Skip to main content
Erschienen in: Journal of Materials Science 2/2019

22.10.2018 | Review

A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites

verfasst von: Yichao Li, Xianrong Huang, Lijian Zeng, Renfu Li, Huafeng Tian, Xuewei Fu, Yu Wang, Wei-Hong Zhong

Erschienen in: Journal of Materials Science | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Within decades of development, carbon nanomaterials such as carbon black, fullerene, carbon nanotube, carbon nanofiber, graphene and their combined nanofillers have been tremendously applied in polymer material industries, generating a series of fascinating multifunctional composites in the fields from portable electronic devices, sports, entertainments to automobile, aerospace and military. Among the various material properties of the composites, electrical conductivity and mechanical performance are the two most important parameters for evaluating the effectiveness of nanofillers in the polymer matrices. In this review, we focus on the electrical and mechanical properties of diverse dimensional carbon nanofillers (e.g., zero-, one-, two-, three-dimensional nanofillers or their combinations)-reinforced polymer composites to seek the most efficient and effective approach to obtain high-performance polymeric nanocomposites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Friedrich K, Breuer U (2015) Multifunctionality of polymer composites. William Andrew, Norwich Friedrich K, Breuer U (2015) Multifunctionality of polymer composites. William Andrew, Norwich
2.
Zurück zum Zitat Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92(12):2793–2810 Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92(12):2793–2810
3.
Zurück zum Zitat Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22(31):3388–3410 Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22(31):3388–3410
4.
Zurück zum Zitat Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498 Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498
5.
Zurück zum Zitat Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41(10):1345–1367 Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41(10):1345–1367
6.
Zurück zum Zitat Pang H, Xu L, Yan DX, Li ZM (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39(11):1908–1933 Pang H, Xu L, Yan DX, Li ZM (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39(11):1908–1933
7.
Zurück zum Zitat Rahmat M, Hubert P (2011) Carbon nanotube–polymer interactions in nanocomposites: a review. Compos Sci Technol 72(1):72–84 Rahmat M, Hubert P (2011) Carbon nanotube–polymer interactions in nanocomposites: a review. Compos Sci Technol 72(1):72–84
8.
Zurück zum Zitat Li Y, Li R, Lu L, Huang X (2015) Experimental study of damage characteristics of carbon woven fabric/epoxy laminates subjected to lightning strike. Compos Part A Appl Sci Manuf 79:164–175 Li Y, Li R, Lu L, Huang X (2015) Experimental study of damage characteristics of carbon woven fabric/epoxy laminates subjected to lightning strike. Compos Part A Appl Sci Manuf 79:164–175
9.
Zurück zum Zitat Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12 Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12
10.
Zurück zum Zitat Chemartin L, Lalande P, Peyrou B, Chazottes A, Elias PQ (2012) Direct effects of lightning on aircraft structure: analysis of the thermal, electrical and mechanical constraints. J Aerosp Lab 5(AL05-09):1–15 Chemartin L, Lalande P, Peyrou B, Chazottes A, Elias PQ (2012) Direct effects of lightning on aircraft structure: analysis of the thermal, electrical and mechanical constraints. J Aerosp Lab 5(AL05-09):1–15
11.
Zurück zum Zitat Alam MK, Islam MT, Mina MF, Gafur MA (2014) Structural, mechanical, thermal, and electrical properties of carbon black reinforced polyester resin composites. J Appl Polym Sci 131:40421 Alam MK, Islam MT, Mina MF, Gafur MA (2014) Structural, mechanical, thermal, and electrical properties of carbon black reinforced polyester resin composites. J Appl Polym Sci 131:40421
12.
Zurück zum Zitat Zhou S, Hrymak A, Kamal M (2017) Electrical and morphological properties of microinjection molded polypropylene/carbon nanocomposites. J Appl Polym Sci 134(43):45462 Zhou S, Hrymak A, Kamal M (2017) Electrical and morphological properties of microinjection molded polypropylene/carbon nanocomposites. J Appl Polym Sci 134(43):45462
13.
Zurück zum Zitat Shepherd C, Hadzifejzovic E, Shkal F, Jurkschat K, Moghal J, Parker EM, Sawangphruk M, Slocombe DR, Foord JS, Moloney MG (2016) New routes to functionalize carbon black for polypropylene nanocomposites. Langmuir 32(31):7917–7928 Shepherd C, Hadzifejzovic E, Shkal F, Jurkschat K, Moghal J, Parker EM, Sawangphruk M, Slocombe DR, Foord JS, Moloney MG (2016) New routes to functionalize carbon black for polypropylene nanocomposites. Langmuir 32(31):7917–7928
14.
Zurück zum Zitat Gong T, Peng SP, Bao RY, Yang W, Xie BH, Yang MB (2016) Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure. Compos Part B Eng 99:348–357 Gong T, Peng SP, Bao RY, Yang W, Xie BH, Yang MB (2016) Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure. Compos Part B Eng 99:348–357
15.
Zurück zum Zitat Zhang Q, Wang J, Yu J, Guo ZX (2017) Improved electrical conductivity of TPU/carbon black composites by addition of COPA and selective localization of carbon black at the interface of sea-island structured polymer blends. Soft Matter 13(18):3431–3439 Zhang Q, Wang J, Yu J, Guo ZX (2017) Improved electrical conductivity of TPU/carbon black composites by addition of COPA and selective localization of carbon black at the interface of sea-island structured polymer blends. Soft Matter 13(18):3431–3439
16.
Zurück zum Zitat Qi X, Xiu H, Wei Y, Zhou Y, Guo Y, Huang R, Bai H, Fu Q (2017) Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure. Compos Sci Technol 139:8–16 Qi X, Xiu H, Wei Y, Zhou Y, Guo Y, Huang R, Bai H, Fu Q (2017) Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure. Compos Sci Technol 139:8–16
17.
Zurück zum Zitat Chen J, Cui X, Sui K, Zhu Y, Jiang W (2017) Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos Sci Technol 140:99–105 Chen J, Cui X, Sui K, Zhu Y, Jiang W (2017) Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos Sci Technol 140:99–105
18.
Zurück zum Zitat Zhang Q, Zhang BY, Guo ZX, Yu J (2017) Comparison between the efficiencies of two conductive networks formed in carbon black-filled ternary polymer blends by different hierarchical structures. Polym Test 63:141–149 Zhang Q, Zhang BY, Guo ZX, Yu J (2017) Comparison between the efficiencies of two conductive networks formed in carbon black-filled ternary polymer blends by different hierarchical structures. Polym Test 63:141–149
19.
Zurück zum Zitat Phua JL, Teh PL, Ghani SA, Yeoh CK (2017) Influence of thermoplastic spacer on the mechanical, electrical, and thermal properties of carbon black filled epoxy adhesives. Polym Adv Technol 28(3):345–352 Phua JL, Teh PL, Ghani SA, Yeoh CK (2017) Influence of thermoplastic spacer on the mechanical, electrical, and thermal properties of carbon black filled epoxy adhesives. Polym Adv Technol 28(3):345–352
20.
Zurück zum Zitat Liu H, Bai D, Bai H, Zhang Q, Fu Q (2018) Manipulating the filler network structure and properties of polylactide/carbon black nanocomposites with the aid of stereocomplex crystallites. J Phys Chem C 122(8):4232–4240 Liu H, Bai D, Bai H, Zhang Q, Fu Q (2018) Manipulating the filler network structure and properties of polylactide/carbon black nanocomposites with the aid of stereocomplex crystallites. J Phys Chem C 122(8):4232–4240
21.
Zurück zum Zitat Zuev VV, Ivanova YG (2012) Mechanical and electrical properties of polyamide-6-based nanocomposites reinforced by fulleroid fillers. Polym Eng Sci 52(6):1206–1211 Zuev VV, Ivanova YG (2012) Mechanical and electrical properties of polyamide-6-based nanocomposites reinforced by fulleroid fillers. Polym Eng Sci 52(6):1206–1211
22.
Zurück zum Zitat Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899 Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899
23.
Zurück zum Zitat Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67(5):922–928 Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67(5):922–928
24.
Zurück zum Zitat Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation. Compos Part A Appl Sci Manuf 34(8):689–694 Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation. Compos Part A Appl Sci Manuf 34(8):689–694
25.
Zurück zum Zitat Moisala A, Li Q, Kinloch IA, Windle AH (2006) Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites. Compos Sci Technol 66(10):1285–1288 Moisala A, Li Q, Kinloch IA, Windle AH (2006) Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites. Compos Sci Technol 66(10):1285–1288
26.
Zurück zum Zitat Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40(21):5967–5971 Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40(21):5967–5971
27.
Zurück zum Zitat Kim YJ, Shin TS, Do Choi H, Kwon JH, Chung YC, Yoon HG (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43(1):23–30 Kim YJ, Shin TS, Do Choi H, Kwon JH, Chung YC, Yoon HG (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43(1):23–30
28.
Zurück zum Zitat Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl Phys Lett 89(13):133102 Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl Phys Lett 89(13):133102
29.
Zurück zum Zitat Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17(16):3207–3215 Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17(16):3207–3215
30.
Zurück zum Zitat Allaoui A, Bai S, Cheng HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62(15):1993–1998 Allaoui A, Bai S, Cheng HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62(15):1993–1998
31.
Zurück zum Zitat Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43(7):1378–1385 Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43(7):1378–1385
32.
Zurück zum Zitat Ma PC, Kim JK, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67:2965–2972 Ma PC, Kim JK, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67:2965–2972
33.
Zurück zum Zitat Tseng CH, Wang CC, Chen CY (2007) Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites. Chem Mater 19(2):308–315 Tseng CH, Wang CC, Chen CY (2007) Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites. Chem Mater 19(2):308–315
34.
Zurück zum Zitat Fogel M, Parlevliet P, Geistbeck M, Olivier P, Dantras E (2015) Thermal, rheological and electrical analysis of MWCNTs/epoxy matrices. Compos Sci Technol 110:118–125 Fogel M, Parlevliet P, Geistbeck M, Olivier P, Dantras E (2015) Thermal, rheological and electrical analysis of MWCNTs/epoxy matrices. Compos Sci Technol 110:118–125
35.
