994) The short-range structure of sodium ultraphosphate glasses. J Non-Cryst Solids 177:221–228CrossRef Brow RK et al (1994) The short-range structure of sodium ultraphosphate glasses. J Non-Cryst Solids 177:221–228CrossRef
81.
Zurück zum Zitat Fletcher JP, Kirkpatrick RJ, Howell D, Risbud SH (1993) 31P Magic-angle spinning nuclear magnetic resonance spectroscopy of calcium phosphate glasses. J Chem Soc, Faraday Trans 89(17):3297–3299CrossRef Fletcher JP, Kirkpatrick RJ, Howell D, Risbud SH (1993) 31P Magic-angle spinning nuclear magnetic resonance spectroscopy of calcium phosphate glasses. J Chem Soc, Faraday Trans 89(17):3297–3299CrossRef
82.
Zurück zum Zitat Charles RJ (1967) Activities in Li2O-Na2O- and K2O-SiO2 solutions. J Am Ceram Soc 50:631–664CrossRef Charles RJ (1967) Activities in Li2O-Na2O- and K2O-SiO2 solutions. J Am Ceram Soc 50:631–664CrossRef
83.
Zurück zum Zitat Meyer K (1997) Characterization of the structure of binary zinc ultraphosphate glasses by infrared and Raman spectroscopy. J Non-Cryst Solids 209(3):227–239CrossRef Meyer K (1997) Characterization of the structure of binary zinc ultraphosphate glasses by infrared and Raman spectroscopy. J Non-Cryst Solids 209(3):227–239CrossRef
84.
Zurück zum Zitat Karakassides MA, Saranti A, Koutselas I (2004) Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J Non-Cryst Solids 347(1–3):69–79CrossRef Karakassides MA, Saranti A, Koutselas I (2004) Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J Non-Cryst Solids 347(1–3):69–79CrossRef
85.
Zurück zum Zitat Parsons AJ et al (2006) Properties of sodium-based ternary phosphate glasses produced from readily available phosphate salts. J Non-Cryst Solids 352(50–51):5309–5317CrossRef Parsons AJ et al (2006) Properties of sodium-based ternary phosphate glasses produced from readily available phosphate salts. J Non-Cryst Solids 352(50–51):5309–5317CrossRef
86.
Zurück zum Zitat Moguš-Milanković A et al (2001) Structure of sodium phosphate glasses containing Al2O3 and/or Fe2O3. Part I. J Non-Cryst Solids 289(1–3):204–213CrossRef Moguš-Milanković A et al (2001) Structure of sodium phosphate glasses containing Al2O3 and/or Fe2O3. Part I. J Non-Cryst Solids 289(1–3):204–213CrossRef
87.
Zurück zum Zitat Yu X et al (1997) Properties and structure of sodium-iron phosphate glasses. J Non-Cryst Solids 215(1):21–31CrossRef Yu X et al (1997) Properties and structure of sodium-iron phosphate glasses. J Non-Cryst Solids 215(1):21–31CrossRef
88.
Zurück zum Zitat Franks K, Abrahamas I, Georgiou G, Knowles JC (2001) Investigation of thermal parameters and crytallisation in a ternary CaO–Na2O–P2O5-based glass system. Biomaterials 22(5):497–501CrossRef Franks K, Abrahamas I, Georgiou G, Knowles JC (2001) Investigation of thermal parameters and crytallisation in a ternary CaO–Na2O–P2O5-based glass system. Biomaterials 22(5):497–501CrossRef
89.
Zurück zum Zitat Brow RK, Kirkpatrick RJ, Turner GL (1993) Nature of alumina in phosphate glass: II, structure of sodium alurninophosphate glass. J Am Ceram Soc 76(4):919–928CrossRef Brow RK, Kirkpatrick RJ, Turner GL (1993) Nature of alumina in phosphate glass: II, structure of sodium alurninophosphate glass. J Am Ceram Soc 76(4):919–928CrossRef
90.
Zurück zum Zitat Mogus-Milankovic A, Gajović A, Santic A, Day DE (2001) Structure of sodium phosphate glasses containing Al2O3 and/or Fe2O3. Part I. J Non-Cryst Solids 289(1–3):204–213CrossRef Mogus-Milankovic A, Gajović A, Santic A, Day DE (2001) Structure of sodium phosphate glasses containing Al2O3 and/or Fe2O3. Part I. J Non-Cryst Solids 289(1–3):204–213CrossRef
91.
Zurück zum Zitat Silva AMB et al (2010) Structural characterization of TiO2–P2O5–CaO glasses by spectroscopy. J Eur Ceram Soc 30(6):1253–1258CrossRef Silva AMB et al (2010) Structural characterization of TiO2–P2O5–CaO glasses by spectroscopy. J Eur Ceram Soc 30(6):1253–1258CrossRef
92.
Zurück zum Zitat Tsuchida J et al (2011) Structure of ternary aluminum metaphosphate glasses. J Phys Chem C 115(44):21927–21941CrossRef Tsuchida J et al (2011) Structure of ternary aluminum metaphosphate glasses. J Phys Chem C 115(44):21927–21941CrossRef
93.
Zurück zum Zitat Walter G et al (2001) The structure of CaO–Na2O–MgO–P2O5 invert glass. J Non-Cryst Solids 296(3):212–223CrossRef Walter G et al (2001) The structure of CaO–Na2O–MgO–P2O5 invert glass. J Non-Cryst Solids 296(3):212–223CrossRef
94.
Zurück zum Zitat Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25(16):3223–3232CrossRef Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25(16):3223–3232CrossRef
95.
Zurück zum Zitat AbouNeel EA, Chrzanowski W, Pickup DM, O’Dell LA, Mordan NJ, Newport RJ, Smith ME, Knowles JC (2009) Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interface 6(34):435–446CrossRef AbouNeel EA, Chrzanowski W, Pickup DM, O’Dell LA, Mordan NJ, Newport RJ, Smith ME, Knowles JC (2009) Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interface 6(34):435–446CrossRef
96.
