Skip to main content
Erschienen in: Journal of Materials Science 21/2019

31.07.2019 | Chemical routes to materials

In situ synthesis of Fe3O4-reinforced carbon fiber composites as anodes in lithium-ion batteries

verfasst von: Mandana Akia, Nataly Salinas, Salomon Luna, Elizabeth Medina, Alejandra Valdez, Jorge Lopez, Jonathan Ayala, Mataz Alcoutlabi, Karen Lozano

Erschienen in: Journal of Materials Science | Ausgabe 21/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

α-Fe2O3 hollow nanofibers with wall thicknesses of 45 ± 16 nm were fabricated via centrifugal spinning of a solution containing Fe(NO3)3·9H2O and polyvinylpyrrolidone. These fibers were subjected to mechanical milling and mixed in ethanol. Polyacrylonitrile (PAN) fiber mats were also fabricated by centrifugal spinning from dimethylformamide-based solutions. The as-prepared PAN fibrous mats were dipped in the iron-oxide suspension. The coated PAN membranes were then subjected to a heat treatment which yielded carbon fibers coated with Fe3O4 nanoparticles. Both pure carbon fibers (carbonized PAN fibers) and Fe3O4/C composite fibers were used as anode materials in Li-ion batteries. The Fe3O4/C composite anode exhibited high specific capacity and good cycle stability when compared to that of the carbon-fiber electrode. An initial discharge capacity (Li insertion) of 882 mAh g−1 was obtained for the Fe3O4/C composite fibers with promising cycle performance and rate capability. These composite fibers show promising applications as electrode materials in high-performance rechargeable lithium-ion batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRef Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRef
2.
Zurück zum Zitat Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850CrossRef Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850CrossRef
3.
Zurück zum Zitat Ji L, Toprakci O, Alcoutlabi M, Yao Y, Li Y, Zhang S et al (2012) Α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. ACS Appl Mater Interfaces 4:2672–2679CrossRef Ji L, Toprakci O, Alcoutlabi M, Yao Y, Li Y, Zhang S et al (2012) Α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. ACS Appl Mater Interfaces 4:2672–2679CrossRef
4.
Zurück zum Zitat Wang L, Yu J, Dong X, Li X, Xie Y, Chen S et al (2016) Three-dimensional macroporous carbon/Fe2O3-doped porous carbon nanorods for high-performance supercapacitor. ACS Sustain Chem Eng 4:1531–1537CrossRef Wang L, Yu J, Dong X, Li X, Xie Y, Chen S et al (2016) Three-dimensional macroporous carbon/Fe2O3-doped porous carbon nanorods for high-performance supercapacitor. ACS Sustain Chem Eng 4:1531–1537CrossRef
5.
Zurück zum Zitat Cho JS, Hong YJ, Kang YC (2015) Design and synthesis of bubble-nanorod-structured Fe2O3–carbon nanofibers as advanced anode material for li-ion batteries. ACS Nano 9:4026–4035CrossRef Cho JS, Hong YJ, Kang YC (2015) Design and synthesis of bubble-nanorod-structured Fe2O3–carbon nanofibers as advanced anode material for li-ion batteries. ACS Nano 9:4026–4035CrossRef
6.
Zurück zum Zitat Guan D, Gao Z, Yang W, Wang J, Yuan Y, Wang B et al (2013) Hydrothermal synthesis of carbon nanotube/cubic Fe2O3 nanocomposite for enhanced performance supercapacitor electrode material. Mater Sci Eng B 178:736–743CrossRef Guan D, Gao Z, Yang W, Wang J, Yuan Y, Wang B et al (2013) Hydrothermal synthesis of carbon nanotube/cubic Fe2O3 nanocomposite for enhanced performance supercapacitor electrode material. Mater Sci Eng B 178:736–743CrossRef
7.
Zurück zum Zitat Mao X, Hatton TA, Rutledge GC (2013) A review of electrospun carbon fibers as electrode materials for energy storage. Curr Org Chem 17:1390–1401CrossRef Mao X, Hatton TA, Rutledge GC (2013) A review of electrospun carbon fibers as electrode materials for energy storage. Curr Org Chem 17:1390–1401CrossRef
8.
Zurück zum Zitat Ji LW, Lin Z, Alcoutlabi M, Zhang XW (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699CrossRef Ji LW, Lin Z, Alcoutlabi M, Zhang XW (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699CrossRef
9.
