Skip to main content
Erschienen in: Journal of Materials Science 10/2019

14.02.2019 | Energy materials

Triboelectric performances of self-powered, ultra-flexible and large-area poly(dimethylsiloxane)/Ag-coated chinlon composites with a sandpaper-assisted surface microstructure

verfasst von: Lixiao Li, Su Liu, Xiaoming Tao, Jian Song

Erschienen in: Journal of Materials Science | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Apart from the rapid development in macroscale green energies, such as wind energy and hydro energy, micro/nanoscale self-powered energy systems are increasingly attractive in wearable energy systems. To utilize the energy harvester more conveniently and effectively, an energy harvester, viz., single-electrode textile-based triboelectric nanogenerator (ST-TENG), is reported in this study. The ST-TENG is a polydimethylsiloxane (PDMS)/Ag-coated chinlon fabric (PACF) composite film with the surface microstructures induced by sandpapers. The PACF composite is self-powered based on the triboelectrification and electrostatic induction. The merits of ST-TENG include: (1) all the basic materials are flexible and scalable; (2) the resultant PACF is a free-standing composite film, which can be easily peeled off from the sandpaper substrate; (3) an extremely low-cost method was first introduced to fabricate the surface microstructures in flexible triboelectric nanogenerator though sandpapers; and (4) the as-fabricated PACF composite film can directly harvest energy though squeezing, warping and folding. Experimental results demonstrate that the ST-TENG can generate an average maximum output voltage of 46.52 V and a high-power density of 613 mW m−2 at the external resistance of 20 MΩ. Additionally, the ST-TENG can also be utilized to detect the variation of contact area, frequency and force.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Song J, Yang B, Zeng W, Peng Z, Lin S, Li J, Tao X (2018) Highly flexible, large-area, and facile textile-based hybrid nanogenerator with cascaded piezoelectric and triboelectric units for mechanical energy harvesting. Adv Mater Technol 3:1800016–1800031. https://doi.org/10.1002/admt.201800016 CrossRef Song J, Yang B, Zeng W, Peng Z, Lin S, Li J, Tao X (2018) Highly flexible, large-area, and facile textile-based hybrid nanogenerator with cascaded piezoelectric and triboelectric units for mechanical energy harvesting. Adv Mater Technol 3:1800016–1800031. https://​doi.​org/​10.​1002/​admt.​201800016 CrossRef
3.
Zurück zum Zitat Park S, Jayaraman S (2003) Smart textiles: wearable electronic systems. MRS Bull 28(8):585–591CrossRef Park S, Jayaraman S (2003) Smart textiles: wearable electronic systems. MRS Bull 28(8):585–591CrossRef
4.
Zurück zum Zitat Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C, Sun J, Hu W, Wang ZL (2017) Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 29(41):1703700–1703709CrossRef Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C, Sun J, Hu W, Wang ZL (2017) Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 29(41):1703700–1703709CrossRef
5.
Zurück zum Zitat Wen Z, Yeh MH, Guo H, Wang J, Zi Y, Xu W, Deng J, Zhu L, Wang X, Hu C (2016) Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci Adv 2(10):e1600097–e1600105CrossRef Wen Z, Yeh MH, Guo H, Wang J, Zi Y, Xu W, Deng J, Zhu L, Wang X, Hu C (2016) Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci Adv 2(10):e1600097–e1600105CrossRef
6.
Zurück zum Zitat Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11):9533–9557CrossRef Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11):9533–9557CrossRef
7.
Zurück zum Zitat Wang ZL, Jiang T, Xu L (2017) Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39:9–23CrossRef Wang ZL, Jiang T, Xu L (2017) Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39:9–23CrossRef
8.
Zurück zum Zitat Chen BD, Tang W, He C, Deng CR, Yang LJ, Zhu LP, Chen J, Shao JJ, Liu L, Wang ZL (2018) Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater Today 21(1):88–97CrossRef Chen BD, Tang W, He C, Deng CR, Yang LJ, Zhu LP, Chen J, Shao JJ, Liu L, Wang ZL (2018) Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater Today 21(1):88–97CrossRef
9.
Zurück zum Zitat Seol ML, Woo JH, Jeon SB, Kim D, Park SJ, Hur J, Choi YK (2015) Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano Energy 14:201–208CrossRef Seol ML, Woo JH, Jeon SB, Kim D, Park SJ, Hur J, Choi YK (2015) Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano Energy 14:201–208CrossRef
10.