Zurück zum Zitat Ahmed I et al (2015) Core/clad phosphate glass fibres containing iron and/or titanium. Biomed Glass 1(1):20–30 Ahmed I et al (2015) Core/clad phosphate glass fibres containing iron and/or titanium. Biomed Glass 1(1):20–30
97.
98.
Zurück zum Zitat Brauer DR, Rüssel S, Kraft J (2007) Solubility of glasses in the system P2O5–CaO–MgO–Na2O–TiO2: experimental and modeling using artificial neural networks. J Non-Cryst Solids 353(3):263–270CrossRef Brauer DR, Rüssel S, Kraft J (2007) Solubility of glasses in the system P2O5–CaO–MgO–Na2O–TiO2: experimental and modeling using artificial neural networks. J Non-Cryst Solids 353(3):263–270CrossRef
99.
Zurück zum Zitat Khan RA, Parsons AJ, Jones IA, Walker GS, Rudd CD (2010) Degradation and interfacial properties of iron phosphate glass fiber-reinforced PCL-based composite for synthetic bone replacement materials. Polym Plast Technol Eng 49(12):1265–1274CrossRef Khan RA, Parsons AJ, Jones IA, Walker GS, Rudd CD (2010) Degradation and interfacial properties of iron phosphate glass fiber-reinforced PCL-based composite for synthetic bone replacement materials. Polym Plast Technol Eng 49(12):1265–1274CrossRef
100.
Zurück zum Zitat Zheng K, Yang S, Wang J, Russel C, Liu C, Liang W (2012) Characteristics and biocompatibility of Na2O–K2O–CaO–MgO–SrO–B2O3–P2O5 borophosphate glass fibers. J Non-Cryst Solids 358(2):387–391CrossRef Zheng K, Yang S, Wang J, Russel C, Liu C, Liang W (2012) Characteristics and biocompatibility of Na2O–K2O–CaO–MgO–SrO–B2O3–P2O5 borophosphate glass fibers. J Non-Cryst Solids 358(2):387–391CrossRef
101.
Zurück zum Zitat Goel A, Rajagopal RR, Ferreira JMF (2011) Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses. Acta Biomater 7(11):4071–4080CrossRef Goel A, Rajagopal RR, Ferreira JMF (2011) Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses. Acta Biomater 7(11):4071–4080CrossRef
102.
Zurück zum Zitat Brauer DS (2012) Phosphate glasses, in bio-glasses. Wiley, New York, pp 45–64 Brauer DS (2012) Phosphate glasses, in bio-glasses. Wiley, New York, pp 45–64
103.
Zurück zum Zitat Shih PY, Chin TS (2001) Preparation of lead-free phosphate glasses with low T g and excellent chemical durability. J Mater Sci Lett 20(19):1811–1813CrossRef Shih PY, Chin TS (2001) Preparation of lead-free phosphate glasses with low T g and excellent chemical durability. J Mater Sci Lett 20(19):1811–1813CrossRef
104.
Zurück zum Zitat Sales BC, Boatner LA, Ramey JO (1998) Intermediate-range order in simple metal-phosphate glasses: the effect of metal cations on the phosphate-anion distribution. J Non-Cryst Solids 232–234:107–112CrossRef Sales BC, Boatner LA, Ramey JO (1998) Intermediate-range order in simple metal-phosphate glasses: the effect of metal cations on the phosphate-anion distribution. J Non-Cryst Solids 232–234:107–112CrossRef
105.
Zurück zum Zitat Hudgens JJ, Martin SW (1993) Glass transition and infrared spectra of low-alkali, anhydrous lithium phosphate glasses. J Am Ceram Soc 76(7):1691–1696CrossRef Hudgens JJ, Martin SW (1993) Glass transition and infrared spectra of low-alkali, anhydrous lithium phosphate glasses. J Am Ceram Soc 76(7):1691–1696CrossRef
106.
Zurück zum Zitat Abou Neel EA et al (2005) Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres. Acta Biomater 1(5):553–563CrossRef Abou Neel EA et al (2005) Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres. Acta Biomater 1(5):553–563CrossRef
107.
Zurück zum Zitat Abou Neel EA et al (2005) Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials 26(15):2247–2254CrossRef Abou Neel EA et al (2005) Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials 26(15):2247–2254CrossRef
108.
Zurück zum Zitat Abou Neel EA, Chrzanowski W, Knowles JC (2008) Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Acta Biomater 4(3):523–534CrossRef Abou Neel EA, Chrzanowski W, Knowles JC (2008) Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Acta Biomater 4(3):523–534CrossRef
109.
Zurück zum Zitat Abou Neel EA et al (2009) Doping of a high calcium oxide metaphosphate glass with titanium dioxide. J Non-Cryst Solids 355(16–17):991–1000CrossRef Abou Neel EA et al (2009) Doping of a high calcium oxide metaphosphate glass with titanium dioxide. J Non-Cryst Solids 355(16–17):991–1000CrossRef
110.
Zurück zum Zitat Sharmin N, Hasan MS, Parsons AJ, Rudd CD, Ahmed I (2015) Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites. J Mech Behav Biomed Mater 59:41–56CrossRef Sharmin N, Hasan MS, Parsons AJ, Rudd CD, Ahmed I (2015) Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites. J Mech Behav Biomed Mater 59:41–56CrossRef
111.
Zurück zum Zitat Harada T et al (2004) Effect of B2O3 addition on the thermal stability of barium phosphate glasses for optical fiber devices. J Am Ceram Soc 87(3):408–411CrossRef Harada T et al (2004) Effect of B2O3 addition on the thermal stability of barium phosphate glasses for optical fiber devices. J Am Ceram Soc 87(3):408–411CrossRef
112.