Zurück zum Zitat Ma PC, Tang BZ, Kim JK (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 46(11):1497–1505 Ma PC, Tang BZ, Kim JK (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 46(11):1497–1505
36.
Zurück zum Zitat Ghaleb ZA, Mariatti M, Ariff ZM (2014) Properties of graphene nanopowder and multi-walled carbon nanotube-filled epoxy thin-film nanocomposites for electronic applications: the effect of sonication time and filler loading. Compos Part A Appl Sci Manuf 58:77–83 Ghaleb ZA, Mariatti M, Ariff ZM (2014) Properties of graphene nanopowder and multi-walled carbon nanotube-filled epoxy thin-film nanocomposites for electronic applications: the effect of sonication time and filler loading. Compos Part A Appl Sci Manuf 58:77–83
37.
Zurück zum Zitat Khan SU, Pothnis JR, Kim JK (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos Part A Appl Sci Manuf 49:26–34 Khan SU, Pothnis JR, Kim JK (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos Part A Appl Sci Manuf 49:26–34
38.
Zurück zum Zitat Mecklenburg M, Mizushima D, Ohtake N, Bauhofer W, Fiedler B, Schulte K (2015) On the manufacturing and electrical and mechanical properties of ultra-high wt% fraction aligned MWCNT and randomly oriented CNT epoxy composites. Carbon 91:275–290 Mecklenburg M, Mizushima D, Ohtake N, Bauhofer W, Fiedler B, Schulte K (2015) On the manufacturing and electrical and mechanical properties of ultra-high wt% fraction aligned MWCNT and randomly oriented CNT epoxy composites. Carbon 91:275–290
39.
Zurück zum Zitat Ayatollahi MR, Shadlou S, Shokrieh MM, Chitsazzadeh M (2011) Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym Test 30(5):548–556 Ayatollahi MR, Shadlou S, Shokrieh MM, Chitsazzadeh M (2011) Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym Test 30(5):548–556
40.
Zurück zum Zitat Mei H, Xia J, Han D, Xiao S, Deng J, Cheng L (2016) Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chem Eng J 304:970–976 Mei H, Xia J, Han D, Xiao S, Deng J, Cheng L (2016) Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chem Eng J 304:970–976
41.
Zurück zum Zitat Vahedi F, Shahverdi HR, Shokrieh MM, Esmkhani M (2014) Effects of carbon nanotube content on the mechanical and electrical properties of epoxy-based composites. New Carbon Mater 29(6):419–425 Vahedi F, Shahverdi HR, Shokrieh MM, Esmkhani M (2014) Effects of carbon nanotube content on the mechanical and electrical properties of epoxy-based composites. New Carbon Mater 29(6):419–425
42.
Zurück zum Zitat Ervina J, Mariatti M, Hamdan S (2017) Mechanical, electrical and thermal properties of multi-walled carbon nanotubes/epoxy composites: effect of post-processing techniques and filler loading. Polym Bull 74(7):2513–2533 Ervina J, Mariatti M, Hamdan S (2017) Mechanical, electrical and thermal properties of multi-walled carbon nanotubes/epoxy composites: effect of post-processing techniques and filler loading. Polym Bull 74(7):2513–2533
43.
Zurück zum Zitat Gantayat S, Sarkar N, Prusty G, Rout D, Swain SK (2018) Designing of epoxy matrix by chemically modified multiwalled carbon nanotubes. Adv Polym Technol 37(1):176–184 Gantayat S, Sarkar N, Prusty G, Rout D, Swain SK (2018) Designing of epoxy matrix by chemically modified multiwalled carbon nanotubes. Adv Polym Technol 37(1):176–184
44.
Zurück zum Zitat Zaidi MGH, Joshi SK, Kumar M, Sharma D, Kumar A, Alam S, Sah PL (2013) Modifications of mechanical, thermal, and electrical characteristics of epoxy through dispersion of multi-walled carbon nanotubes in supercritical carbon dioxide. Carbon Lett 14(4):218–227 Zaidi MGH, Joshi SK, Kumar M, Sharma D, Kumar A, Alam S, Sah PL (2013) Modifications of mechanical, thermal, and electrical characteristics of epoxy through dispersion of multi-walled carbon nanotubes in supercritical carbon dioxide. Carbon Lett 14(4):218–227
45.
Zurück zum Zitat Koo MY, Shin HC, Kim WS, Lee GW (2014) Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing. Carbon Lett 15:255–261 Koo MY, Shin HC, Kim WS, Lee GW (2014) Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing. Carbon Lett 15:255–261
46.
Zurück zum Zitat Wang Y, Chai M, Zhao H, Zhao X, Ji P (2016) Improvement of dispersion of carbon nanotubes in epoxy resin through pyrogallol functionalization. Polym Eng Sci 56(9):1079–1085 Wang Y, Chai M, Zhao H, Zhao X, Ji P (2016) Improvement of dispersion of carbon nanotubes in epoxy resin through pyrogallol functionalization. Polym Eng Sci 56(9):1079–1085
47.
Zurück zum Zitat Xu J, Yao P, Jiang Z, Liu H, Li X, Liu L, Li M, Zheng Y (2012) Preparation, morphology, and properties of conducting polyaniline-grafted multiwalled carbon nanotubes/epoxy composites. J Appl Polym Sci 125(S1):E334–E341 Xu J, Yao P, Jiang Z, Liu H, Li X, Liu L, Li M, Zheng Y (2012) Preparation, morphology, and properties of conducting polyaniline-grafted multiwalled carbon nanotubes/epoxy composites. J Appl Polym Sci 125(S1):E334–E341
48.
Zurück zum Zitat Li Y, Li R, Fu X, Wang Y, Zhong WH (2018) A bio-surfactant for defect control: multifunctional gelatin coated MWCNTs for conductive epoxy nanocomposites. Compos Sci Technol 159:216–224 Li Y, Li R, Fu X, Wang Y, Zhong WH (2018) A bio-surfactant for defect control: multifunctional gelatin coated MWCNTs for conductive epoxy nanocomposites. Compos Sci Technol 159:216–224
49.
Zurück zum Zitat Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RA (2005) Deformation–morphology correlations in electrically conductive carbon nanotube-thermoplastic polyurethane nanocomposites. Polymer 46(12):4405–4420 Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RA (2005) Deformation–morphology correlations in electrically conductive carbon nanotube-thermoplastic polyurethane nanocomposites. Polymer 46(12):4405–4420
50.
Zurück zum Zitat Kim YJ, An KJ, Suh KS, Choi HD, Kwon JH, Chung YC, Kim WN, Lee AK, Choi JI, Yoon HG (2005) Hybridization of oxidized MWNT and silver powder in polyurethane matrix for electromagnetic interference shielding application. IEEE Trans Electromagn Compat 47(4):872–879 Kim YJ, An KJ, Suh KS, Choi HD, Kwon JH, Chung YC, Kim WN, Lee AK, Choi JI, Yoon HG (2005) Hybridization of oxidized MWNT and silver powder in polyurethane matrix for electromagnetic interference shielding application. IEEE Trans Electromagn Compat 47(4):872–879
51.
Zurück zum Zitat Kim YJ, Jang YK, Kim WN, Park M, Kim JK, Yoon HG (2010) Electrical enhancement of polyurethane composites filled with multiwalled carbon nanotubes by controlling their dispersion and damage. Carbon Lett 11(2):96–101 Kim YJ, Jang YK, Kim WN, Park M, Kim JK, Yoon HG (2010) Electrical enhancement of polyurethane composites filled with multiwalled carbon nanotubes by controlling their dispersion and damage. Carbon Lett 11(2):96–101
52.
Zurück zum Zitat Kwon J, Kim H (2005) Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization. J Polym Sci Pol Chem 43(17):3973–3985 Kwon J, Kim H (2005) Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization. J Polym Sci Pol Chem 43(17):3973–3985
53.
Zurück zum Zitat Shamsi R, Mahyari M, Koosha M (2017) Synthesis of CNT-polyurethane nanocomposites using ester-based polyols with different molecular structure: mechanical, thermal, and electrical properties. J Appl Polym Sci 134(10):44567 Shamsi R, Mahyari M, Koosha M (2017) Synthesis of CNT-polyurethane nanocomposites using ester-based polyols with different molecular structure: mechanical, thermal, and electrical properties. J Appl Polym Sci 134(10):44567
54.
Zurück zum Zitat Yakovlev YV, Gagolkina ZO, Lobko EV, Khalakhan I, Klepko VV (2017) The effect of catalyst addition on the structure, electrical and mechanical properties of the cross-linked polyurethane/carbon nanotube composites. Compos Sci Technol 144:208–214 Yakovlev YV, Gagolkina ZO, Lobko EV, Khalakhan I, Klepko VV (2017) The effect of catalyst addition on the structure, electrical and mechanical properties of the cross-linked polyurethane/carbon nanotube composites. Compos Sci Technol 144:208–214
55.
Zurück zum Zitat Martinez-Rubi Y, Ashrafi B, Jakubinek MB, Zou S, Laqua K, Barnes M, Simard B (2017) Fabrication of high content carbon nanotube-polyurethane sheets with tailorable properties. ACS Appl Mater Interfaces 9(36):30840–30849 Martinez-Rubi Y, Ashrafi B, Jakubinek MB, Zou S, Laqua K, Barnes M, Simard B (2017) Fabrication of high content carbon nanotube-polyurethane sheets with tailorable properties. ACS Appl Mater Interfaces 9(36):30840–30849
56.
Zurück zum Zitat Hajializadeh S, Barikani M, Bellah SM (2017) Synthesis and characterization of multiwall carbon nanotube/waterborne polyurethane nanocomposites. Polym Int 66(7):1074–1083 Hajializadeh S, Barikani M, Bellah SM (2017) Synthesis and characterization of multiwall carbon nanotube/waterborne polyurethane nanocomposites. Polym Int 66(7):1074–1083
57.