Zurück zum Zitat Phan H, Shin D-M, Jeon SH, Kang TY, Han P, Kim GH, Kim HK, Kim K, Hwang Y-H, Hong SW (2017) Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy. Nano Energy 33:476–484CrossRef Phan H, Shin D-M, Jeon SH, Kang TY, Han P, Kim GH, Kim HK, Kim K, Hwang Y-H, Hong SW (2017) Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy. Nano Energy 33:476–484CrossRef
11.
Zurück zum Zitat Chen B, Tang W, Jiang T, Zhu L, Chen X, He C, Xu L, Guo H, Lin P, Li D (2017) Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy 45:380–389CrossRef Chen B, Tang W, Jiang T, Zhu L, Chen X, He C, Xu L, Guo H, Lin P, Li D (2017) Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy 45:380–389CrossRef
12.
Zurück zum Zitat Kim D, Lee HM, Choi Y-K (2017) Large-sized sandpaper coated with solution-processed aluminum for a triboelectric nanogenerator with reliable durability. RSC Adv 7:137–144CrossRef Kim D, Lee HM, Choi Y-K (2017) Large-sized sandpaper coated with solution-processed aluminum for a triboelectric nanogenerator with reliable durability. RSC Adv 7:137–144CrossRef
13.
Zurück zum Zitat Liu T, Liu M, Dou S, Sun J, Cong Z, Jiang C, Du C, Pu X, Hu W, Wang ZL (2018) Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 12(3):2818–2826CrossRef Liu T, Liu M, Dou S, Sun J, Cong Z, Jiang C, Du C, Pu X, Hu W, Wang ZL (2018) Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 12(3):2818–2826CrossRef
14.
Zurück zum Zitat Guo H, Li T, Cao X, Xiong J, Jie Y, Willander M, Cao X, Wang N, Wang ZL (2017) Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing. ACS Nano 11(1):856–864CrossRef Guo H, Li T, Cao X, Xiong J, Jie Y, Willander M, Cao X, Wang N, Wang ZL (2017) Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing. ACS Nano 11(1):856–864CrossRef
15.
Zurück zum Zitat Yang Y, Zhou YS, Zhang H, Liu Y, Lee S, Wang ZL (2013) A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv Mater 25(45):6594–6601CrossRef Yang Y, Zhou YS, Zhang H, Liu Y, Lee S, Wang ZL (2013) A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv Mater 25(45):6594–6601CrossRef
16.
Zurück zum Zitat Shi M, Zhang J, Han M, Song Y, Su Z, Zhang H (2016) In a single-electrode wearable triboelectric nanogenerator based on conductive & stretchable fabric. In: 2016 IEEE 29th international conference on micro electro mechanical systems (MEMS), IEEE, pp 1228–1231 Shi M, Zhang J, Han M, Song Y, Su Z, Zhang H (2016) In a single-electrode wearable triboelectric nanogenerator based on conductive & stretchable fabric. In: 2016 IEEE 29th international conference on micro electro mechanical systems (MEMS), IEEE, pp 1228–1231
17.
Zurück zum Zitat Zhu G, Lin ZH, Jing Q, Bai P, Pan C, Yang Y, Zhou Y, Wang ZL (2013) Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett 13(2):847–853CrossRef Zhu G, Lin ZH, Jing Q, Bai P, Pan C, Yang Y, Zhou Y, Wang ZL (2013) Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett 13(2):847–853CrossRef
18.
Zurück zum Zitat Wang S, Lin L, Xie Y, Jing Q, Niu S, Wang ZL (2013) Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett 13(5):2226–2233CrossRef Wang S, Lin L, Xie Y, Jing Q, Niu S, Wang ZL (2013) Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett 13(5):2226–2233CrossRef
19.
Zurück zum Zitat Yang Y, Zhang H, Chen J, Jing Q, Zhou YS, Wen X, Wang ZL (2013) Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7(8):7342–7351CrossRef Yang Y, Zhang H, Chen J, Jing Q, Zhou YS, Wen X, Wang ZL (2013) Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7(8):7342–7351CrossRef
20.
Zurück zum Zitat Lin L, Xie Y, Niu S, Wang S, Yang PK, Wang ZL (2015) Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ~ 55%. ACS Nano 9(1):922–930CrossRef Lin L, Xie Y, Niu S, Wang S, Yang PK, Wang ZL (2015) Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ~ 55%. ACS Nano 9(1):922–930CrossRef
21.
Zurück zum Zitat Lin L, Wang S, Niu S, Liu C, Xie Y, Wang ZL (2014) Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl Mater Interfaces 6(4):3031–3038CrossRef Lin L, Wang S, Niu S, Liu C, Xie Y, Wang ZL (2014) Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl Mater Interfaces 6(4):3031–3038CrossRef
22.
Zurück zum Zitat Lee S, Ko W, Oh Y, Lee J, Baek G, Lee Y, Sohn J, Cha S, Kim J, Park J (2015) Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 12:410–418CrossRef Lee S, Ko W, Oh Y, Lee J, Baek G, Lee Y, Sohn J, Cha S, Kim J, Park J (2015) Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 12:410–418CrossRef
23.