Zurück zum Zitat Toyoda S, Fujino S, Morinaga K (2003) Density, viscosity and surface tension of 50RO–50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts. J Non-Cryst Solids 321(3):169–174CrossRef Toyoda S, Fujino S, Morinaga K (2003) Density, viscosity and surface tension of 50RO–50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts. J Non-Cryst Solids 321(3):169–174CrossRef
113.
Zurück zum Zitat Parsons AJ et al (2015) Viscosity profiles of phosphate glasses through combined quasi-static and bob-in-cup methods. J Non-Cryst Solids 408:76–86CrossRef Parsons AJ et al (2015) Viscosity profiles of phosphate glasses through combined quasi-static and bob-in-cup methods. J Non-Cryst Solids 408:76–86CrossRef
114.
Zurück zum Zitat Smallman RE, BiShop RJ (1999) Chapter 10—Ceramics and glasses. In: Smallman RE, BiShop RJ (eds) Modern physical metallurgy and materials engineering, 6th edn. Butterworth-Heinemann, Oxford, pp 320–350CrossRef Smallman RE, BiShop RJ (1999) Chapter 10—Ceramics and glasses. In: Smallman RE, BiShop RJ (eds) Modern physical metallurgy and materials engineering, 6th edn. Butterworth-Heinemann, Oxford, pp 320–350CrossRef
115.
Zurück zum Zitat Martin SW, Angell CA (1986) On the glass transition and viscosity of P2O5. J Phys Chem 90:6736–6740CrossRef Martin SW, Angell CA (1986) On the glass transition and viscosity of P2O5. J Phys Chem 90:6736–6740CrossRef
116.
Zurück zum Zitat Griffith EJ, Callis CF (1959) Structure and properties of condensed phosphates. XV. Viscosity of ultraphosphate melts1. J Am Chem Soc 81(4):833–836CrossRef Griffith EJ, Callis CF (1959) Structure and properties of condensed phosphates. XV. Viscosity of ultraphosphate melts1. J Am Chem Soc 81(4):833–836CrossRef
117.
Zurück zum Zitat Angell CA (1991) Relaxation in liquids, polymers and plastic crystals— strong/fragile patterns and problems. J Non-Cryst Solids 131–133, Part 1:13–31CrossRef Angell CA (1991) Relaxation in liquids, polymers and plastic crystals— strong/fragile patterns and problems. J Non-Cryst Solids 131–133, Part 1:13–31CrossRef
118.
Zurück zum Zitat Angell CA (1988) Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J Non-Cryst Solids 102(1–3):205–221CrossRef Angell CA (1988) Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J Non-Cryst Solids 102(1–3):205–221CrossRef
119.
Zurück zum Zitat Sidebottom D, Changstrom J (2008) Viscoelastic relaxation in molten phosphorus pentoxide using photon correlation spectroscopy. Phys Rev B 77(2):70–78CrossRef Sidebottom D, Changstrom J (2008) Viscoelastic relaxation in molten phosphorus pentoxide using photon correlation spectroscopy. Phys Rev B 77(2):70–78CrossRef
120.
Zurück zum Zitat Böhmer R et al (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99(5):4201–4209CrossRef Böhmer R et al (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99(5):4201–4209CrossRef
121.
Zurück zum Zitat Martin SW, Angell CA (1986) On the glass transition and viscosity of P2O5. J Phys Chem 90(25):6736–6740CrossRef Martin SW, Angell CA (1986) On the glass transition and viscosity of P2O5. J Phys Chem 90(25):6736–6740CrossRef
122.
Zurück zum Zitat Gao H, Tan T, Wang D (2004) Effect of composition on the release kinetics of phosphate controlled release glasses in aqueous medium. J Control Release 96(1):21–28CrossRef Gao H, Tan T, Wang D (2004) Effect of composition on the release kinetics of phosphate controlled release glasses in aqueous medium. J Control Release 96(1):21–28CrossRef
123.
Zurück zum Zitat Gao H, Tan T, Wang D (2004) Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium. J Control Release 96(1):29–36CrossRef Gao H, Tan T, Wang D (2004) Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium. J Control Release 96(1):29–36CrossRef
124.
Zurück zum Zitat Delahaye F et al (1998) Acid dissolution of sodium–calcium metaphosphate glasses. J Non-Cryst Solids 242(1):25–32CrossRef Delahaye F et al (1998) Acid dissolution of sodium–calcium metaphosphate glasses. J Non-Cryst Solids 242(1):25–32CrossRef
125.
Zurück zum Zitat Knowles JC, Franks K, Abrahams I (2001) Investigation of the solubility and ion release in the glass system K2O–Na2O–CaO–P2O5. Biomaterials 22(23):3091–3096CrossRef Knowles JC, Franks K, Abrahams I (2001) Investigation of the solubility and ion release in the glass system K2O–Na2O–CaO–P2O5. Biomaterials 22(23):3091–3096CrossRef
126.
Zurück zum Zitat Franks KA, Knowles I, Knowles JC (2000) Development of soluble glasses for biomedical use part I: In vitro solubility measurement. J Mater Sci Mater Med 11(10):609–614CrossRef Franks KA, Knowles I, Knowles JC (2000) Development of soluble glasses for biomedical use part I: In vitro solubility measurement. J Mater Sci Mater Med 11(10):609–614CrossRef
127.
Zurück zum Zitat Shih PY, Yung SW, Chin TS (1998) Thermal and corrosion behavior of P2O5-Na2O-CuO glasses. J Non-Cryst Solids 224(2):143–152CrossRef Shih PY, Yung SW, Chin TS (1998) Thermal and corrosion behavior of P2O5-Na2O-CuO glasses. J Non-Cryst Solids 224(2):143–152CrossRef
128.
Zurück zum Zitat Abou Neel EA, Ahmed I, Blaker JJ, Bismarck A, Boccaccini AR, Lewis MP, Nazhat SN, Knowles JC (2005) Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres. Acta Biomater 1(5):553–563CrossRef Abou Neel EA, Ahmed I, Blaker JJ, Bismarck A, Boccaccini AR, Lewis MP, Nazhat SN, Knowles JC (2005) Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres. Acta Biomater 1(5):553–563CrossRef
129.
