Skip to main content
Erschienen in: Journal of Materials Science 5/2019

26.11.2018 | Metals

High-performance copper reinforced with dispersed nanoparticles

verfasst von: Gongcheng Yao, Chezheng Cao, Shuaihang Pan, Ting-Chiang Lin, Maximilian Sokoluk, Xiaochun Li

Erschienen in: Journal of Materials Science | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Copper (Cu) has high electrical conductivity and is widely used for many industrial applications. However, pure Cu is very soft and improving the mechanical properties of Cu comes at the great expense of electrical and thermal conductivity. In this work, high-performance Cu with superior mechanical properties and reasonable electrical/thermal conductivity was fabricated using a scalable two-step method. First, Cu micro-powders with uniformly dispersed tungsten carbide (WC) nanoparticles were created by a molten salt-assisted self-incorporation process. A bulk nanocomposite was then obtained by melting the powders under pressure. The as-solidified Cu with 40 vol% uniformly dispersed WC nanoparticles exhibits high hardness, a yield strength over 1000 MPa, a Young’s modulus of over 250 GPa, and reasonable electrical and thermal conductivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Wang YA, Li JX, Yan Y, Qiao LJ (2012) Effect of electrical current on tribological behavior of copper-impregnated metallized carbon against a Cu–Cr–Zr alloy. Tribol Int 50:26–34CrossRef Wang YA, Li JX, Yan Y, Qiao LJ (2012) Effect of electrical current on tribological behavior of copper-impregnated metallized carbon against a Cu–Cr–Zr alloy. Tribol Int 50:26–34CrossRef
3.
Zurück zum Zitat Zawrah MF, Zayed HA, Essawy RA, Nassar AH, Taha MA (2013) Preparation by mechanical alloying, characterization and sintering of Cu–20 wt% Al2O3 nanocomposites. Mater Des 46:485–490CrossRef Zawrah MF, Zayed HA, Essawy RA, Nassar AH, Taha MA (2013) Preparation by mechanical alloying, characterization and sintering of Cu–20 wt% Al2O3 nanocomposites. Mater Des 46:485–490CrossRef
4.
Zurück zum Zitat Watanabe H, Kunimine T, Watanabe C, Monzen R, Todaka Y (2018) Tensile deformation characteristics of a Cu–Ni–Si alloy containing trace elements processed by high-pressure torsion with subsequent aging. Mater Sci Eng A 730:10–15CrossRef Watanabe H, Kunimine T, Watanabe C, Monzen R, Todaka Y (2018) Tensile deformation characteristics of a Cu–Ni–Si alloy containing trace elements processed by high-pressure torsion with subsequent aging. Mater Sci Eng A 730:10–15CrossRef
6.
Zurück zum Zitat Ma J, Huang F, Huang L, Geng Z, Ning H, Han Z (2002) Trends and development of copper alloys for lead frame. J Funct Mater 33:1–4 Ma J, Huang F, Huang L, Geng Z, Ning H, Han Z (2002) Trends and development of copper alloys for lead frame. J Funct Mater 33:1–4
7.
Zurück zum Zitat Ledbetter HM, Naimon ER (1974) Elastic properties of metals and alloys. II. Copper. J Phys Chem Ref Data 3:897–935CrossRef Ledbetter HM, Naimon ER (1974) Elastic properties of metals and alloys. II. Copper. J Phys Chem Ref Data 3:897–935CrossRef
8.
Zurück zum Zitat Bhaskar MS, Abinandanan TA (2018) Effect of different solute diffusivities on precipitate coarsening in ternary alloys. Comput Mater Sci 146:73–83CrossRef Bhaskar MS, Abinandanan TA (2018) Effect of different solute diffusivities on precipitate coarsening in ternary alloys. Comput Mater Sci 146:73–83CrossRef
9.