Zurück zum Zitat Ji LW, Toprakci O, Alcoutlabi M, Yao YF, Li Y, Zhang S et al (2012) Alpha-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. Acs Appl Mater Interfaces 4:2672–2679CrossRef Ji LW, Toprakci O, Alcoutlabi M, Yao YF, Li Y, Zhang S et al (2012) Alpha-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. Acs Appl Mater Interfaces 4:2672–2679CrossRef
10.
Zurück zum Zitat Shi YF, Guo BK, Corr SA, Shi QH, Hu YS, Heier KR et al (2009) Ordered mesoporous metallic moO2 materials with highly reversible lithium storage capacity. Nano Lett 9:4215–4220CrossRef Shi YF, Guo BK, Corr SA, Shi QH, Hu YS, Heier KR et al (2009) Ordered mesoporous metallic moO2 materials with highly reversible lithium storage capacity. Nano Lett 9:4215–4220CrossRef
11.
Zurück zum Zitat Han YT, Wu X, Ma YL, Gong LH, Qu FY, Fan HJ (2011) Porous SnO2 nanowire bundles for photocatalyst and li ion battery applications. CrystEngComm 13:3506–3510CrossRef Han YT, Wu X, Ma YL, Gong LH, Qu FY, Fan HJ (2011) Porous SnO2 nanowire bundles for photocatalyst and li ion battery applications. CrystEngComm 13:3506–3510CrossRef
12.
Zurück zum Zitat Peled E, Golodnitsky D, Ardel G (1997) Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 144:L208–L210CrossRef Peled E, Golodnitsky D, Ardel G (1997) Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 144:L208–L210CrossRef
13.
Zurück zum Zitat Bhattacharya S, Alpas AT (2012) Micromechanisms of solid electrolyte interphase formation on electrochemically cycled graphite electrodes in lithium-ion cells. Carbon 50:5359–5371CrossRef Bhattacharya S, Alpas AT (2012) Micromechanisms of solid electrolyte interphase formation on electrochemically cycled graphite electrodes in lithium-ion cells. Carbon 50:5359–5371CrossRef
14.
Zurück zum Zitat Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M (2013) How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? J Electrochem Soc 160:A542–A548CrossRef Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M (2013) How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? J Electrochem Soc 160:A542–A548CrossRef
15.
Zurück zum Zitat Nie MY, Abraham DP, Chen YJ, Bose A, Lucht BL (2013) Silicon solid electrolyte interphase (sei) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412CrossRef Nie MY, Abraham DP, Chen YJ, Bose A, Lucht BL (2013) Silicon solid electrolyte interphase (sei) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412CrossRef
16.
Zurück zum Zitat Wan YZ, Yang ZW, Xiong GY, Luo HL (2015) A general strategy of decorating 3d carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe3O4 for high-performance flexible and binder-free lithium-ion battery anodes. J Mater Chem A 3:15386–15393CrossRef Wan YZ, Yang ZW, Xiong GY, Luo HL (2015) A general strategy of decorating 3d carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe3O4 for high-performance flexible and binder-free lithium-ion battery anodes. J Mater Chem A 3:15386–15393CrossRef
17.
Zurück zum Zitat Xing BL, Zeng HH, Huang GX, Zhang CX, Yuan RF, Cao YJ et al (2019) Porous graphene prepared from anthracite as high performance anode materials for lithium-ion battery applications. J Alloys Compd 779:202–211CrossRef Xing BL, Zeng HH, Huang GX, Zhang CX, Yuan RF, Cao YJ et al (2019) Porous graphene prepared from anthracite as high performance anode materials for lithium-ion battery applications. J Alloys Compd 779:202–211CrossRef
18.
Zurück zum Zitat Nie MY, Chalasani D, Abraham DP, Chen YJ, Bose A, Lucht BL (2013) Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C 117:1257–1267CrossRef Nie MY, Chalasani D, Abraham DP, Chen YJ, Bose A, Lucht BL (2013) Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C 117:1257–1267CrossRef
19.
Zurück zum Zitat Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S et al (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313CrossRef Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S et al (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313CrossRef
20.
Zurück zum Zitat Wakihara M (2001) Recent developments in lithium ion batteries. Mater Sci Eng R Rep 33:109–134CrossRef Wakihara M (2001) Recent developments in lithium ion batteries. Mater Sci Eng R Rep 33:109–134CrossRef
21.