Zurück zum Zitat Abou Neel EA, Chrzanowski W, Knowles JC (2008) Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Acta Biomater 4(3):523–534CrossRef Abou Neel EA, Chrzanowski W, Knowles JC (2008) Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Acta Biomater 4(3):523–534CrossRef
130.
Zurück zum Zitat Shaharyar Y et al (2015) Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses. J Mater Chem B 3(48):9360–9373CrossRef Shaharyar Y et al (2015) Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses. J Mater Chem B 3(48):9360–9373CrossRef
131.
Zurück zum Zitat Yu X, Day DE, Long GJ, Brow RK (1997) Properties and structure of sodium-iron phosphate glasses. J Non-Cryst Solids 215(1):21–31CrossRef Yu X, Day DE, Long GJ, Brow RK (1997) Properties and structure of sodium-iron phosphate glasses. J Non-Cryst Solids 215(1):21–31CrossRef
132.
Zurück zum Zitat Shah K et al (2006) Effect of B2O3 addition on microhardness and structural features of 40Na2O–10BaO–xB2O3-(50-x)P2O5; glass system. Bull Mater Sci 29(1):43–48CrossRef Shah K et al (2006) Effect of B2O3 addition on microhardness and structural features of 40Na2O–10BaO–xB2O3-(50-x)P2O5; glass system. Bull Mater Sci 29(1):43–48CrossRef
133.
Zurück zum Zitat Gao H, Tan T, Wang D (2004) Effect of composition on the release kinetics of phosphate controlled release glasses in aqueous medium. J Control Release 96(1):21–28CrossRef Gao H, Tan T, Wang D (2004) Effect of composition on the release kinetics of phosphate controlled release glasses in aqueous medium. J Control Release 96(1):21–28CrossRef
134.
Zurück zum Zitat ElBatal FH, ElKheshen A (2008) Preparation and characterization of some substituted bioglasses and their ceramic derivatives from the system SiO2–Na2O–CaO–P2O5 and effect of gamma irradiation. Mater Chem Phys 110(2–3):352–362CrossRef ElBatal FH, ElKheshen A (2008) Preparation and characterization of some substituted bioglasses and their ceramic derivatives from the system SiO2–Na2O–CaO–P2O5 and effect of gamma irradiation. Mater Chem Phys 110(2–3):352–362CrossRef
135.
Zurück zum Zitat Dohler F et al (2015) 31P NMR characterisation of phosphate fragments during dissolution of calcium sodium phosphate glasses. J Mater Chem B 3(6):1125–1134CrossRef Dohler F et al (2015) 31P NMR characterisation of phosphate fragments during dissolution of calcium sodium phosphate glasses. J Mater Chem B 3(6):1125–1134CrossRef
136.
Zurück zum Zitat Avent AG et al (2003) The dissolution of silver–sodium–calcium–phosphate glasses for the control of urinary tract infections. J Non-Cryst Solids 328(1–3):31–39CrossRef Avent AG et al (2003) The dissolution of silver–sodium–calcium–phosphate glasses for the control of urinary tract infections. J Non-Cryst Solids 328(1–3):31–39CrossRef
137.
Zurück zum Zitat Schierholz JM et al (1998) Efficacy of silver-coated medical devices. J Hosp Infect 40(4):257–262CrossRef Schierholz JM et al (1998) Efficacy of silver-coated medical devices. J Hosp Infect 40(4):257–262CrossRef
138.
Zurück zum Zitat Tredget EE et al (1998) A matched-pair, randomized study evaluating the efficacy and safety of acticoat silver-coated dressing for the treatment of burn wounds. J Burn Care Rehabil 19(6):531–537CrossRef Tredget EE et al (1998) A matched-pair, randomized study evaluating the efficacy and safety of acticoat silver-coated dressing for the treatment of burn wounds. J Burn Care Rehabil 19(6):531–537CrossRef
139.
Zurück zum Zitat Lansdown AB (2002) Silver 2: toxicity in mammals and how its products aid wound repair. J Wound Care 11(5):173–177CrossRef Lansdown AB (2002) Silver 2: toxicity in mammals and how its products aid wound repair. J Wound Care 11(5):173–177CrossRef
140.
Zurück zum Zitat Mulligan AM, Wilson M, Knowles JC (2003) The effect of increasing copper content in phosphate-based glasses on biofilms of Streptococcus sanguis. Biomaterials 24(10):1797–1807CrossRef Mulligan AM, Wilson M, Knowles JC (2003) The effect of increasing copper content in phosphate-based glasses on biofilms of Streptococcus sanguis. Biomaterials 24(10):1797–1807CrossRef
141.
Zurück zum Zitat O’Sullivan TN et al (1991) Copper molluscicides for control of schistosomiasis. 2. Copper phosphate controlled release glass. Environ Sci Technol 25(6):1088–1091CrossRef O’Sullivan TN et al (1991) Copper molluscicides for control of schistosomiasis. 2. Copper phosphate controlled release glass. Environ Sci Technol 25(6):1088–1091CrossRef
142.
Zurück zum Zitat Guo D et al (2005) Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 26(19):4073–4083CrossRef Guo D et al (2005) Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 26(19):4073–4083CrossRef
143.
Zurück zum Zitat Wong CT et al (2004) Ultrastructural study of mineralization of a strontium-containing hydroxyapatite (Sr-HA) cement in vivo. J Biomed Mater Res A 70(3):428–435CrossRef Wong CT et al (2004) Ultrastructural study of mineralization of a strontium-containing hydroxyapatite (Sr-HA) cement in vivo. J Biomed Mater Res A 70(3):428–435CrossRef
144.
Zurück zum Zitat Marie PJ et al (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69(3):121–129CrossRef Marie PJ et al (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69(3):121–129CrossRef
145.