Zurück zum Zitat Chen X, Jiang F, Jiang J, Xu P, Tong M, Tang Z (2018) Precipitation, recrystallization, and evolution of annealing twins in a Cu–Cr–Zr alloy. Metals 8:227CrossRef Chen X, Jiang F, Jiang J, Xu P, Tong M, Tang Z (2018) Precipitation, recrystallization, and evolution of annealing twins in a Cu–Cr–Zr alloy. Metals 8:227CrossRef
11.
Zurück zum Zitat Shaarbaf M, Toroghinejad MR (2008) Nano-grained copper strip produced by accumulative roll bonding process. Mater Sci Eng A 473:28–33CrossRef Shaarbaf M, Toroghinejad MR (2008) Nano-grained copper strip produced by accumulative roll bonding process. Mater Sci Eng A 473:28–33CrossRef
12.
Zurück zum Zitat Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426CrossRef Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426CrossRef
13.
Zurück zum Zitat Ellis DL, Michal GM, Orth NW (1990) Production and processing of Cu–Cr–Nb alloys. Scr Metall Mater 24:885–890CrossRef Ellis DL, Michal GM, Orth NW (1990) Production and processing of Cu–Cr–Nb alloys. Scr Metall Mater 24:885–890CrossRef
14.
Zurück zum Zitat Kim JH, Yun JH, Park YH, Cho KM, Choi ID, Park IM (2007) Manufacturing of Cu–TiB2 composites by turbulent in situ mixing process. Mater Sci Eng A 449–451:1018–1021CrossRef Kim JH, Yun JH, Park YH, Cho KM, Choi ID, Park IM (2007) Manufacturing of Cu–TiB2 composites by turbulent in situ mixing process. Mater Sci Eng A 449–451:1018–1021CrossRef
15.
Zurück zum Zitat Chen L-Y, Xu J-Q, Choi H, Pozuelo M, Ma X, Bhowmick S, Yang J-M, Mathaudhu S, Li X-C (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528:539–543CrossRef Chen L-Y, Xu J-Q, Choi H, Pozuelo M, Ma X, Bhowmick S, Yang J-M, Mathaudhu S, Li X-C (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528:539–543CrossRef
16.
Zurück zum Zitat Pierson HO (1996) Handbook of refractory carbides and nitrides: properties, characteristics, processing and apps. William Andrew, Norwich Pierson HO (1996) Handbook of refractory carbides and nitrides: properties, characteristics, processing and apps. William Andrew, Norwich
17.
Zurück zum Zitat Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Elsevier, Amsterdam Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Elsevier, Amsterdam
18.
Zurück zum Zitat Ichikawa K, Achikita M (1993) Electric conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting. Mater Trans JIM 34:718–724CrossRef Ichikawa K, Achikita M (1993) Electric conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting. Mater Trans JIM 34:718–724CrossRef
19.
Zurück zum Zitat Yang Y, Lan J, Li X (2004) Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A 380:378–383CrossRef Yang Y, Lan J, Li X (2004) Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A 380:378–383CrossRef
20.
Zurück zum Zitat Stobrawa JP, Rdzawski ZM (2009) Characterisation of nanostructured copper–WC materials. J Achiev Mater Manuf Eng 32:171–178 Stobrawa JP, Rdzawski ZM (2009) Characterisation of nanostructured copper–WC materials. J Achiev Mater Manuf Eng 32:171–178
21.
Zurück zum Zitat Akbulut H, Hatipoglu G, Algul H, Tokur M, Kartal M, Uysal M, Cetinkaya T (2015) Co-deposition of Cu/WC/graphene hybrid nanocomposites produced by electrophoretic deposition. Surf Coat Technol 284:344–352CrossRef Akbulut H, Hatipoglu G, Algul H, Tokur M, Kartal M, Uysal M, Cetinkaya T (2015) Co-deposition of Cu/WC/graphene hybrid nanocomposites produced by electrophoretic deposition. Surf Coat Technol 284:344–352CrossRef
22.