Zurück zum Zitat Jiang F, Zhang L, Jiang Y, Lu Y, Wang W (2012) Effect of annealing treatment on the structure and properties of polyurethane/multiwalled carbon nanotube nanocomposites. J Appl Polym Sci 126(3):845–852 Jiang F, Zhang L, Jiang Y, Lu Y, Wang W (2012) Effect of annealing treatment on the structure and properties of polyurethane/multiwalled carbon nanotube nanocomposites. J Appl Polym Sci 126(3):845–852
58.
Zurück zum Zitat Wang W, Jiang F, Jiang Y, Lu Y, Zhang L (2012) Preparation and properties of polyurethane/multiwalled carbon nanotube nanocomposites by a spray drying process. J Appl Polym Sci 126(3):789–795 Wang W, Jiang F, Jiang Y, Lu Y, Zhang L (2012) Preparation and properties of polyurethane/multiwalled carbon nanotube nanocomposites by a spray drying process. J Appl Polym Sci 126(3):789–795
59.
Zurück zum Zitat Zhou L, Fang S, Tang J, Gao L, Yang J (2012) Synthesis and characterization of multiwalled carbon nanotube/polyurethane composites via surface modification multiwalled carbon nanotubes using silane coupling agent. Polym Compos 33(11):1866–1873 Zhou L, Fang S, Tang J, Gao L, Yang J (2012) Synthesis and characterization of multiwalled carbon nanotube/polyurethane composites via surface modification multiwalled carbon nanotubes using silane coupling agent. Polym Compos 33(11):1866–1873
60.
Zurück zum Zitat Kodgire PV, Bhattacharyya AR, Bose S, Gupta N, Kulkarni AR, Misra A (2006) Control of multiwall carbon nanotubes dispersion in polyamide6 matrix: an assessment through electrical conductivity. Chem Phys Lett 432(4–6):480–485 Kodgire PV, Bhattacharyya AR, Bose S, Gupta N, Kulkarni AR, Misra A (2006) Control of multiwall carbon nanotubes dispersion in polyamide6 matrix: an assessment through electrical conductivity. Chem Phys Lett 432(4–6):480–485
61.
Zurück zum Zitat Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45(3):739–748 Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45(3):739–748
62.
Zurück zum Zitat Ryu J, Han M (2014) Improvement of the mechanical and electrical properties of polyamide 6 nanocomposites by non-covalent functionalization of multi-walled carbon nanotubes. Compos Sci Technol 102:169–175 Ryu J, Han M (2014) Improvement of the mechanical and electrical properties of polyamide 6 nanocomposites by non-covalent functionalization of multi-walled carbon nanotubes. Compos Sci Technol 102:169–175
63.
Zurück zum Zitat Kim KH, Jo WH (2009) A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 47(4):1126–1134 Kim KH, Jo WH (2009) A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 47(4):1126–1134
64.
Zurück zum Zitat Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43(11):3247–3255 Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43(11):3247–3255
65.
Zurück zum Zitat Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83(14):2928–2930 Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83(14):2928–2930
66.
Zurück zum Zitat Hornbostel B, Pötschke P, Kotz J, Roth S (2006) Single-walled carbon nanotubes/polycarbonate composites: basic electrical and mechanical properties. Phys Status Solidi B 243(13):3445–3451 Hornbostel B, Pötschke P, Kotz J, Roth S (2006) Single-walled carbon nanotubes/polycarbonate composites: basic electrical and mechanical properties. Phys Status Solidi B 243(13):3445–3451
67.
Zurück zum Zitat Maiti S, Suin S, Shrivastava NK, Khatua BB (2014) A strategy to achieve high electromagnetic interference shielding and ultra low percolation in multiwall carbon nanotube–polycarbonate composites through selective localization of carbon nanotubes. RSC Adv 4(16):7979–7990 Maiti S, Suin S, Shrivastava NK, Khatua BB (2014) A strategy to achieve high electromagnetic interference shielding and ultra low percolation in multiwall carbon nanotube–polycarbonate composites through selective localization of carbon nanotubes. RSC Adv 4(16):7979–7990
68.
Zurück zum Zitat Castillo FY, Socher R, Krause B, Headrick R, Grady BP, Prada-Silvy R, Pötschke P (2011) Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer 52(17):3835–3845 Castillo FY, Socher R, Krause B, Headrick R, Grady BP, Prada-Silvy R, Pötschke P (2011) Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer 52(17):3835–3845
69.
Zurück zum Zitat Choi EY, Kim JY, Kim CK (2015) Fabrication and properties of polycarbonate composites with polycarbonate grafted multi-walled carbon nanotubes by reactive extrusion. Polymer 60:18–25 Choi EY, Kim JY, Kim CK (2015) Fabrication and properties of polycarbonate composites with polycarbonate grafted multi-walled carbon nanotubes by reactive extrusion. Polymer 60:18–25
70.
Zurück zum Zitat Babal AS, Gupta R, Singh BP, Singh VN, Dhakate SR, Mathur RB (2014) Mechanical and electrical properties of high performance MWCNT/polycarbonate composites prepared by an industrial viable twin screw extruder with back flow channel. RSC Adv 4(110):64649–64658 Babal AS, Gupta R, Singh BP, Singh VN, Dhakate SR, Mathur RB (2014) Mechanical and electrical properties of high performance MWCNT/polycarbonate composites prepared by an industrial viable twin screw extruder with back flow channel. RSC Adv 4(110):64649–64658
71.
Zurück zum Zitat Guo J, Liu Y, Prada-Silvy R, Tan Y, Azad S, Krause B, Pötschke P, Grady BP (2014) Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. J Polym Sci Pol Phys 52(1):73–83 Guo J, Liu Y, Prada-Silvy R, Tan Y, Azad S, Krause B, Pötschke P, Grady BP (2014) Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. J Polym Sci Pol Phys 52(1):73–83
72.
Zurück zum Zitat Gorrasi G, Sarno M, Di Bartolomeo A, Sannino D, Ciambelli P, Vittoria V (2007) Incorporation of carbon nanotubes into polyethylene by high energy ball milling: morphology and physical properties. J Polym Sci Pol Phys 45(5):597–606 Gorrasi G, Sarno M, Di Bartolomeo A, Sannino D, Ciambelli P, Vittoria V (2007) Incorporation of carbon nanotubes into polyethylene by high energy ball milling: morphology and physical properties. J Polym Sci Pol Phys 45(5):597–606
73.
Zurück zum Zitat Mierczynska A, Mayne-L’Hermite M, Boiteux G, Jeszka JK (2007) Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J Appl Polym Sci 105(1):158–168 Mierczynska A, Mayne-L’Hermite M, Boiteux G, Jeszka JK (2007) Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J Appl Polym Sci 105(1):158–168
74.
Zurück zum Zitat Gao JF, Li ZM, Meng Q, Yang Q (2008) CNTs/UHMWPE composites with a two-dimensional conductive network. Mater Lett 62(20):3530–3532 Gao JF, Li ZM, Meng Q, Yang Q (2008) CNTs/UHMWPE composites with a two-dimensional conductive network. Mater Lett 62(20):3530–3532
75.
Zurück zum Zitat Al-Saleh MH, Jawad SA, El Ghanem HM (2014) Electrical and dielectric behaviors of dry-mixed CNT/UHMWPE nanocomposites. High Perform Polym 26(2):205–211 Al-Saleh MH, Jawad SA, El Ghanem HM (2014) Electrical and dielectric behaviors of dry-mixed CNT/UHMWPE nanocomposites. High Perform Polym 26(2):205–211
76.
Zurück zum Zitat Deplancke T, Lame O, Barrau S, Ravi K, Dalmas F (2017) Impact of carbon nanotube prelocalization on the ultra-low electrical percolation threshold and on the mechanical behavior of sintered UHMWPE-based nanocomposites. Polymer 111:204–213 Deplancke T, Lame O, Barrau S, Ravi K, Dalmas F (2017) Impact of carbon nanotube prelocalization on the ultra-low electrical percolation threshold and on the mechanical behavior of sintered UHMWPE-based nanocomposites. Polymer 111:204–213
77.
Zurück zum Zitat Pang H, Bao Y, Chen C, Lei J, Ji X, Chen J, Li ZM (2012) Influence of the compaction temperature on the electrical and mechanical properties of the segregated conductive ultrahigh molecular weight polyethylene/carbon nanotube composite. Polym Plast Technol 51(15):1530–1536 Pang H, Bao Y, Chen C, Lei J, Ji X, Chen J, Li ZM (2012) Influence of the compaction temperature on the electrical and mechanical properties of the segregated conductive ultrahigh molecular weight polyethylene/carbon nanotube composite. Polym Plast Technol 51(15):1530–1536
78.
Zurück zum Zitat Xiang D, Harkin-Jones E, Linton D, Martin P (2015) Structure, mechanical and electrical properties of high-density polyethylene/multi-walled carbon nanotube composites processed by compression molding and blown film extrusion. J Appl Polym Sci 132(42):42665 Xiang D, Harkin-Jones E, Linton D, Martin P (2015) Structure, mechanical and electrical properties of high-density polyethylene/multi-walled carbon nanotube composites processed by compression molding and blown film extrusion. J Appl Polym Sci 132(42):42665
79.
Zurück zum Zitat Kharchenko SB, Douglas JF, Obrzut J, Grulke EA, Migler KB (2004) Flow-induced properties of nanotube-filled polymer materials. Nat Mater 3(8):564–568 Kharchenko SB, Douglas JF, Obrzut J, Grulke EA, Migler KB (2004) Flow-induced properties of nanotube-filled polymer materials. Nat Mater 3(8):564–568
80.
Zurück zum Zitat Tjong SC, Liang GD, Bao SP (2007) Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold. Scr Mater 57(6):461–464 Tjong SC, Liang GD, Bao SP (2007) Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold. Scr Mater 57(6):461–464
81.