Zurück zum Zitat Yoon T, Chae C, Sun YK, Zhao X, Kung HH, Lee JK (2011) Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes. J Mater Chem 21:17325–17330CrossRef Yoon T, Chae C, Sun YK, Zhao X, Kung HH, Lee JK (2011) Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes. J Mater Chem 21:17325–17330CrossRef
22.
Zurück zum Zitat Wu F, Huang R, Mu DB, Shen XY, Wu BR (2014) A novel composite with highly dispersed Fe3O4 nanocrystals on ordered mesoporous carbon as an anode for lithium ion batteries. J Alloys Compd 585:783–789CrossRef Wu F, Huang R, Mu DB, Shen XY, Wu BR (2014) A novel composite with highly dispersed Fe3O4 nanocrystals on ordered mesoporous carbon as an anode for lithium ion batteries. J Alloys Compd 585:783–789CrossRef
23.
Zurück zum Zitat Jiang F, Zhao S, Guo J, Su Q, Zhang J, Du G (2015) Fe3o4 nanoparticles-wrapped carbon nanofibers as high-performance anode for lithium-ion battery. J Nanopart Res 17:348CrossRef Jiang F, Zhao S, Guo J, Su Q, Zhang J, Du G (2015) Fe3o4 nanoparticles-wrapped carbon nanofibers as high-performance anode for lithium-ion battery. J Nanopart Res 17:348CrossRef
24.
Zurück zum Zitat Ma YC, Huang YD, Wang XC, Jia DZ, Tang XC (2014) One-pot synthesis of Fe3O4/C nanocomposites by peg-assisted co-precipitation as anode materials for high-rate lithium-ion batteries. J Nanopart Res 16:2614CrossRef Ma YC, Huang YD, Wang XC, Jia DZ, Tang XC (2014) One-pot synthesis of Fe3O4/C nanocomposites by peg-assisted co-precipitation as anode materials for high-rate lithium-ion batteries. J Nanopart Res 16:2614CrossRef
25.
Zurück zum Zitat Lang L, Xu Z (2013) In situ synthesis of porous Fe3O4/C microbelts and their enhanced electrochemical performance for lithium-ion batteries. ACS Appl Mater Interfaces 5:1698–1703CrossRef Lang L, Xu Z (2013) In situ synthesis of porous Fe3O4/C microbelts and their enhanced electrochemical performance for lithium-ion batteries. ACS Appl Mater Interfaces 5:1698–1703CrossRef
26.
Zurück zum Zitat Wang Y, Zhang L, Gao X, Mao L, Hu Y, Lou XW (2014) One-pot magnetic field induced formation of Fe3O4/C composite microrods with enhanced lithium storage capability. Small 10:2815–2819CrossRef Wang Y, Zhang L, Gao X, Mao L, Hu Y, Lou XW (2014) One-pot magnetic field induced formation of Fe3O4/C composite microrods with enhanced lithium storage capability. Small 10:2815–2819CrossRef
27.
Zurück zum Zitat Xu ZL, Zhang BA, Gang Y, Cao K, Garakani MA, Abouali S et al (2015) In-situ tem examination and exceptional long-term cyclic stability of ultrafine Fe3O4 nanocrystal/carbon nanofiber composite electrodes. Energy Storage Mater 1:25–34CrossRef Xu ZL, Zhang BA, Gang Y, Cao K, Garakani MA, Abouali S et al (2015) In-situ tem examination and exceptional long-term cyclic stability of ultrafine Fe3O4 nanocrystal/carbon nanofiber composite electrodes. Energy Storage Mater 1:25–34CrossRef
28.
Zurück zum Zitat Qin XY, Zhang HR, Wu JX, Chu XD, He YB, Han CP et al (2015) Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon 87:347–356CrossRef Qin XY, Zhang HR, Wu JX, Chu XD, He YB, Han CP et al (2015) Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon 87:347–356CrossRef
29.
Zurück zum Zitat Wu QH, Zhao RF, Zhang X, Li WL, Xu RH, Diao GW et al (2017) Synthesis of flexible Fe3O4/C nanofibers with buffering volume expansion performance and their application in lithium-ion batteries. J Power Sources 359:7–16CrossRef Wu QH, Zhao RF, Zhang X, Li WL, Xu RH, Diao GW et al (2017) Synthesis of flexible Fe3O4/C nanofibers with buffering volume expansion performance and their application in lithium-ion batteries. J Power Sources 359:7–16CrossRef
30.