Zurück zum Zitat Gu D, Shen Y (2007) Influence of reinforcement weight fraction on microstructure and properties of submicron WC–Co p/Cu bulk MMCs prepared by direct laser sintering. J Alloys Compd 431:112–120CrossRef Gu D, Shen Y (2007) Influence of reinforcement weight fraction on microstructure and properties of submicron WC–Co p/Cu bulk MMCs prepared by direct laser sintering. J Alloys Compd 431:112–120CrossRef
23.
Zurück zum Zitat Ma C, Zhao J, Cao C, Lin T-C, Li X (2016) Fundamental study on laser interactions with nanoparticles-reinforced metals—part I: effect of nanoparticles on optical reflectivity, specific heat, and thermal conductivity. J Manuf Sci Eng 138:121001–121007CrossRef Ma C, Zhao J, Cao C, Lin T-C, Li X (2016) Fundamental study on laser interactions with nanoparticles-reinforced metals—part I: effect of nanoparticles on optical reflectivity, specific heat, and thermal conductivity. J Manuf Sci Eng 138:121001–121007CrossRef
24.
Zurück zum Zitat Xu J, Chen L, Choi H, Konish H, Li X (2013) Assembly of metals and nanoparticles into novel nanocomposite superstructures. Sci Rep 3:1730CrossRef Xu J, Chen L, Choi H, Konish H, Li X (2013) Assembly of metals and nanoparticles into novel nanocomposite superstructures. Sci Rep 3:1730CrossRef
25.
Zurück zum Zitat Liu W, Cao C, Xu J, Wang X, Li X (2016) Molten salt assisted solidification nanoprocessing of Al–TiC nanocomposites. Mater Lett 185:392–395CrossRef Liu W, Cao C, Xu J, Wang X, Li X (2016) Molten salt assisted solidification nanoprocessing of Al–TiC nanocomposites. Mater Lett 185:392–395CrossRef
26.
Zurück zum Zitat Ma C, Zhao J, Cao C, Lin T-C, Li X (2016) Fundamental study on laser interactions with nanoparticles-reinforced metals—part II: effect of nanoparticles on surface tension, viscosity, and laser melting. J Manuf Sci Eng 138:121002–121006CrossRef Ma C, Zhao J, Cao C, Lin T-C, Li X (2016) Fundamental study on laser interactions with nanoparticles-reinforced metals—part II: effect of nanoparticles on surface tension, viscosity, and laser melting. J Manuf Sci Eng 138:121002–121006CrossRef
27.
Zurück zum Zitat Yao GC, Mei QS, Li JY, Li CL, Ma Y, Chen F, Liu M (2016) Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding. Mater Des 110:124–129CrossRef Yao GC, Mei QS, Li JY, Li CL, Ma Y, Chen F, Liu M (2016) Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding. Mater Des 110:124–129CrossRef
29.
Zurück zum Zitat Davis JR (2001) Copper and copper alloys. ASM International, New York Davis JR (2001) Copper and copper alloys. ASM International, New York
30.
Zurück zum Zitat Mills KC, Su YC (2006) Review of surface tension data for metallic elements and alloys: part 1—pure metals. Int Mater Rev 51:329–351CrossRef Mills KC, Su YC (2006) Review of surface tension data for metallic elements and alloys: part 1—pure metals. Int Mater Rev 51:329–351CrossRef
31.
Zurück zum Zitat Xu JQ, Chen LY, Choi H, Li XC (2012) Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J Phys Condens Matter 24:255304CrossRef Xu JQ, Chen LY, Choi H, Li XC (2012) Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J Phys Condens Matter 24:255304CrossRef
32.
Zurück zum Zitat Israelachvili JN (2011) Intermolecular and surface forces. Academic Press, Burlington Israelachvili JN (2011) Intermolecular and surface forces. Academic Press, Burlington
33.