Zurück zum Zitat Verberckmoes SC, De Broe ME, D’Haese PC (2003) Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int 64(2):534–543CrossRef Verberckmoes SC, De Broe ME, D’Haese PC (2003) Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int 64(2):534–543CrossRef
146.
Zurück zum Zitat Kraeber-Bodere F et al (2000) Treatment of bone metastases of prostate cancer with strontium-89 chloride: efficacy in relation to the degree of bone involvement. Eur J Nucl Med 27(10):1487–1493CrossRef Kraeber-Bodere F et al (2000) Treatment of bone metastases of prostate cancer with strontium-89 chloride: efficacy in relation to the degree of bone involvement. Eur J Nucl Med 27(10):1487–1493CrossRef
147.
Zurück zum Zitat Sharmin N et al (2016) Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites. J Mech Behav Biomed Mater 59:41–56CrossRef Sharmin N et al (2016) Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites. J Mech Behav Biomed Mater 59:41–56CrossRef
148.
Zurück zum Zitat Bitar M et al (2004) Soluble phosphate glasses: in vitro studies using human cells of hard and soft tissue origin. Biomaterials 25(12):2283–2292CrossRef Bitar M et al (2004) Soluble phosphate glasses: in vitro studies using human cells of hard and soft tissue origin. Biomaterials 25(12):2283–2292CrossRef
149.
Zurück zum Zitat Salih V et al (2000) Development of soluble glasses for biomedical use Part II: the biological response of human osteoblast cell lines to phosphate-based soluble glasses. J Mater Sci Mater Med 11(10):615–620CrossRef Salih V et al (2000) Development of soluble glasses for biomedical use Part II: the biological response of human osteoblast cell lines to phosphate-based soluble glasses. J Mater Sci Mater Med 11(10):615–620CrossRef
150.
Zurück zum Zitat Uo M et al (1998) Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses. Biomaterials 19(24):2277–2284CrossRef Uo M et al (1998) Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses. Biomaterials 19(24):2277–2284CrossRef
151.
Zurück zum Zitat Ahmed I et al (2010) Cytocompatibility and effect of increasing MgO content in a range of quaternary invert phosphate-based glasses. J Biomater Appl 24(6):555–575CrossRef Ahmed I et al (2010) Cytocompatibility and effect of increasing MgO content in a range of quaternary invert phosphate-based glasses. J Biomater Appl 24(6):555–575CrossRef
152.
Zurück zum Zitat Ahmed I et al (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25(16):3223–3232CrossRef Ahmed I et al (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25(16):3223–3232CrossRef
153.
Zurück zum Zitat Saranti A, Koutselas I, Karakassides MA (2006) Bioactive glasses in the system CaO–B2O3–P2O5: preparation, structural study and in vitro evaluation. J Non-Cryst Solids 352(5):390–398CrossRef Saranti A, Koutselas I, Karakassides MA (2006) Bioactive glasses in the system CaO–B2O3–P2O5: preparation, structural study and in vitro evaluation. J Non-Cryst Solids 352(5):390–398CrossRef
154.
Zurück zum Zitat Lakhkar NJ et al (2009) Strontium oxide doped quaternary glasses: effect on structure, degradation and cytocompatibility. J Mater Sci Mater Med 20(6):1339–1346CrossRef Lakhkar NJ et al (2009) Strontium oxide doped quaternary glasses: effect on structure, degradation and cytocompatibility. J Mater Sci Mater Med 20(6):1339–1346CrossRef
155.
Zurück zum Zitat Lakhkar N et al (2011) Titanium and strontium-doped phosphate glasses as vehicles for strontium ion delivery to cells. J Biomater Appl 25(8):877–893CrossRef Lakhkar N et al (2011) Titanium and strontium-doped phosphate glasses as vehicles for strontium ion delivery to cells. J Biomater Appl 25(8):877–893CrossRef
156.
Zurück zum Zitat Wallenberger FT, Weston NE (2002) Glass fibers from high and low viscosity melts. Mater Res Soc Symp 702:165–172 Wallenberger FT, Weston NE (2002) Glass fibers from high and low viscosity melts. Mater Res Soc Symp 702:165–172
157.
Zurück zum Zitat Sharmin N et al (2014) Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5. J Biomater Appl 29(5):639–653CrossRef Sharmin N et al (2014) Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5. J Biomater Appl 29(5):639–653CrossRef
158.
Zurück zum Zitat Murgatroyd JB (1948) The delayed elastic effect in glass fibres and the constitution of glass in fibre form. J Soc Glass Technol 32:291–300 Murgatroyd JB (1948) The delayed elastic effect in glass fibres and the constitution of glass in fibre form. J Soc Glass Technol 32:291–300
159.
Zurück zum Zitat Loewenstein KL (1975) The manufacture of continuous glass fibres. Platin Metal Rev 19(3):82–87 Loewenstein KL (1975) The manufacture of continuous glass fibres. Platin Metal Rev 19(3):82–87
160.
Zurück zum Zitat Wallenberger FT (2010) The liquidus temperature; Its critical role in glass manufacturing. Int J Appl Glass Sci 1(2):151–163CrossRef Wallenberger FT (2010) The liquidus temperature; Its critical role in glass manufacturing. Int J Appl Glass Sci 1(2):151–163CrossRef
161.
Zurück zum Zitat Clupper DC et al (2003) In vitro bioactivity of S520 glass fibers and initial assessment of osteoblast attachment. J Biomed Mater Res A 67(1):285–294CrossRef Clupper DC et al (2003) In vitro bioactivity of S520 glass fibers and initial assessment of osteoblast attachment. J Biomed Mater Res A 67(1):285–294CrossRef
162.
Zurück zum Zitat Chen Z, Chen ZF, Xu TZ, Qiu JL, Zhou JM (2012) Glass fibers as engineering materials. Appl Mech Mater 121–126:181–185 Chen Z, Chen ZF, Xu TZ, Qiu JL, Zhou JM (2012) Glass fibers as engineering materials. Appl Mech Mater 121–126:181–185
163.