Zurück zum Zitat Xue C, Li J, Zhang Q, Zhang Z, Hai Z, Gao L, Feng R, Tang J, Liu J, Zhang W (2014) A novel arch-shape nanogenerator based on piezoelectric and triboelectric mechanism for mechanical energy harvesting. Nanomaterials 5(1):36–46CrossRef Xue C, Li J, Zhang Q, Zhang Z, Hai Z, Gao L, Feng R, Tang J, Liu J, Zhang W (2014) A novel arch-shape nanogenerator based on piezoelectric and triboelectric mechanism for mechanical energy harvesting. Nanomaterials 5(1):36–46CrossRef
24.
Zurück zum Zitat Yang J-H, Kim Y-K, Lee JY (2015) Simplified process for manufacturing macroscale patterns to enhance voltage generation by a triboelectric generator. Energies 8(11):12729–12740CrossRef Yang J-H, Kim Y-K, Lee JY (2015) Simplified process for manufacturing macroscale patterns to enhance voltage generation by a triboelectric generator. Energies 8(11):12729–12740CrossRef
25.
Zurück zum Zitat Fan F-R, Lin L, Zhu G, Wu W, Zhang R, Wang ZL (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12(6):3109–3114CrossRef Fan F-R, Lin L, Zhu G, Wu W, Zhang R, Wang ZL (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12(6):3109–3114CrossRef
26.
Zurück zum Zitat Li X, Tao J, Zhu J, Pan C (2017) A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications. APL Mater 5(7):074104–074110CrossRef Li X, Tao J, Zhu J, Pan C (2017) A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications. APL Mater 5(7):074104–074110CrossRef
27.
Zurück zum Zitat Choi D, Yoo D, Kim DS (2015) One-step fabrication of transparent and flexible nanotopographical-triboelectric nanogenerators via thermal nanoimprinting of thermoplastic fluoropolymers. Adv Mater 27(45):7386–7394CrossRef Choi D, Yoo D, Kim DS (2015) One-step fabrication of transparent and flexible nanotopographical-triboelectric nanogenerators via thermal nanoimprinting of thermoplastic fluoropolymers. Adv Mater 27(45):7386–7394CrossRef
28.
Zurück zum Zitat Dahan E, Sundararajan PR (2014) Thermo-reversible gelation of rod-coil and coil-rod-coil molecules based on poly(dimethyl siloxane) and perylene imides and self-sorting of the homologous pair. Soft Matter 10(29):5337–5349CrossRef Dahan E, Sundararajan PR (2014) Thermo-reversible gelation of rod-coil and coil-rod-coil molecules based on poly(dimethyl siloxane) and perylene imides and self-sorting of the homologous pair. Soft Matter 10(29):5337–5349CrossRef
29.
Zurück zum Zitat Ko YH, Nagaraju G, Yu JS (2015) Multi-stacked PDMS-based triboelectric generators with conductive textile for efficient energy harvesting. RSC Adv 5(9):6437–6442CrossRef Ko YH, Nagaraju G, Yu JS (2015) Multi-stacked PDMS-based triboelectric generators with conductive textile for efficient energy harvesting. RSC Adv 5(9):6437–6442CrossRef
30.
Zurück zum Zitat Yang Y, Zhang H, Lin ZH, Zhou YS, Jing Q, Su Y, Yang J, Chen J, Hu C, Wang ZL (2013) Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7(10):9213–9222CrossRef Yang Y, Zhang H, Lin ZH, Zhou YS, Jing Q, Su Y, Yang J, Chen J, Hu C, Wang ZL (2013) Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7(10):9213–9222CrossRef
31.
Zurück zum Zitat Gong J, Xu B, Tao X (2017) Breath figure micromolding approach for regulating the microstructures of polymeric films for triboelectric nanogenerators. ACS Appl Mater Interfaces 9(5):4988–4997CrossRef Gong J, Xu B, Tao X (2017) Breath figure micromolding approach for regulating the microstructures of polymeric films for triboelectric nanogenerators. ACS Appl Mater Interfaces 9(5):4988–4997CrossRef
32.
Zurück zum Zitat Saurenbach F, Wollmann D, Terris B, Diaz A (1992) Force microscopy of ion-containing polymer surfaces: morphology and charge structure. Langmuir 8(4):1199–1203CrossRef Saurenbach F, Wollmann D, Terris B, Diaz A (1992) Force microscopy of ion-containing polymer surfaces: morphology and charge structure. Langmuir 8(4):1199–1203CrossRef
33.
Zurück zum Zitat Trinh VL, Chung CK (2017) A facile method and novel mechanism using microneedle-structured PDMS for triboelectric generator applications. Small 13:1700373–1700384CrossRef Trinh VL, Chung CK (2017) A facile method and novel mechanism using microneedle-structured PDMS for triboelectric generator applications. Small 13:1700373–1700384CrossRef
Metadaten
Titel
Triboelectric performances of self-powered, ultra-flexible and large-area poly(dimethylsiloxane)/Ag-coated chinlon composites with a sandpaper-assisted surface microstructure
verfasst von
Lixiao Li
Su Liu
Xiaoming Tao
Jian Song
Publikationsdatum
14.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 10/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03428-5

Weitere Artikel der Ausgabe 10/2019

Journal of Materials Science 10/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.