Zurück zum Zitat Zhou D, Wang X, Zeng W, Yang C, Pan H, Li C, Liu Y, Zhang D (2018) Doping Ti to achieve microstructural refinement and strength enhancement in a high volume fraction Y2O3 dispersion strengthened Cu. J Alloys Compd 753:18–27CrossRef Zhou D, Wang X, Zeng W, Yang C, Pan H, Li C, Liu Y, Zhang D (2018) Doping Ti to achieve microstructural refinement and strength enhancement in a high volume fraction Y2O3 dispersion strengthened Cu. J Alloys Compd 753:18–27CrossRef
35.
Zurück zum Zitat Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4:65–83CrossRef Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4:65–83CrossRef
36.
Zurück zum Zitat Zhou D, Geng H, Zeng W, Sha G, Kong C, Quadir Z, Munroe P, Torrens R, Trimby P, Zhang D (2018) Effect of extrusion temperature on microstructure and properties of an ultrafine-grained Cu matrix nanocomposite fabricated by powder compact extrusion. J Mater Sci 53:5389–5401. https://doi.org/10.1007/s10853-017-1952-2 CrossRef Zhou D, Geng H, Zeng W, Sha G, Kong C, Quadir Z, Munroe P, Torrens R, Trimby P, Zhang D (2018) Effect of extrusion temperature on microstructure and properties of an ultrafine-grained Cu matrix nanocomposite fabricated by powder compact extrusion. J Mater Sci 53:5389–5401. https://​doi.​org/​10.​1007/​s10853-017-1952-2 CrossRef
37.
Zurück zum Zitat Girish BM, Basawaraj BR, Satish BM, Somashekar DR (2012) Electrical resistivity and mechanical properties of tungsten carbide reinforced copper alloy composites. Int J Compos Mater 2:37–42 Girish BM, Basawaraj BR, Satish BM, Somashekar DR (2012) Electrical resistivity and mechanical properties of tungsten carbide reinforced copper alloy composites. Int J Compos Mater 2:37–42
38.
Zurück zum Zitat da Costa FA, da Silva AGP, Gomes UU (2003) The influence of the dispersion technique on the characteristics of the W–Cu powders and on the sintering behavior. Powder Technol 134:123–132CrossRef da Costa FA, da Silva AGP, Gomes UU (2003) The influence of the dispersion technique on the characteristics of the W–Cu powders and on the sintering behavior. Powder Technol 134:123–132CrossRef
39.
Zurück zum Zitat Stobrawa J, Rdzawski Z (2007) Dispersion–strengthened nanocrystalline copper. J Achiev Mater Manuf Eng 24:35–42 Stobrawa J, Rdzawski Z (2007) Dispersion–strengthened nanocrystalline copper. J Achiev Mater Manuf Eng 24:35–42
40.
Zurück zum Zitat Zauter R, Kudashov DV (2006) Precipitation hardened high copper alloys for connector pins made of wire. In: Proceedings of ICEC2006/Sendai, pp 257–261 Zauter R, Kudashov DV (2006) Precipitation hardened high copper alloys for connector pins made of wire. In: Proceedings of ICEC2006/Sendai, pp 257–261
43.
Zurück zum Zitat Tsakiris V, Enescu E, Radulian A, Lucaci M, Lungu M, Mocioi N, Leonat L, Cirstea D, Caramitu A (2016) WC–Cu electrical contacts developed by spark plasma sintering process. In: 2016 international symposium on fundamentals of electrical engineering (ISFEE) Tsakiris V, Enescu E, Radulian A, Lucaci M, Lungu M, Mocioi N, Leonat L, Cirstea D, Caramitu A (2016) WC–Cu electrical contacts developed by spark plasma sintering process. In: 2016 international symposium on fundamentals of electrical engineering (ISFEE)
Metadaten
Titel
High-performance copper reinforced with dispersed nanoparticles
verfasst von
Gongcheng Yao
Chezheng Cao
Shuaihang Pan
Ting-Chiang Lin
Maximilian Sokoluk
Xiaochun Li
Publikationsdatum
26.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3152-0

Weitere Artikel der Ausgabe 5/2019

Journal of Materials Science 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.