Zurück zum Zitat Sharmin N et al (2014) Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5. J Biomater Appl 29(5):639–653CrossRef Sharmin N et al (2014) Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5. J Biomater Appl 29(5):639–653CrossRef
164.
Zurück zum Zitat Pukh VP, Baikova LG (1993) Structural strength of glass. In: Conference of the European Society of Glass Science Pukh VP, Baikova LG (1993) Structural strength of glass. In: Conference of the European Society of Glass Science
165.
Zurück zum Zitat Stockhorst H, Bruckner R (1986) Structure sensitive measurements on phosphate glass fibers. J Non-Cryst Solids 85(1–2):105–126CrossRef Stockhorst H, Bruckner R (1986) Structure sensitive measurements on phosphate glass fibers. J Non-Cryst Solids 85(1–2):105–126CrossRef
166.
Zurück zum Zitat Baikova LG, Fedorov YK, Pukh VP, Pesina TI, Kazannikova TP, Tikhonova LV, Tikhonova MF (1993) Effect of cation field strength on the mechanical properties of R2O–Al2O3–P2O5 glasses. Glass Phys Chem 19(5):380–383 Baikova LG, Fedorov YK, Pukh VP, Pesina TI, Kazannikova TP, Tikhonova LV, Tikhonova MF (1993) Effect of cation field strength on the mechanical properties of R2O–Al2O3–P2O5 glasses. Glass Phys Chem 19(5):380–383
167.
Zurück zum Zitat Kurkjian CR (2000) Mechanical properties of phosphate glasses. J Non-Cryst Solids 263&264:207–212CrossRef Kurkjian CR (2000) Mechanical properties of phosphate glasses. J Non-Cryst Solids 263&264:207–212CrossRef
168.
Zurück zum Zitat Lin ST et al (1994) Development of bioabsorbable glass fibres. Biomaterials 15(13):1057–1061CrossRef Lin ST et al (1994) Development of bioabsorbable glass fibres. Biomaterials 15(13):1057–1061CrossRef
169.
Zurück zum Zitat Kim N-J, Im S-H, Kim D-H, Yoon D-K, Ryu B-K (2000) Structure and properties of borophosphate glasses. Electron Mater Lett 6(3):103–106CrossRef Kim N-J, Im S-H, Kim D-H, Yoon D-K, Ryu B-K (2000) Structure and properties of borophosphate glasses. Electron Mater Lett 6(3):103–106CrossRef
170.
Zurück zum Zitat Koudelka L, Mošner P (2000) Borophosphate glasses of the ZnO–B2O3–P2O5 system. Mater Lett 42(3):194–199CrossRef Koudelka L, Mošner P (2000) Borophosphate glasses of the ZnO–B2O3–P2O5 system. Mater Lett 42(3):194–199CrossRef
171.
Zurück zum Zitat Qiu D et al (2008) A high-energy X-ray diffraction, 31P and 11B solid-state NMR study of the structure of aged sodium borophosphate glasses. Mater Chem Phys 111(2–3):455–462CrossRef Qiu D et al (2008) A high-energy X-ray diffraction, 31P and 11B solid-state NMR study of the structure of aged sodium borophosphate glasses. Mater Chem Phys 111(2–3):455–462CrossRef
172.
Zurück zum Zitat Rinke MT, Eckert H (2011) The mixed network former effect in glasses: solid state NMR and XPS structural studies of the glass system (Na2O)x(BPO4)1 − x. Phys Chem Chem Phys 13(14):6552–6565CrossRef Rinke MT, Eckert H (2011) The mixed network former effect in glasses: solid state NMR and XPS structural studies of the glass system (Na2O)x(BPO4)1 − x. Phys Chem Chem Phys 13(14):6552–6565CrossRef
173.
Zurück zum Zitat Carta D et al (2008) The effect of composition on the structure of sodium borophosphate glasses. J Non-Cryst Solids 354(31):3671–3677CrossRef Carta D et al (2008) The effect of composition on the structure of sodium borophosphate glasses. J Non-Cryst Solids 354(31):3671–3677CrossRef
174.
Zurück zum Zitat De Diego MA, Coleman NJ, Hench LL (2000) Tensile properties of bioactive fibers for tissue engineering applications. J Biomed Mater Res 53(3):199–203CrossRef De Diego MA, Coleman NJ, Hench LL (2000) Tensile properties of bioactive fibers for tissue engineering applications. J Biomed Mater Res 53(3):199–203CrossRef
175.
Zurück zum Zitat Messier DR, Patel PJ (1995) High modulus glass fibers. J Non-Cryst Solids 182(3):271–277CrossRef Messier DR, Patel PJ (1995) High modulus glass fibers. J Non-Cryst Solids 182(3):271–277CrossRef
176.
Zurück zum Zitat Griffith AA (1920) The phenomenom of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198CrossRef Griffith AA (1920) The phenomenom of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198CrossRef
177.
Zurück zum Zitat Pähler G, Brückner R (1982) Mechanical properties and structural aspects of binary phosphate glass fibers. J Non-Cryst Solids 49(1–3):487–496CrossRef Pähler G, Brückner R (1982) Mechanical properties and structural aspects of binary phosphate glass fibers. J Non-Cryst Solids 49(1–3):487–496CrossRef
178.
Zurück zum Zitat Otto WH (1955) Relationship of tensile strength of glass fibers to diameter. J Am Ceram Soc 38(3):122–125CrossRef Otto WH (1955) Relationship of tensile strength of glass fibers to diameter. J Am Ceram Soc 38(3):122–125CrossRef
179.
Zurück zum Zitat Brow RK, Lower NP (2009) The effects of melt history on the failure characteristics of pristine glass fibre. J Glass Sci Technol 50(1):31–33 Brow RK, Lower NP (2009) The effects of melt history on the failure characteristics of pristine glass fibre. J Glass Sci Technol 50(1):31–33
180.