Zurück zum Zitat Wan YZ, Yang ZW, Xiong GY, Guo RS, Liu Z, Luo HL (2015) Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries. J Power Sources 294:414–419CrossRef Wan YZ, Yang ZW, Xiong GY, Guo RS, Liu Z, Luo HL (2015) Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries. J Power Sources 294:414–419CrossRef
31.
Zurück zum Zitat Sarkar K, Gomez C, Zambrano S, Ramirez M, de Hoyos E, Vasquez H et al (2010) Electrospinning to forcespinning™. Mater Today 13:12–14CrossRef Sarkar K, Gomez C, Zambrano S, Ramirez M, de Hoyos E, Vasquez H et al (2010) Electrospinning to forcespinning. Mater Today 13:12–14CrossRef
32.
Zurück zum Zitat Akia M, Capitanachi D, Martinez M, Hernandez C, de Santiago H, Mao Y et al (2018) Development and optimization of alumina fine fibers utilizing a centrifugal spinning process. Microporous Mesoporous Mater 262:175–181CrossRef Akia M, Capitanachi D, Martinez M, Hernandez C, de Santiago H, Mao Y et al (2018) Development and optimization of alumina fine fibers utilizing a centrifugal spinning process. Microporous Mesoporous Mater 262:175–181CrossRef
33.
Zurück zum Zitat Weng B, Xu F, Alcoutlabi M, Mao Y, Lozano K (2015) Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose 22:1311–1320CrossRef Weng B, Xu F, Alcoutlabi M, Mao Y, Lozano K (2015) Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose 22:1311–1320CrossRef
34.
Zurück zum Zitat Zuniga L, Agubra V, Flores D, Campos H, Villareal J, Alcoutlabi M (2016) Multichannel hollow structure for improved electrochemical performance of TiO2/carbon composite nanofibers as anodes for lithium ion batteries. J Alloys Compd 686:733–743CrossRef Zuniga L, Agubra V, Flores D, Campos H, Villareal J, Alcoutlabi M (2016) Multichannel hollow structure for improved electrochemical performance of TiO2/carbon composite nanofibers as anodes for lithium ion batteries. J Alloys Compd 686:733–743CrossRef
35.
Zurück zum Zitat Agubra VA, De la Garza D, Gallegos L, Alcoutlabi M (2016) ForceSpinning of polyacrylonitrile for mass production of lithium-ion battery separators. J Appl Polym Sci 133:42847CrossRef Agubra VA, De la Garza D, Gallegos L, Alcoutlabi M (2016) ForceSpinning of polyacrylonitrile for mass production of lithium-ion battery separators. J Appl Polym Sci 133:42847CrossRef
36.
Zurück zum Zitat Wu Q, Zhao R, Zhang X, Li W, Xu R, Diao G et al (2017) Synthesis of flexible Fe3O4/C nanofibers with buffering volume expansion performance and their application in lithium-ion batteries. J Power Sources 359:7–16CrossRef Wu Q, Zhao R, Zhang X, Li W, Xu R, Diao G et al (2017) Synthesis of flexible Fe3O4/C nanofibers with buffering volume expansion performance and their application in lithium-ion batteries. J Power Sources 359:7–16CrossRef
37.
Zurück zum Zitat Poulin S, Franca R, Moreau-Bélanger L, Sacher E (2010) Confirmation of x-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes. J Phys Chem C 114:10711–10718CrossRef Poulin S, Franca R, Moreau-Bélanger L, Sacher E (2010) Confirmation of x-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes. J Phys Chem C 114:10711–10718CrossRef
38.
Zurück zum Zitat Poulin S, França R, Moreau-Bélanger L, Sacher E (2010) Confirmation of x-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes. J Phys Chem C 24:10711–10718CrossRef Poulin S, França R, Moreau-Bélanger L, Sacher E (2010) Confirmation of x-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes. J Phys Chem C 24:10711–10718CrossRef
39.