Zurück zum Zitat Seo MK, Park SJ (2004) Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 395(1–3):44–48 Seo MK, Park SJ (2004) Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 395(1–3):44–48
82.
Zurück zum Zitat Ghislandi M, Tkalya E, Marinho B, Koning CE (2013) Electrical conductivities of carbon powder nanofillers and their latex-based polymer composites. Compos Part A Appl Sci Manuf 53:145–151 Ghislandi M, Tkalya E, Marinho B, Koning CE (2013) Electrical conductivities of carbon powder nanofillers and their latex-based polymer composites. Compos Part A Appl Sci Manuf 53:145–151
83.
Zurück zum Zitat Verma P, Saini P, Choudhary V (2015) Designing of carbon nanotube/polymer composites using melt recirculation approach: effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater Des 88:269–277 Verma P, Saini P, Choudhary V (2015) Designing of carbon nanotube/polymer composites using melt recirculation approach: effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater Des 88:269–277
84.
Zurück zum Zitat Wu HY, Jia LC, Yan DX, Gao JF, Zhang XP, Ren PG, Li ZM (2018) Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos Sci Technol 156:87–94 Wu HY, Jia LC, Yan DX, Gao JF, Zhang XP, Ren PG, Li ZM (2018) Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos Sci Technol 156:87–94
85.
Zurück zum Zitat Ngabonziza Y, Li J, Barry CF (2011) Electrical conductivity and mechanical properties of multiwalled carbon nanotube-reinforced polypropylene nanocomposites. Acta Mech 220(1–4):289–298 Ngabonziza Y, Li J, Barry CF (2011) Electrical conductivity and mechanical properties of multiwalled carbon nanotube-reinforced polypropylene nanocomposites. Acta Mech 220(1–4):289–298
86.
Zurück zum Zitat Stan F, Sandu LI, Fetecau C, Rosculet R (2017) Effect of reprocessing on the rheological, electrical, and mechanical properties of polypropylene/carbon nanotube composites. J Micro Nano Manuf 5(2):021005 Stan F, Sandu LI, Fetecau C, Rosculet R (2017) Effect of reprocessing on the rheological, electrical, and mechanical properties of polypropylene/carbon nanotube composites. J Micro Nano Manuf 5(2):021005
87.
Zurück zum Zitat Ayewah DOO, Davis DC, Krishnamoorti R, Lagoudas DC, Sue HJ, Willson M (2010) A surfactant dispersed SWCNT-polystyrene composite characterized for electrical and mechanical properties. Compos Part A Appl Sci Manuf 41(7):842–849 Ayewah DOO, Davis DC, Krishnamoorti R, Lagoudas DC, Sue HJ, Willson M (2010) A surfactant dispersed SWCNT-polystyrene composite characterized for electrical and mechanical properties. Compos Part A Appl Sci Manuf 41(7):842–849
88.
Zurück zum Zitat Ibrahim SS, Ayesh AS, Abdel-Rahem RA (2017) Investigation on the physical properties of multiwalled carbon nanotube–polystyrene nanocomposites treated with 2, 3-hydroxy-2-naphthoic acid. J Thermoplast Compos Mater 30(8):1120–1135 Ibrahim SS, Ayesh AS, Abdel-Rahem RA (2017) Investigation on the physical properties of multiwalled carbon nanotube–polystyrene nanocomposites treated with 2, 3-hydroxy-2-naphthoic acid. J Thermoplast Compos Mater 30(8):1120–1135
89.
Zurück zum Zitat Lisunova MO, Mamunya YP, Lebovka NI, Melezhyk AV (2007) Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur Polym J 43(3):949–958 Lisunova MO, Mamunya YP, Lebovka NI, Melezhyk AV (2007) Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur Polym J 43(3):949–958
90.
Zurück zum Zitat Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Raghavan SR, Bruck HA (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40(20):7400–7406 Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Raghavan SR, Bruck HA (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40(20):7400–7406
91.
Zurück zum Zitat Paul A, Grady BP, Ford WT (2012) Polystyrene composites of single-walled carbon nanotubes-graft-polystyrene. Polym Int 61(11):1603–1610 Paul A, Grady BP, Ford WT (2012) Polystyrene composites of single-walled carbon nanotubes-graft-polystyrene. Polym Int 61(11):1603–1610
93.
Zurück zum Zitat Regev O, ElKati PNB, Loos J, Koning CE (2004) Preparation of conductive nanotube–polymer composites using latex technology. Adv Mater 16(3):248–251 Regev O, ElKati PNB, Loos J, Koning CE (2004) Preparation of conductive nanotube–polymer composites using latex technology. Adv Mater 16(3):248–251
94.
Zurück zum Zitat Dalmas F, Cavaillé JY, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67(5):829–839 Dalmas F, Cavaillé JY, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67(5):829–839
95.
Zurück zum Zitat Grossiord N, Loos J, Koning CE (2005) Strategies for dispersing carbon nanotubes in highly viscous polymers. J Mater Chem 15(24):2349–2352 Grossiord N, Loos J, Koning CE (2005) Strategies for dispersing carbon nanotubes in highly viscous polymers. J Mater Chem 15(24):2349–2352
96.
Zurück zum Zitat Yu J, Lu K, Sourty E, Grossiord N, Koning CE (2007) Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon 45(15):2897–2903 Yu J, Lu K, Sourty E, Grossiord N, Koning CE (2007) Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon 45(15):2897–2903
97.
Zurück zum Zitat Grossiord N, Miltner HE, Loos J, Meuldijk J, Van Mele B, Koning CE (2007) On the crucial role of wetting in the preparation of conductive polystyrene–carbon nanotube composites. Chem Mater 19(15):3787–3792 Grossiord N, Miltner HE, Loos J, Meuldijk J, Van Mele B, Koning CE (2007) On the crucial role of wetting in the preparation of conductive polystyrene–carbon nanotube composites. Chem Mater 19(15):3787–3792
98.
Zurück zum Zitat Koysuren O, Karaman M, Ozyurt D (2013) Effect of noncovalent chemical modification on the electrical conductivity and tensile properties of poly (methyl methacrylate)/carbon nanotube composites. J Appl Polym Sci 127(6):4557–4563 Koysuren O, Karaman M, Ozyurt D (2013) Effect of noncovalent chemical modification on the electrical conductivity and tensile properties of poly (methyl methacrylate)/carbon nanotube composites. J Appl Polym Sci 127(6):4557–4563
99.
Zurück zum Zitat Kalakonda P, Banne S (2017) Thermomechanical properties of PMMA and modified SWCNT composites. Nanotechnol Sci Appl 10:45–52 Kalakonda P, Banne S (2017) Thermomechanical properties of PMMA and modified SWCNT composites. Nanotechnol Sci Appl 10:45–52
100.
Zurück zum Zitat Ryu SH, Cho HB, Moon JW, Kwon YT, Eom NSA, Lee S, Hussain M, Choa YH (2016) Highly conductive polymethly(methacrylate)/multi-wall carbon nanotube composites by modeling a three-dimensional percolated microstructure. Compos Part A Appl Sci Manuf 91:133–139 Ryu SH, Cho HB, Moon JW, Kwon YT, Eom NSA, Lee S, Hussain M, Choa YH (2016) Highly conductive polymethly(methacrylate)/multi-wall carbon nanotube composites by modeling a three-dimensional percolated microstructure. Compos Part A Appl Sci Manuf 91:133–139
101.
Zurück zum Zitat Skakalova V, Dettlaff-Weglikowska U, Roth S (2005) Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA. Synth Met 152(1–3):349–352 Skakalova V, Dettlaff-Weglikowska U, Roth S (2005) Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA. Synth Met 152(1–3):349–352
102.
Zurück zum Zitat Kim HM, Choi MS, Joo J, Cho SJ, Yoon HS (2006) Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites. Phys Rev B 74(5):054202 Kim HM, Choi MS, Joo J, Cho SJ, Yoon HS (2006) Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites. Phys Rev B 74(5):054202
103.
Zurück zum Zitat Dettlaff-Weglikowska U, Kaempgen M, Hornbostel B, Skakalova V, Wang J, Liang J, Roth S (2006) Conducting and transparent SWNT/polymer composites. Phys Status Solidi B 243(13):3440–3444 Dettlaff-Weglikowska U, Kaempgen M, Hornbostel B, Skakalova V, Wang J, Liang J, Roth S (2006) Conducting and transparent SWNT/polymer composites. Phys Status Solidi B 243(13):3440–3444
104.
Zurück zum Zitat Xin F, Li L (2011) Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites. Compos Part A Appl Sci Manuf 42(8):961–967 Xin F, Li L (2011) Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites. Compos Part A Appl Sci Manuf 42(8):961–967
105.
Zurück zum Zitat Dhibar S, Das CK (2014) Silver nanoparticles decorated polyaniline/multiwalled carbon nanotubes nanocomposite for high-performance supercapacitor electrode. Ind Eng Chem Res 53(9):3495–3508 Dhibar S, Das CK (2014) Silver nanoparticles decorated polyaniline/multiwalled carbon nanotubes nanocomposite for high-performance supercapacitor electrode. Ind Eng Chem Res 53(9):3495–3508
106.
Zurück zum Zitat Chun KY, Oh Y, Rho J, Ahn JH, Kim YJ, Choi HR, Baik S (2010) Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol 5(12):853–857 Chun KY, Oh Y, Rho J, Ahn JH, Kim YJ, Choi HR, Baik S (2010) Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol 5(12):853–857
107.
Zurück zum Zitat Kim KS, Park SJ (2011) Influence of silver-decorated multi-walled carbon nanotubes on electrochemical performance of polyaniline-based electrodes. J Solid State Chem 184(10):2724–2730 Kim KS, Park SJ (2011) Influence of silver-decorated multi-walled carbon nanotubes on electrochemical performance of polyaniline-based electrodes. J Solid State Chem 184(10):2724–2730
108.