Zurück zum Zitat Muñoz F et al (2008) A study on the anisotropy of phosphate glass fibres. Glass Technol: Eur J Glass Sci Technol, Part A 49(1):47–52 Muñoz F et al (2008) A study on the anisotropy of phosphate glass fibres. Glass Technol: Eur J Glass Sci Technol, Part A 49(1):47–52
181.
Zurück zum Zitat Otto WH (1961) Compaction effects in glass fibers. J Am Ceram Soc 44(2):68–72CrossRef Otto WH (1961) Compaction effects in glass fibers. J Am Ceram Soc 44(2):68–72CrossRef
182.
Zurück zum Zitat Rinehart JD et al (1999) Real-time dissolution measurement of sized and unsized calcium phosphate glass fibers. J Biomed Mater Res 48(6):833–840CrossRef Rinehart JD et al (1999) Real-time dissolution measurement of sized and unsized calcium phosphate glass fibers. J Biomed Mater Res 48(6):833–840CrossRef
183.
Zurück zum Zitat Gross JG, Bou-Gharios G, Morgan JE (1999) Potentiation of myoblast transplantation by host muscle irradiation is dependent on the rate of radiation delivery. Cell Tissue Res 298(2):371–375CrossRef Gross JG, Bou-Gharios G, Morgan JE (1999) Potentiation of myoblast transplantation by host muscle irradiation is dependent on the rate of radiation delivery. Cell Tissue Res 298(2):371–375CrossRef
184.
Zurück zum Zitat Kim Y-P et al (2012) Phosphate glass fibres promote neurite outgrowth and early regeneration in a peripheral nerve injury model. J Tissue Eng Regen Med 25:112–117 Kim Y-P et al (2012) Phosphate glass fibres promote neurite outgrowth and early regeneration in a peripheral nerve injury model. J Tissue Eng Regen Med 25:112–117
185.
Zurück zum Zitat Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362CrossRef Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362CrossRef
186.
Zurück zum Zitat Nazhat SN et al (2006) Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules 8(2):543–551CrossRef Nazhat SN et al (2006) Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules 8(2):543–551CrossRef
187.
Zurück zum Zitat Ahmed I et al (2008) Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomater 4(5):1307–1314CrossRef Ahmed I et al (2008) Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomater 4(5):1307–1314CrossRef
188.
Zurück zum Zitat Park J, Lakes RS (2007) Biomaterials : an introduction. Springer, New York Park J, Lakes RS (2007) Biomaterials : an introduction. Springer, New York
189.
Zurück zum Zitat Ramakrishna S et al (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224CrossRef Ramakrishna S et al (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224CrossRef
190.
Zurück zum Zitat Pietrzak WS, Sarver D, Verstynen M (1996) Bioresorbable implants—practical considerations. Bone 19(1, Supplement 1):S109–S119CrossRef Pietrzak WS, Sarver D, Verstynen M (1996) Bioresorbable implants—practical considerations. Bone 19(1, Supplement 1):S109–S119CrossRef
191.
Zurück zum Zitat Athanasiou KA et al (1998) Orthopaedic applications for PLA-PGA biodegradable polymers. Arthrosc J Arthrosc Relat Surg 14(7):726–737CrossRef Athanasiou KA et al (1998) Orthopaedic applications for PLA-PGA biodegradable polymers. Arthrosc J Arthrosc Relat Surg 14(7):726–737CrossRef
192.
Zurück zum Zitat Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346CrossRef Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346CrossRef
193.
Zurück zum Zitat Barrows T (1986) Degradable implant materials: a review of synthetic absorbable polymers and their applications. Clin Mater 1(4):233–257CrossRef Barrows T (1986) Degradable implant materials: a review of synthetic absorbable polymers and their applications. Clin Mater 1(4):233–257CrossRef
194.
Zurück zum Zitat Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Testing 21(4):433–442CrossRef Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Testing 21(4):433–442CrossRef
195.
Zurück zum Zitat Pietrzak WS, Sarver DR, Verstynen ML (1997) Bioabsorbable polymer science for the practicing surgeon. J Craniofac Surg 8(2):87–91CrossRef Pietrzak WS, Sarver DR, Verstynen ML (1997) Bioabsorbable polymer science for the practicing surgeon. J Craniofac Surg 8(2):87–91CrossRef
196.
Zurück zum Zitat Sharmin N et al (2012) Effectiveness of silane monomer on chitosan films and PCL-based tri-layer films. J Appl Polym Sci 125(1):224–232CrossRef Sharmin N et al (2012) Effectiveness of silane monomer on chitosan films and PCL-based tri-layer films. J Appl Polym Sci 125(1):224–232CrossRef
197.
Zurück zum Zitat Hossain KM et al (2015) Tubular scaffold with shape recovery effect for cell guide applications. J Funct Biomater 6(3):564–584CrossRef Hossain KM et al (2015) Tubular scaffold with shape recovery effect for cell guide applications. J Funct Biomater 6(3):564–584CrossRef
198.
Zurück zum Zitat Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16 (discussion 16) CrossRef Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16 (discussion 16) CrossRef
199.
Zurück zum Zitat Ankur SK, Anil M (2008) Polymers for biomedical applications. In: Polymers for biomedical applications. American Chemical Society, pp 1–7 Ankur SK, Anil M (2008) Polymers for biomedical applications. In: Polymers for biomedical applications. American Chemical Society, pp 1–7
200.
Zurück zum Zitat Danhier F et al (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Controlled Release 161(2):505–522CrossRef Danhier F et al (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Controlled Release 161(2):505–522CrossRef
201.
Zurück zum Zitat Daniels AU, Chang MK, Andriano KP (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1(1):57–78CrossRef Daniels AU, Chang MK, Andriano KP (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1(1):57–78CrossRef
202.
Zurück zum Zitat Avinc O, Khoddami A (2009) Overview of Poly(lactic acid) (PLA) Fibre. Fibre Chem 41(6):391–401CrossRef Avinc O, Khoddami A (2009) Overview of Poly(lactic acid) (PLA) Fibre. Fibre Chem 41(6):391–401CrossRef
203.