Zurück zum Zitat Zhang D, Liu Z, Han S, Li C, Lei B, Stewart MP et al (2004) Magnetite (Fe3O4) core–shell nanowires: synthesis and magnetoresistance. Nano Lett 4:2151–2155CrossRef Zhang D, Liu Z, Han S, Li C, Lei B, Stewart MP et al (2004) Magnetite (Fe3O4) core–shell nanowires: synthesis and magnetoresistance. Nano Lett 4:2151–2155CrossRef
40.
Zurück zum Zitat Wilson D, Langell M (2014) Xps analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl Surf Sci 303:6–13CrossRef Wilson D, Langell M (2014) Xps analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl Surf Sci 303:6–13CrossRef
41.
Zurück zum Zitat Dong YC, Hu MJ, Ma RG, Cheng H, Yang SL, Li YY et al (2013) Evaporation-induced synthesis of carbon-supported Fe3O4 nanocomposites as anode material for lithium-ion batteries. CrystEngComm 15:1324–1331CrossRef Dong YC, Hu MJ, Ma RG, Cheng H, Yang SL, Li YY et al (2013) Evaporation-induced synthesis of carbon-supported Fe3O4 nanocomposites as anode material for lithium-ion batteries. CrystEngComm 15:1324–1331CrossRef
42.
Zurück zum Zitat Liu J, Zhou YC, Liu F, Liu CP, Wang JB, Pan Y et al (2012) One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for li-ion batteries. Rsc Adv 2:2262–2265CrossRef Liu J, Zhou YC, Liu F, Liu CP, Wang JB, Pan Y et al (2012) One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for li-ion batteries. Rsc Adv 2:2262–2265CrossRef
43.
Zurück zum Zitat Lang LM, Xu Z (2013) In situ synthesis of porous Fe3O4/C microbelts and their enhanced electrochemical performance for lithium-ion batteries. Acs Appl Mater Interfaces 5:1698–1703CrossRef Lang LM, Xu Z (2013) In situ synthesis of porous Fe3O4/C microbelts and their enhanced electrochemical performance for lithium-ion batteries. Acs Appl Mater Interfaces 5:1698–1703CrossRef
44.
Zurück zum Zitat Howard CJA, Carolina V, Parsons JG, Mataz A (2018) The use of Fe3O4/carbon composite fibers as anode materials in lithium ion batteries. MOJ Poly Sci 2:44–46 Howard CJA, Carolina V, Parsons JG, Mataz A (2018) The use of Fe3O4/carbon composite fibers as anode materials in lithium ion batteries. MOJ Poly Sci 2:44–46
45.
Zurück zum Zitat Zeng LC, Li WH, Cheng JX, Wang JQ, Liu XW, Yu Y (2014) N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties. Rsc Adv 4:16920–16927CrossRef Zeng LC, Li WH, Cheng JX, Wang JQ, Liu XW, Yu Y (2014) N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties. Rsc Adv 4:16920–16927CrossRef
46.
Zurück zum Zitat Chen C, Lu Y, Ge YQ, Zhu JD, Jiang H, Li YQ et al (2016) Synthesis of nitrogen-doped electrospun carbon nanofibers as anode material for high-performance sodium-ion batteries. Energy Technol-Ger 4:1440–1449CrossRef Chen C, Lu Y, Ge YQ, Zhu JD, Jiang H, Li YQ et al (2016) Synthesis of nitrogen-doped electrospun carbon nanofibers as anode material for high-performance sodium-ion batteries. Energy Technol-Ger 4:1440–1449CrossRef
47.
Zurück zum Zitat Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX et al (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050CrossRef Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX et al (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050CrossRef
48.
Zurück zum Zitat Huang XD, Zhou XF, Qian K, Zhao DY, Liu ZP, Yu CZ (2012) A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries. J Alloys Compd 514:76–80CrossRef Huang XD, Zhou XF, Qian K, Zhao DY, Liu ZP, Yu CZ (2012) A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries. J Alloys Compd 514:76–80CrossRef
49.
Zurück zum Zitat Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef
Metadaten
Titel
In situ synthesis of Fe3O4-reinforced carbon fiber composites as anodes in lithium-ion batteries
verfasst von
Mandana Akia
Nataly Salinas
Salomon Luna
Elizabeth Medina
Alejandra Valdez
Jorge Lopez
Jonathan Ayala
Mataz Alcoutlabi
Karen Lozano
Publikationsdatum
31.07.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 21/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03717-z

Weitere Artikel der Ausgabe 21/2019

Journal of Materials Science 21/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.