Zurück zum Zitat Shim JJ (2011) Facile synthesis and characterization of carbon nanotubes/silver nanohybrids coated with polyaniline. Synth Met 161(19–20):2078–2082 Shim JJ (2011) Facile synthesis and characterization of carbon nanotubes/silver nanohybrids coated with polyaniline. Synth Met 161(19–20):2078–2082
109.
Zurück zum Zitat Choi K, Yu C (2012) Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites. PLoS ONE 7(9):e44977 Choi K, Yu C (2012) Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites. PLoS ONE 7(9):e44977
110.
Zurück zum Zitat Yuen SM, Ma CCM, Chuang CY, Hsiao YH, Chiang CL, Yu AD (2008) Preparation, morphology, mechanical and electrical properties of TiO2 coated multiwalled carbon nanotube/epoxy composites. Compos Part A Appl Sci Manuf 39(1):119–125 Yuen SM, Ma CCM, Chuang CY, Hsiao YH, Chiang CL, Yu AD (2008) Preparation, morphology, mechanical and electrical properties of TiO2 coated multiwalled carbon nanotube/epoxy composites. Compos Part A Appl Sci Manuf 39(1):119–125
111.
Zurück zum Zitat Alam J, Khan A, Alam M, Mohan R (2015) Electroactive shape memory property of a Cu-decorated CNT dispersed PLA/ESO nanocomposite. Materials 8(9):6391–6400 Alam J, Khan A, Alam M, Mohan R (2015) Electroactive shape memory property of a Cu-decorated CNT dispersed PLA/ESO nanocomposite. Materials 8(9):6391–6400
112.
Zurück zum Zitat Hawkins SA, Yao H, Wang H, Sue HJ (2017) Tensile properties and electrical conductivity of epoxy composite thin films containing zinc oxide quantum dots and multi-walled carbon nanotubes. Carbon 115:18–27 Hawkins SA, Yao H, Wang H, Sue HJ (2017) Tensile properties and electrical conductivity of epoxy composite thin films containing zinc oxide quantum dots and multi-walled carbon nanotubes. Carbon 115:18–27
113.
Zurück zum Zitat Guadagno L, Raimondo M, Vittoria V, Vertuccio L, Lafdi K, De Vivo B, Lamberti P, Spinelli G, Tucci V (2013) The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology 24:305704 Guadagno L, Raimondo M, Vittoria V, Vertuccio L, Lafdi K, De Vivo B, Lamberti P, Spinelli G, Tucci V (2013) The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology 24:305704
114.
Zurück zum Zitat Paleo AJ, Sencadas V, van Hattum FWJ, Lanceros-Méndez S, Ares A (2014) Carbon nanofiber type and content dependence of the physical properties of carbon nanofiber reinforced polypropylene composites. Polym Eng Sci 54:117–128 Paleo AJ, Sencadas V, van Hattum FWJ, Lanceros-Méndez S, Ares A (2014) Carbon nanofiber type and content dependence of the physical properties of carbon nanofiber reinforced polypropylene composites. Polym Eng Sci 54:117–128
115.
Zurück zum Zitat Bal S, Saha S (2014) Comparison and analysis of physical properties of carbon nanomaterial-doped polymer composites. High Perform Polym 26:953–960 Bal S, Saha S (2014) Comparison and analysis of physical properties of carbon nanomaterial-doped polymer composites. High Perform Polym 26:953–960
116.
Zurück zum Zitat Varela-Rizo H, Bittolo-Bon S, Rodriguez-Pastor I, Valentini L, Martin-Gullon I (2012) Processing and functionalization effect in CNF/PMMA nanocomposites. Compos Part A Appl Sci Manuf 43:711–721 Varela-Rizo H, Bittolo-Bon S, Rodriguez-Pastor I, Valentini L, Martin-Gullon I (2012) Processing and functionalization effect in CNF/PMMA nanocomposites. Compos Part A Appl Sci Manuf 43:711–721
118.
Zurück zum Zitat Jimenez GA, Jana SC (2007) Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. Compos Part A Appl Sci Manuf 38:983–993 Jimenez GA, Jana SC (2007) Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. Compos Part A Appl Sci Manuf 38:983–993
120.
Zurück zum Zitat Mapkar JA, Belashi A, Berhan LM, Coleman MR (2013) Formation of high loading flexible carbon nanofiber network composites. Compos Sci Technol 75:1–6 Mapkar JA, Belashi A, Berhan LM, Coleman MR (2013) Formation of high loading flexible carbon nanofiber network composites. Compos Sci Technol 75:1–6
121.
Zurück zum Zitat Mondal S, Nayak L, Rahaman M, Aldalbahi A, Chaki TK, Khastgir D, Das NC (2017) An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites. Compos Part B Eng 109:155–169 Mondal S, Nayak L, Rahaman M, Aldalbahi A, Chaki TK, Khastgir D, Das NC (2017) An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites. Compos Part B Eng 109:155–169
122.
Zurück zum Zitat Li J, Sham M, Kim J, Marom G (2007) Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos Sci Technol 67(2):296–305 Li J, Sham M, Kim J, Marom G (2007) Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos Sci Technol 67(2):296–305
123.
Zurück zum Zitat Wajid AS, Ahmed HST, Das S, Irin F, Jankowski AF, Green MJ (2013) High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol Mater Eng 298(3):339–347 Wajid AS, Ahmed HST, Das S, Irin F, Jankowski AF, Green MJ (2013) High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol Mater Eng 298(3):339–347
124.
Zurück zum Zitat Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105 Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105
125.
Zurück zum Zitat Chandrasekaran S, Seidel C, Schulte K (2013) Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur Polym J 49(12):3878–3888 Chandrasekaran S, Seidel C, Schulte K (2013) Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur Polym J 49(12):3878–3888
126.
Zurück zum Zitat Jović N, Dudić D, Montone A, Antisari MV, Mitrić M, Djoković V (2008) Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scr Mater 58(10):846–849 Jović N, Dudić D, Montone A, Antisari MV, Mitrić M, Djoković V (2008) Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scr Mater 58(10):846–849
127.
Zurück zum Zitat Tien DH, Park J, Han SA, Ahmad M, Seo Y, Shin K (2011) Electrical and thermal conductivities of stycast 1266 epoxy/graphite composites. J Korean Phys Soc 59(4):2760–2764 Tien DH, Park J, Han SA, Ahmad M, Seo Y, Shin K (2011) Electrical and thermal conductivities of stycast 1266 epoxy/graphite composites. J Korean Phys Soc 59(4):2760–2764
128.
Zurück zum Zitat Li Y, Zhang H, Porwal H, Huang Z, Bilotti E, Peijs T (2017) Mechanical, electrical and thermal properties of in situ exfoliated graphene/epoxy nanocomposites. Compos Part A Appl Sci Manuf 95:229–236 Li Y, Zhang H, Porwal H, Huang Z, Bilotti E, Peijs T (2017) Mechanical, electrical and thermal properties of in situ exfoliated graphene/epoxy nanocomposites. Compos Part A Appl Sci Manuf 95:229–236
129.
Zurück zum Zitat Yoonessi M, Gaier JR (2010) Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 4:7211–7220 Yoonessi M, Gaier JR (2010) Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 4:7211–7220
130.
Zurück zum Zitat Pham VH, Dang TT, Hur SH, Kim EJ, Chung JS (2012) Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Appl Mater Interfaces 4(5):2630–2636 Pham VH, Dang TT, Hur SH, Kim EJ, Chung JS (2012) Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Appl Mater Interfaces 4(5):2630–2636
131.
Zurück zum Zitat Wang D, Zhang X, Zha JW, Zhao J, Dang ZM, Hu GH (2013) Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54(7):1916–1922 Wang D, Zhang X, Zha JW, Zhao J, Dang ZM, Hu GH (2013) Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54(7):1916–1922
132.
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286 Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286
133.
Zurück zum Zitat Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J (2010) Latex-based concept for the preparation of graphene-based polymer nanocomposites. J Mater Chem 20(15):3035–3039 Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J (2010) Latex-based concept for the preparation of graphene-based polymer nanocomposites. J Mater Chem 20(15):3035–3039
134.
Zurück zum Zitat Long G, Tang C, Wong KW, Man C, Fan M, Lau WM, Xu T, Wang B (2013) Resolving the dilemma of gaining conductivity but losing environmental friendliness in producing polystyrene/graphene composites via optimizing the matrix-filler structure. Green Chem 15(3):821–828 Long G, Tang C, Wong KW, Man C, Fan M, Lau WM, Xu T, Wang B (2013) Resolving the dilemma of gaining conductivity but losing environmental friendliness in producing polystyrene/graphene composites via optimizing the matrix-filler structure. Green Chem 15(3):821–828
135.
Zurück zum Zitat Wu C, Huang X, Wang G, Lv L, Chen G, Li G, Jiang P (2013) Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv Funct Mater 23(4):506–513 Wu C, Huang X, Wang G, Lv L, Chen G, Li G, Jiang P (2013) Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv Funct Mater 23(4):506–513
136.
Zurück zum Zitat Jun YS, Um JG, Jiang G, Lui G, Yu A (2018) Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Compos Part B Eng 133:218–225 Jun YS, Um JG, Jiang G, Lui G, Yu A (2018) Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Compos Part B Eng 133:218–225
137.
Zurück zum Zitat Ryu SH, Shanmugharaj AM (2014) Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isotactic polypropylene nanocomposites. Chem Eng J 244:552–560 Ryu SH, Shanmugharaj AM (2014) Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isotactic polypropylene nanocomposites. Chem Eng J 244:552–560
139.
Zurück zum Zitat Wang C, Lan Y, Li X, Yu W, Qian Y (2016) Improving the mechanical, electrical, and thermal properties of polyimide by incorporating functionalized graphene oxide. High Perform Polym 28(7):800–808 Wang C, Lan Y, Li X, Yu W, Qian Y (2016) Improving the mechanical, electrical, and thermal properties of polyimide by incorporating functionalized graphene oxide. High Perform Polym 28(7):800–808
140.