Zurück zum Zitat Graves GA, Kumar B (1986) Bioabsorbable glass fibers for use in the reinforcement of bioabsorbable polymers for bone fixation devices and artificial ligaments. Google Patents Graves GA, Kumar B (1986) Bioabsorbable glass fibers for use in the reinforcement of bioabsorbable polymers for bone fixation devices and artificial ligaments. Google Patents
204.
Zurück zum Zitat Navarro M et al (2005) In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomater 1(4):411–419CrossRef Navarro M et al (2005) In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomater 1(4):411–419CrossRef
205.
Zurück zum Zitat Bergsma JE et al (1995) Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials 16(1):25–31CrossRef Bergsma JE et al (1995) Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials 16(1):25–31CrossRef
206.
Zurück zum Zitat Ahmed I, Cronin PS, Abou Neel EA, Parsons AJ, Knowles JC, Rudd CD (2009) Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite. J Biomed Mater Res Part B Appl Biomater 89B(1):18–27CrossRef Ahmed I, Cronin PS, Abou Neel EA, Parsons AJ, Knowles JC, Rudd CD (2009) Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite. J Biomed Mater Res Part B Appl Biomater 89B(1):18–27CrossRef
207.
Zurück zum Zitat Bonfield W (1988) Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacementa. Ann N Y Acad Sci 523(1):173–177CrossRef Bonfield W (1988) Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacementa. Ann N Y Acad Sci 523(1):173–177CrossRef
208.
Zurück zum Zitat Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25:3223–3232CrossRef Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25:3223–3232CrossRef
209.
Zurück zum Zitat Navarro M, Ginebra M, Planell JA (2003) Cellular response to calcium phosphate glasses with controlled solubility. J Biomed Mater Res Part A Appl Biomater 67A(3):1009–1015CrossRef Navarro M, Ginebra M, Planell JA (2003) Cellular response to calcium phosphate glasses with controlled solubility. J Biomed Mater Res Part A Appl Biomater 67A(3):1009–1015CrossRef
210.
Zurück zum Zitat Abou Neel EA, Knowles JC (2008) Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J Mater Sci Mater Med 19(1):377–386CrossRef Abou Neel EA, Knowles JC (2008) Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J Mater Sci Mater Med 19(1):377–386CrossRef
211.
Zurück zum Zitat Brauer DS et al (2008) Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response. J Mater Sci Mater Med 19(1):121–127CrossRef Brauer DS et al (2008) Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response. J Mater Sci Mater Med 19(1):121–127CrossRef
212.
Zurück zum Zitat Felfel R (2013) Manufacture and characterisation of bioresorbable fibre reinforced composite rods and screws for bone fracture fixation applications, in mechanical engeeniering. University of Nottingham, Nottingham Felfel R (2013) Manufacture and characterisation of bioresorbable fibre reinforced composite rods and screws for bone fracture fixation applications, in mechanical engeeniering. University of Nottingham, Nottingham
213.
Zurück zum Zitat Parsons AJ et al (2009) Phosphate glass fibre composites for bone repair. J Bionic Eng 6(4):318–323CrossRef Parsons AJ et al (2009) Phosphate glass fibre composites for bone repair. J Bionic Eng 6(4):318–323CrossRef
214.
Zurück zum Zitat Felfel RM et al (2012) Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates. J Biomater Appl 26(7):765–789CrossRef Felfel RM et al (2012) Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates. J Biomater Appl 26(7):765–789CrossRef
215.
Zurück zum Zitat Evans SL, Gregson PJ (1998) Composite technology in load-bearing orthopaedic implants. Biomaterials 19(15):1329–1342CrossRef Evans SL, Gregson PJ (1998) Composite technology in load-bearing orthopaedic implants. Biomaterials 19(15):1329–1342CrossRef
216.
Zurück zum Zitat Lassila LVJ, Nohrström T, Vallittu PK (2002) The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials 23(10):2221–2229CrossRef Lassila LVJ, Nohrström T, Vallittu PK (2002) The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials 23(10):2221–2229CrossRef
217.
Zurück zum Zitat Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683CrossRef Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683CrossRef
218.
Zurück zum Zitat Ahmed I et al (2008) Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomater 4(5):1307–1314CrossRef Ahmed I et al (2008) Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomater 4(5):1307–1314CrossRef
219.
Zurück zum Zitat Mohammadi MS et al (2011) Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites. J Mater Sci Mater Med 22(12):2659–2672CrossRef Mohammadi MS et al (2011) Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites. J Mater Sci Mater Med 22(12):2659–2672CrossRef
220.
Zurück zum Zitat Andriano KP, Daniels AU, Heller J (1992) Biocompatibility and mechanical properties of a totally absorbable composite material for orthopaedic fixation devices. J Appl Biomater 3(3):197–206CrossRef Andriano KP, Daniels AU, Heller J (1992) Biocompatibility and mechanical properties of a totally absorbable composite material for orthopaedic fixation devices. J Appl Biomater 3(3):197–206CrossRef
221.
Zurück zum Zitat Kobayashi HYLS, Brauer DS, Rüssel C (2010) Mechanical properties of a degradable phosphate glass fibre reinforced polymer composite for internal fracture fixation. Mater Sci Eng, C 30(7):1003–1007CrossRef Kobayashi HYLS, Brauer DS, Rüssel C (2010) Mechanical properties of a degradable phosphate glass fibre reinforced polymer composite for internal fracture fixation. Mater Sci Eng, C 30(7):1003–1007CrossRef
Metadaten
Titel
Structure, thermal properties, dissolution behaviour and biomedical applications of phosphate glasses and fibres: a review
verfasst von
Nusrat Sharmin
Chris D. Rudd
Publikationsdatum
30.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 15/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0784-4

Weitere Artikel der Ausgabe 15/2017

Journal of Materials Science 15/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.