Zurück zum Zitat Qian Y, Wu H, Yuan D, Li X, Yu W, Wang C (2015) In situ polymerization of polyimide-based nanocomposites via covalent incorporation of functionalized graphene nanosheets for enhancing mechanical, thermal, and electrical properties. J Appl Polym Sci 132(44):1006–1016 Qian Y, Wu H, Yuan D, Li X, Yu W, Wang C (2015) In situ polymerization of polyimide-based nanocomposites via covalent incorporation of functionalized graphene nanosheets for enhancing mechanical, thermal, and electrical properties. J Appl Polym Sci 132(44):1006–1016
141.
Zurück zum Zitat Wang P, Chong H, Zhang J, Lu H (2017) Constructing 3D graphene networks in polymer composites for significantly improved electrical and mechanical properties. ACS Appl Mater Interfaces 9(26):22006–22017 Wang P, Chong H, Zhang J, Lu H (2017) Constructing 3D graphene networks in polymer composites for significantly improved electrical and mechanical properties. ACS Appl Mater Interfaces 9(26):22006–22017
142.
Zurück zum Zitat Lago E, Toth PS, Pugliese G, Pellegrini V, Bonaccorso F (2016) Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties. RSC Adv 6(100):97931–97940 Lago E, Toth PS, Pugliese G, Pellegrini V, Bonaccorso F (2016) Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties. RSC Adv 6(100):97931–97940
143.
Zurück zum Zitat Fim FDC, Basso NRS, Graebin AP, Azambuja DS, Galland GB (2013) Thermal, electrical, and mechanical properties of polyethylene-graphene nanocomposites obtained by in situ polymerization. J Appl Polym Sci 128(5):2630–2637 Fim FDC, Basso NRS, Graebin AP, Azambuja DS, Galland GB (2013) Thermal, electrical, and mechanical properties of polyethylene-graphene nanocomposites obtained by in situ polymerization. J Appl Polym Sci 128(5):2630–2637
144.
Zurück zum Zitat Tang G, Jiang ZG, Li X, Zhang HB, Dasari A, Yu ZZ (2014) Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77:592–599 Tang G, Jiang ZG, Li X, Zhang HB, Dasari A, Yu ZZ (2014) Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77:592–599
145.
Zurück zum Zitat Kuang T, Chang L, Chen F, Sheng Y, Fu D, Peng X (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313 Kuang T, Chang L, Chen F, Sheng Y, Fu D, Peng X (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313
146.
Zurück zum Zitat Athanasopoulos N, Baltopoulos A, Matzakou M, Vavouliotis A, Kostopoulos V (2012) Electrical conductivity of polyurethane/MWCNT nanocomposite foams. Polym Compos 33(8):1302–1312 Athanasopoulos N, Baltopoulos A, Matzakou M, Vavouliotis A, Kostopoulos V (2012) Electrical conductivity of polyurethane/MWCNT nanocomposite foams. Polym Compos 33(8):1302–1312
147.
Zurück zum Zitat Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3(3):918–924 Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3(3):918–924
148.
Zurück zum Zitat Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng W (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5(7):2677–2684 Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng W (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5(7):2677–2684
149.
Zurück zum Zitat Yan DX, Dai K, Xiang ZD, Li ZM, Ji X, Zhang WQ (2011) Electrical conductivity and major mechanical and thermal properties of carbon nanotube-filled polyurethane foams. J Appl Polym Sci 120(5):3014–3019 Yan DX, Dai K, Xiang ZD, Li ZM, Ji X, Zhang WQ (2011) Electrical conductivity and major mechanical and thermal properties of carbon nanotube-filled polyurethane foams. J Appl Polym Sci 120(5):3014–3019
151.
Zurück zum Zitat Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene-PVDF foam composites for EMI shielding. Macromol Mater Eng 296(10):894–898 Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene-PVDF foam composites for EMI shielding. Macromol Mater Eng 296(10):894–898
152.
Zurück zum Zitat Yue J, Xu Y, Bao J (2017) Epoxy–carbon black composite foams with tunable electrical conductivity and mechanical properties: foaming improves the conductivity. J Appl Polym Sci 134(33):45071 Yue J, Xu Y, Bao J (2017) Epoxy–carbon black composite foams with tunable electrical conductivity and mechanical properties: foaming improves the conductivity. J Appl Polym Sci 134(33):45071
153.
Zurück zum Zitat Chen Z, Xu C, Ma C, Ren W, Cheng HM (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300 Chen Z, Xu C, Ma C, Ren W, Cheng HM (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300
154.
Zurück zum Zitat Jia J, Sun X, Lin X, Shen X, Mai YW, Kim JK (2014) Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8(6):5774–5783 Jia J, Sun X, Lin X, Shen X, Mai YW, Kim JK (2014) Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8(6):5774–5783
155.
Zurück zum Zitat Li Q, Chen L, Li X, Zhang J, Zhang X, Zheng K, Fang F, Zhou H, Tian X (2016) Effect of multi-walled carbon nanotubes on mechanical, thermal and electrical properties of phenolic foam via in situ polymerization. Compos Part A Appl Sci Manuf 82:214–225 Li Q, Chen L, Li X, Zhang J, Zhang X, Zheng K, Fang F, Zhou H, Tian X (2016) Effect of multi-walled carbon nanotubes on mechanical, thermal and electrical properties of phenolic foam via in situ polymerization. Compos Part A Appl Sci Manuf 82:214–225
156.
Zurück zum Zitat Embrey L, Nautiyal P, Loganathan A, Idowu A, Boesl B, Agarwal A (2017) Three-dimensional graphene foam induces multifunctionality in epoxy nanocomposites by simultaneous improvement in mechanical, thermal, and electrical properties. ACS Appl Mater Interfaces 9(45):39717–39727 Embrey L, Nautiyal P, Loganathan A, Idowu A, Boesl B, Agarwal A (2017) Three-dimensional graphene foam induces multifunctionality in epoxy nanocomposites by simultaneous improvement in mechanical, thermal, and electrical properties. ACS Appl Mater Interfaces 9(45):39717–39727
157.
Zurück zum Zitat Xu Y, Li Y, Bao J, Zhou T, Zhang A (2016) Rigid thermosetting epoxy/multi-walled carbon nanotube foams with enhanced conductivity originated from a flow-induced concentration effect. RSC Adv 6(44):37710–37720 Xu Y, Li Y, Bao J, Zhou T, Zhang A (2016) Rigid thermosetting epoxy/multi-walled carbon nanotube foams with enhanced conductivity originated from a flow-induced concentration effect. RSC Adv 6(44):37710–37720
158.
Zurück zum Zitat Chen Y, Zhang HB, Yang Y, Wang M, Cao A, Yu ZZ (2016) High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv Funct Mater 26(3):447–455 Chen Y, Zhang HB, Yang Y, Wang M, Cao A, Yu ZZ (2016) High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv Funct Mater 26(3):447–455
159.
Zurück zum Zitat Ariño R, Álvarez E, Rigdahl M (2015) Enhancing the electrical conductivity of carbon black/graphite nanoplatelets: poly(ethylene-butyl acrylate) composites by melt extrusion. J Appl Polym Sci 133(3):42897 Ariño R, Álvarez E, Rigdahl M (2015) Enhancing the electrical conductivity of carbon black/graphite nanoplatelets: poly(ethylene-butyl acrylate) composites by melt extrusion. J Appl Polym Sci 133(3):42897
160.
Zurück zum Zitat Cui CH, Pang H, Yan DX, Jia LC, Jiang X, Lei J, Li ZM (2015) Percolation and resistivity-temperature behaviours of carbon nanotube-carbon black hybrid loaded ultrahigh molecular weight polyethylene composites with segregated structures. RSC Adv 5(75):61318–61323 Cui CH, Pang H, Yan DX, Jia LC, Jiang X, Lei J, Li ZM (2015) Percolation and resistivity-temperature behaviours of carbon nanotube-carbon black hybrid loaded ultrahigh molecular weight polyethylene composites with segregated structures. RSC Adv 5(75):61318–61323
161.
Zurück zum Zitat Mondal S, Khastgir D (2017) Elastomer reinforcement by graphene nanoplatelets and synergistic improvements of electrical and mechanical properties of composites by hybrid nano fillers of graphene-carbon black & graphene-MWCNT. Compos Part A Appl Sci Manuf 102:154–165 Mondal S, Khastgir D (2017) Elastomer reinforcement by graphene nanoplatelets and synergistic improvements of electrical and mechanical properties of composites by hybrid nano fillers of graphene-carbon black & graphene-MWCNT. Compos Part A Appl Sci Manuf 102:154–165
162.
Zurück zum Zitat Che J, Wu K, Lin Y, Wang K, Fu Q (2017) Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy. Compos Part A Appl Sci Manuf 99:32–40 Che J, Wu K, Lin Y, Wang K, Fu Q (2017) Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy. Compos Part A Appl Sci Manuf 99:32–40
163.
Zurück zum Zitat Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets-dispersion and synergy effects. Carbon 78:268–278 Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets-dispersion and synergy effects. Carbon 78:268–278
164.
Zurück zum Zitat Wang J, Jin X, Wu H, Guo S (2017) Polyimide reinforced with hybrid graphene oxide @ carbon nanotube: toward high strength, toughness, electrical conductivity. Carbon 123:502–513 Wang J, Jin X, Wu H, Guo S (2017) Polyimide reinforced with hybrid graphene oxide @ carbon nanotube: toward high strength, toughness, electrical conductivity. Carbon 123:502–513
165.
Zurück zum Zitat Zhang S, Yin S, Rong C, Huo P, Jiang Z, Wang G (2013) Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly(ether sulfone) composites. Eur Polym J 49(10):3125–3134 Zhang S, Yin S, Rong C, Huo P, Jiang Z, Wang G (2013) Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly(ether sulfone) composites. Eur Polym J 49(10):3125–3134
166.
Zurück zum Zitat Kim M, Kang GH, Park HW, Park YB, Park YH, Yoon KH (2012) Design, manufacturing, and characterization of high-performance lightweight bipolar plates based on carbon nanotube-exfoliated graphite nanoplatelet hybrid nanocomposites. J Nanomater 2012:1–8 Kim M, Kang GH, Park HW, Park YB, Park YH, Yoon KH (2012) Design, manufacturing, and characterization of high-performance lightweight bipolar plates based on carbon nanotube-exfoliated graphite nanoplatelet hybrid nanocomposites. J Nanomater 2012:1–8
167.
Zurück zum Zitat Ghaleb ZA, Mariatti M, Ariff ZM (2017) Synergy effects of graphene and multiwalled carbon nanotubes hybrid system on properties of epoxy nanocomposites. J Reinf Plast Compos 36(9):685–695 Ghaleb ZA, Mariatti M, Ariff ZM (2017) Synergy effects of graphene and multiwalled carbon nanotubes hybrid system on properties of epoxy nanocomposites. J Reinf Plast Compos 36(9):685–695
168.
Zurück zum Zitat Liu YT, Dang M, Xie XM, Wang ZF, Ye XY (2011) Synergistic effect of Cu2+-coordinated carbon nanotube/graphene network on the electrical and mechanical properties of polymer nanocomposites. J Mater Chem 21(46):18723–18729 Liu YT, Dang M, Xie XM, Wang ZF, Ye XY (2011) Synergistic effect of Cu2+-coordinated carbon nanotube/graphene network on the electrical and mechanical properties of polymer nanocomposites. J Mater Chem 21(46):18723–18729
169.
Zurück zum Zitat Kim J, Kim SW, Yun H, Kim BJ (2017) Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube–polymer composites. RSC Adv 7(48):30221–30228 Kim J, Kim SW, Yun H, Kim BJ (2017) Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube–polymer composites. RSC Adv 7(48):30221–30228
170.
Zurück zum Zitat Lin JH, Lin ZI, Pan YJ, Chen CK, Huang CL, Huang CH, Lou CW (2016) Improvement in mechanical properties and electromagnetic interference shielding effectiveness of PVA-based composites: synergistic effect between graphene nano-sheets and multi-walled carbon nanotubes. Macromol Mater Eng 301(2):199–211 Lin JH, Lin ZI, Pan YJ, Chen CK, Huang CL, Huang CH, Lou CW (2016) Improvement in mechanical properties and electromagnetic interference shielding effectiveness of PVA-based composites: synergistic effect between graphene nano-sheets and multi-walled carbon nanotubes. Macromol Mater Eng 301(2):199–211
171.
Zurück zum Zitat Wegrzyn M, Ortega A, Benedito A, Gimenez E (2015) Thermal and electrical conductivity of melt mixed polycarbonate hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets. J Appl Polym Sci 132(37):42536 Wegrzyn M, Ortega A, Benedito A, Gimenez E (2015) Thermal and electrical conductivity of melt mixed polycarbonate hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets. J Appl Polym Sci 132(37):42536
172.
Zurück zum Zitat Manjaly Poulose A, Anis A, Shaikh H, George J, Al-Zahrani SM (2017) Effect of plasticizer on the electrical, thermal, and morphological properties of carbon black filled poly (propylene). Polym Compos 38(11):2472–2479 Manjaly Poulose A, Anis A, Shaikh H, George J, Al-Zahrani SM (2017) Effect of plasticizer on the electrical, thermal, and morphological properties of carbon black filled poly (propylene). Polym Compos 38(11):2472–2479
173.
Zurück zum Zitat Zhang X, Liu J, Wang Y, Wu W (2017) Effect of polyamide 6 on the morphology and electrical conductivity of carbon black-filled polypropylene composites. R Soc Open Sci 4(12):170769 Zhang X, Liu J, Wang Y, Wu W (2017) Effect of polyamide 6 on the morphology and electrical conductivity of carbon black-filled polypropylene composites. R Soc Open Sci 4(12):170769
174.
Zurück zum Zitat Afzal A, Kausar A, Siddiq M (2016) Perspectives of polystyrene composite with fullerene, carbon black, graphene, and carbon nanotube: a review. Polym Plast Technol 55(18):1988–2011 Afzal A, Kausar A, Siddiq M (2016) Perspectives of polystyrene composite with fullerene, carbon black, graphene, and carbon nanotube: a review. Polym Plast Technol 55(18):1988–2011
175.
Zurück zum Zitat Ahmed HM, Windham AD, Al-Ejji MM, Al-Qahtani NH, Hassan MK, Mauritz KA, Buchanan RK, Buchanan JP (2015) Preparation and preliminary dielectric characterization of structured C60-Thiol-Ene polymer nanocomposites assembled using the Thiol-Ene click reaction. Materials 8(11):7795–7804 Ahmed HM, Windham AD, Al-Ejji MM, Al-Qahtani NH, Hassan MK, Mauritz KA, Buchanan RK, Buchanan JP (2015) Preparation and preliminary dielectric characterization of structured C60-Thiol-Ene polymer nanocomposites assembled using the Thiol-Ene click reaction. Materials 8(11):7795–7804
176.
Zurück zum Zitat Tayfun U, Kanbur Y, Abaci U, Guney HY, Bayramli E (2015) Mechanical, flow and electrical properties of thermoplastic polyurethane/fullerene composites: effect of surface modification of fullerene. Compos Part B Eng 80:101–107 Tayfun U, Kanbur Y, Abaci U, Guney HY, Bayramli E (2015) Mechanical, flow and electrical properties of thermoplastic polyurethane/fullerene composites: effect of surface modification of fullerene. Compos Part B Eng 80:101–107
177.
Zurück zum Zitat Badamshina E, Estrin Y, Gafurova M (2013) Nanocomposites based on polyurethanes and carbon nanoparticles: preparation, properties and application. J Mater Chem A 1(22):6509–6529 Badamshina E, Estrin Y, Gafurova M (2013) Nanocomposites based on polyurethanes and carbon nanoparticles: preparation, properties and application. J Mater Chem A 1(22):6509–6529
178.
Zurück zum Zitat Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401 Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401
179.
Zurück zum Zitat Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25 Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25
180.
Zurück zum Zitat Kaseem M, Hamad K, Ko YG (2016) Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review. Eur Polym J 79:36–62 Kaseem M, Hamad K, Ko YG (2016) Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review. Eur Polym J 79:36–62
181.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
182.
Zurück zum Zitat Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212–1214 Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212–1214
183.
Zurück zum Zitat Sun ML (2002) Application principle and theory of epoxy resins. China Machine Press, Beijing, pp 115–140 Sun ML (2002) Application principle and theory of epoxy resins. China Machine Press, Beijing, pp 115–140
184.
Zurück zum Zitat Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15:4470–4475 Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15:4470–4475
185.
Zurück zum Zitat Zhu J, Kim JD, Peng HQ, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107–1113 Zhu J, Kim JD, Peng HQ, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107–1113
186.
Zurück zum Zitat Wang S, Liang Z, Liu T, Wang B, Zhang C (2006) Effective functionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology 17:1551–1557 Wang S, Liang Z, Liu T, Wang B, Zhang C (2006) Effective functionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology 17:1551–1557
187.
Zurück zum Zitat Park SH, Bandaru PR (2010) Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages. Polymer 51:5071–5077 Park SH, Bandaru PR (2010) Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages. Polymer 51:5071–5077
188.
Zurück zum Zitat Simmons TJ, Hashim D, Vajtai R, Ajayan PM (2007) Large area-aligned arrays from direct deposition of single-wall carbon nanotube inks. J Am Chem Soc 129:10088–10089 Simmons TJ, Hashim D, Vajtai R, Ajayan PM (2007) Large area-aligned arrays from direct deposition of single-wall carbon nanotube inks. J Am Chem Soc 129:10088–10089
189.
Zurück zum Zitat Hu Z, Xu J, Tian Y, Peng R, Xian Y, Ran Q, Jin L (2010) Layer-by-layer assembly of poly(sodium 4-styrenesulfonate) wrapped multi-walled carbon nanotubes with polyaniline nanofibers and its electrochemistry. Carbon 48:3729–3736 Hu Z, Xu J, Tian Y, Peng R, Xian Y, Ran Q, Jin L (2010) Layer-by-layer assembly of poly(sodium 4-styrenesulfonate) wrapped multi-walled carbon nanotubes with polyaniline nanofibers and its electrochemistry. Carbon 48:3729–3736
190.
Zurück zum Zitat Ben-Valid S, Dumortier H, Decossas M, Sfez R, Meneghetti M, Bianco A, Yitzchaik S (2010) Polyaniline-coated single-walled carbon nanotubes: synthesis, characterization and impact on primary immune cells. J Mater Chem 20:2408–2417 Ben-Valid S, Dumortier H, Decossas M, Sfez R, Meneghetti M, Bianco A, Yitzchaik S (2010) Polyaniline-coated single-walled carbon nanotubes: synthesis, characterization and impact on primary immune cells. J Mater Chem 20:2408–2417
191.
Zurück zum Zitat Jiang H, Du C, Zou Z, Li X, Akins DL, Yang H (2009) A biosensing platform based on horseradish peroxidase immobilized onto chitosan-wrapped single-walled carbon nanotubes. J Solid State Electrochem 13:791–798 Jiang H, Du C, Zou Z, Li X, Akins DL, Yang H (2009) A biosensing platform based on horseradish peroxidase immobilized onto chitosan-wrapped single-walled carbon nanotubes. J Solid State Electrochem 13:791–798
192.
Zurück zum Zitat Ferreira T, Paiva MC, Pontes AJ (2013) Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding. J Polym Res 20(11):301 Ferreira T, Paiva MC, Pontes AJ (2013) Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding. J Polym Res 20(11):301
193.
Zurück zum Zitat Ayesh AS, Ibrahim SS, Al-Jaafari AA, Abdel-Rahem RA, Sheikh NS, Kotb HM (2015) Electrical and mechanical properties of β-hydroxynaphthoic acid-multiwalled carbon nanotubes-polystyrene nanocomposites. J Thermoplast Compos Mater 28(6):863–878 Ayesh AS, Ibrahim SS, Al-Jaafari AA, Abdel-Rahem RA, Sheikh NS, Kotb HM (2015) Electrical and mechanical properties of β-hydroxynaphthoic acid-multiwalled carbon nanotubes-polystyrene nanocomposites. J Thermoplast Compos Mater 28(6):863–878
194.
Zurück zum Zitat Jiang H, Zhu L, Moon KS, Wong C (2007) The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production. Carbon 45(3):655–661 Jiang H, Zhu L, Moon KS, Wong C (2007) The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production. Carbon 45(3):655–661
195.
Zurück zum Zitat Tzitzios V, Georgakilas V, Oikonomou E, Karakassides M, Petridis D (2006) Synthesis and characterization of carbon nanotube/metal nanoparticle composites well dispersed in organic media. Carbon 44(5):848–853 Tzitzios V, Georgakilas V, Oikonomou E, Karakassides M, Petridis D (2006) Synthesis and characterization of carbon nanotube/metal nanoparticle composites well dispersed in organic media. Carbon 44(5):848–853
196.
Zurück zum Zitat Ang L, Hor TA, Xu G, Tung C, Zhao S, Wang JL (2000) Decoration of activated carbon nanotubes with copper and nickel. Carbon 38(3):363–372 Ang L, Hor TA, Xu G, Tung C, Zhao S, Wang JL (2000) Decoration of activated carbon nanotubes with copper and nickel. Carbon 38(3):363–372
197.
Zurück zum Zitat Li X, Liu Y, Fu L, Cao L, Wei D, Wang Y (2006) Efficient synthesis of carbon nanotube-nanoparticle hybrids. Adv Funct Mater 16(18):2431–2437 Li X, Liu Y, Fu L, Cao L, Wei D, Wang Y (2006) Efficient synthesis of carbon nanotube-nanoparticle hybrids. Adv Funct Mater 16(18):2431–2437
198.
Zurück zum Zitat Kumar A, Singh AP, Kumari S, Srivastava A, Bathula S, Dhawan S, Dutta P, Dhar A (2015) EM shielding effectiveness of Pd–CNT–Cu nanocomposite buckypaper. J Mater Chem A 3(26):13986–13993 Kumar A, Singh AP, Kumari S, Srivastava A, Bathula S, Dhawan S, Dutta P, Dhar A (2015) EM shielding effectiveness of Pd–CNT–Cu nanocomposite buckypaper. J Mater Chem A 3(26):13986–13993
199.
Zurück zum Zitat Wu B, Kuang Y, Zhang X, Chen J (2011) Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today 6(1):75–90 Wu B, Kuang Y, Zhang X, Chen J (2011) Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today 6(1):75–90
200.
Zurück zum Zitat Dai K, Shi L, Fang J, Zhang Y (2007) Synthesis of silver nanoparticles on functional multi-walled carbon nanotubes. Mater Sci Eng A 465(1–2):283–286 Dai K, Shi L, Fang J, Zhang Y (2007) Synthesis of silver nanoparticles on functional multi-walled carbon nanotubes. Mater Sci Eng A 465(1–2):283–286
201.
Zurück zum Zitat Chowdhury S, Olima M, Liu Y, Saha M, Bergman J, Robison T (2016) Poly dimethylsiloxane/carbon nanofiber nanocomposites: fabrication and characterization of electrical and thermal properties. Int J Smart Nano Mater 7:236–247 Chowdhury S, Olima M, Liu Y, Saha M, Bergman J, Robison T (2016) Poly dimethylsiloxane/carbon nanofiber nanocomposites: fabrication and characterization of electrical and thermal properties. Int J Smart Nano Mater 7:236–247
202.
Zurück zum Zitat Gumel AM, Annuar MSM, Ishak KA, Ahmad N (2014) Carbon nanofibers-poly-3-hydroxyalkanoates nanocomposite: ultrasound-assisted dispersion and thermostructural properties. J Nanomater 2014:1–10 Gumel AM, Annuar MSM, Ishak KA, Ahmad N (2014) Carbon nanofibers-poly-3-hydroxyalkanoates nanocomposite: ultrasound-assisted dispersion and thermostructural properties. J Nanomater 2014:1–10
203.
Zurück zum Zitat Varela-Rizo H, Montes de Oca G, Rodriguez-Pastor I, Monti M, Terenzi A, Martin-Gullon I (2012) Analysis of the electrical and rheological behavior of different processed CNF/PMMA nanocomposites. Compos Sci Technol 72:218–224 Varela-Rizo H, Montes de Oca G, Rodriguez-Pastor I, Monti M, Terenzi A, Martin-Gullon I (2012) Analysis of the electrical and rheological behavior of different processed CNF/PMMA nanocomposites. Compos Sci Technol 72:218–224
204.
Zurück zum Zitat Nie Y, Hübert T (2011) Effect of carbon nanofiber (CNF) silanization on the properties of CNF/epoxy nanocomposites. Polym Int 60:1574–1580 Nie Y, Hübert T (2011) Effect of carbon nanofiber (CNF) silanization on the properties of CNF/epoxy nanocomposites. Polym Int 60:1574–1580
205.
Zurück zum Zitat Ajeesh G, Bhowmik S, Sivakumar V, Varshney L, Kumar V, Abraham M (2016) Influence of surface activated carbon nano fiber on thermo-mechanical properties of high performance polymeric nano composites. J Compos Mater 51:1057–1072 Ajeesh G, Bhowmik S, Sivakumar V, Varshney L, Kumar V, Abraham M (2016) Influence of surface activated carbon nano fiber on thermo-mechanical properties of high performance polymeric nano composites. J Compos Mater 51:1057–1072
206.
Zurück zum Zitat Kasgoz A, Akın D, Durmus A (2015) Effects of size and shape originated synergism of carbon nano fillers on the electrical and mechanical properties of conductive polymer composites. J Appl Polym Sci 132:42313 Kasgoz A, Akın D, Durmus A (2015) Effects of size and shape originated synergism of carbon nano fillers on the electrical and mechanical properties of conductive polymer composites. J Appl Polym Sci 132:42313
207.
Zurück zum Zitat Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofiber composites. Eur Polym J 41:889–893 Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofiber composites. Eur Polym J 41:889–893
208.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669
209.
Zurück zum Zitat Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670 Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670
210.
Zurück zum Zitat Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28 Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28
212.
Zurück zum Zitat Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22(7):2213–2218 Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22(7):2213–2218
213.
Zurück zum Zitat Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4):2429–2437 Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4):2429–2437
214.
Zurück zum Zitat Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Conductive carbon nanofiber-polymer foam structures. Adv Mater 17:1999–2003 Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Conductive carbon nanofiber-polymer foam structures. Adv Mater 17:1999–2003
215.
Zurück zum Zitat Wu D, Lv Q, Feng S, Chen J, Chen Y, Qiu Y, Yao X (2015) Polylactide composite foams containing carbon nanotubes and carbon black: synergistic effect of filler on electrical conductivity. Carbon 95:380–387 Wu D, Lv Q, Feng S, Chen J, Chen Y, Qiu Y, Yao X (2015) Polylactide composite foams containing carbon nanotubes and carbon black: synergistic effect of filler on electrical conductivity. Carbon 95:380–387
216.
Zurück zum Zitat Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22(5):617–621 Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22(5):617–621
217.
Zurück zum Zitat Zhang H, Wang C, Zhang Y (2015) Preparation and properties of styrene-butadiene rubber nanocomposites blended with carbon black-graphene hybrid filler. J Appl Polym Sci 132(3):41309 Zhang H, Wang C, Zhang Y (2015) Preparation and properties of styrene-butadiene rubber nanocomposites blended with carbon black-graphene hybrid filler. J Appl Polym Sci 132(3):41309
218.
Zurück zum Zitat Oh JY, Kim YS, Jung Y, Yang SJ, Park CR (2016) Preparation and exceptional mechanical properties of bone-mimicking size-tuned graphene oxide@carbon nanotube hybrid paper. ACS Nano 10(2):2184–2192 Oh JY, Kim YS, Jung Y, Yang SJ, Park CR (2016) Preparation and exceptional mechanical properties of bone-mimicking size-tuned graphene oxide@carbon nanotube hybrid paper. ACS Nano 10(2):2184–2192
219.
Zurück zum Zitat Bian J, Wang G, Lin HL, Zhou X, Wang ZJ, Xiao WQ, Zhao XW (2017) HDPE composites strengthened-toughened synergistically by l-aspartic acid functionalized graphene/carbon nanotubes hybrid nanomaterials. J Appl Polym Sci 134:45055 Bian J, Wang G, Lin HL, Zhou X, Wang ZJ, Xiao WQ, Zhao XW (2017) HDPE composites strengthened-toughened synergistically by l-aspartic acid functionalized graphene/carbon nanotubes hybrid nanomaterials. J Appl Polym Sci 134:45055
220.
Zurück zum Zitat Ma L, Wang G, Dai J (2016) Preparation of a functional reduced graphene oxide and carbon nanotube hybrid and its reinforcement effects on the properties of polyimide composites. J Appl Polym Sci 134(11):44575 Ma L, Wang G, Dai J (2016) Preparation of a functional reduced graphene oxide and carbon nanotube hybrid and its reinforcement effects on the properties of polyimide composites. J Appl Polym Sci 134(11):44575
Metadaten
Titel
A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites
verfasst von
Yichao Li
Xianrong Huang
Lijian Zeng
Renfu Li
Huafeng Tian
Xuewei Fu
Yu Wang
Wei-Hong Zhong
Publikationsdatum
22.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3006-9

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Science 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.