Skip to main content
Erschienen in: Journal of Materials Science 4/2020

01.11.2019 | Composites & nanocomposites

Interfacial interaction-induced temperature-dependent mechanical property of graphene-PDMS nanocomposite

verfasst von: Xin Wang, Zhekun Shi, Fandong Meng, Yan Zhao, Zhongshuai Wu, Yifeng Lei, Longjian Xue

Erschienen in: Journal of Materials Science | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polydimethylsiloxane (PDMS) and graphene-PDMS nanocomposites (GP) have been widely studied because of their excellent properties, of which the elastic modulus is very important for various applications. Here, the dependence of the elastic modulus of properly cured PDMS and GP on the temperature has been investigated. For both PDMS and GP, a critical temperature (Tc) has been found, which originates from the strong affinity of PDMS chains to the PDMS network and graphene sheet, as suggested by molecular dynamics simulation. Graphene inhibits the cross-linking of PDMS close to its surface, which leads to the reduced elastic modulus of GP (EGP). Only when the temperature is above Tc, EGP increases with temperature. This is the result of the entropy elasticity of PDMS and the re-initiated cross-linking of PDMS. However, the elastic moduli of PDMS and GP are independent of the temperature below Tc. Here, the study provides a guideline for the preparation and using of PDMS and its composite at various temperatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jiang W, Niu D, Liu H et al (2014) Photoresponsive soft-robotic platform: biomimetic fabrication and remote actuation. Adv Funct Mater 24:7598–7604CrossRef Jiang W, Niu D, Liu H et al (2014) Photoresponsive soft-robotic platform: biomimetic fabrication and remote actuation. Adv Funct Mater 24:7598–7604CrossRef
2.
Zurück zum Zitat Hu Y, Wu G, Lan T, Zhao J, Liu Y, Chen W (2015) A graphene-based bimorph structure for design of high performance photoactuators. Adv Mater 27:7867–7873CrossRef Hu Y, Wu G, Lan T, Zhao J, Liu Y, Chen W (2015) A graphene-based bimorph structure for design of high performance photoactuators. Adv Mater 27:7867–7873CrossRef
3.
Zurück zum Zitat Yan C, Wang J, Lee PS (2015) Stretchable graphene thermistor with tunable thermal index. ACS Nano 9:2130–2137CrossRef Yan C, Wang J, Lee PS (2015) Stretchable graphene thermistor with tunable thermal index. ACS Nano 9:2130–2137CrossRef
4.
Zurück zum Zitat Zdrojek M, Bomba J, Łapińska A et al (2018) Graphene-based plastic absorber for total sub-terahertz radiation shielding. Nanoscale 10:13426–13431CrossRef Zdrojek M, Bomba J, Łapińska A et al (2018) Graphene-based plastic absorber for total sub-terahertz radiation shielding. Nanoscale 10:13426–13431CrossRef
5.
Zurück zum Zitat Boland CS, Khan U, Ryan G et al (2016) Sensitive electromechanical sensors using viscoelastic graphene–polymer nanocomposites. Science 354:1257–1260CrossRef Boland CS, Khan U, Ryan G et al (2016) Sensitive electromechanical sensors using viscoelastic graphene–polymer nanocomposites. Science 354:1257–1260CrossRef
6.
Zurück zum Zitat Zhang Y, Zhu Y, Lin G, Ruoff RS, Hu N, Schaefer DW, Mark JE (2013) What factors control the mechanical properties of poly(dimethylsiloxane) reinforced with nanosheets of 3-aminopropyltriethoxysilane modified graphene oxide? Polymer 54:3605–3611CrossRef Zhang Y, Zhu Y, Lin G, Ruoff RS, Hu N, Schaefer DW, Mark JE (2013) What factors control the mechanical properties of poly(dimethylsiloxane) reinforced with nanosheets of 3-aminopropyltriethoxysilane modified graphene oxide? Polymer 54:3605–3611CrossRef
7.
Zurück zum Zitat Zhao YH, Zhang YF, Bai SL (2016) High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam. Compos Part A Appl Sci Manuf 85:148–155CrossRef Zhao YH, Zhang YF, Bai SL (2016) High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam. Compos Part A Appl Sci Manuf 85:148–155CrossRef
8.
Zurück zum Zitat Wolf MP, Salieb-Beugelaar GB, Hunziker P (2018) PDMS with designer functionalities—properties, modifications strategies, and applications. Prog Polym Sci 83:97–134CrossRef Wolf MP, Salieb-Beugelaar GB, Hunziker P (2018) PDMS with designer functionalities—properties, modifications strategies, and applications. Prog Polym Sci 83:97–134CrossRef
9.
Zurück zum Zitat Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y (2010) Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J Mater Chem 20:9635–9643CrossRef Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y (2010) Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J Mater Chem 20:9635–9643CrossRef
10.
Zurück zum Zitat Terrones M, Martín O, González M, Pozuelo J, Serrano B, Cabanelas JC, Vega-Díaz SM, Baselga J (2011) Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv Mater 23:5302–5310CrossRef Terrones M, Martín O, González M, Pozuelo J, Serrano B, Cabanelas JC, Vega-Díaz SM, Baselga J (2011) Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv Mater 23:5302–5310CrossRef
11.
Zurück zum Zitat Cao L, Wang Y, Dong P, Vinod S, Tijerina JT, Ajayan PM, Xu Z, Lou J (2016) Interphase induced dynamic self-stiffening in graphene-based polydimethylsiloxane nanocomposites. Small 12:3723–3731CrossRef Cao L, Wang Y, Dong P, Vinod S, Tijerina JT, Ajayan PM, Xu Z, Lou J (2016) Interphase induced dynamic self-stiffening in graphene-based polydimethylsiloxane nanocomposites. Small 12:3723–3731CrossRef
12.
Zurück zum Zitat Xue L, Sanz B, Luo A et al (2017) Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog. ACS Nano 11:9711–9719CrossRef Xue L, Sanz B, Luo A et al (2017) Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog. ACS Nano 11:9711–9719CrossRef
13.
Zurück zum Zitat Guo Q, Luo Y, Liu J, Zhang X, Lu C (2018) A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface. J Mater Chem C6:2139–2214 Guo Q, Luo Y, Liu J, Zhang X, Lu C (2018) A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface. J Mater Chem C6:2139–2214
14.
Zurück zum Zitat Jesson DA, Watts JF (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52:321–354CrossRef Jesson DA, Watts JF (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52:321–354CrossRef
15.
Zurück zum Zitat Li Q, Liu C, Lin YH, Liu L, Jiang K, Fan S (2015) Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets. ACS Nano 9:409–418CrossRef Li Q, Liu C, Lin YH, Liu L, Jiang K, Fan S (2015) Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets. ACS Nano 9:409–418CrossRef
16.
Zurück zum Zitat Wang W, Xiang C, Zhu Q, Zhong W, Li M, Yan K, Wang D (2018) Multistimulus responsive actuator with go and carbon nanotube/pdms bilayer structure for flexible and smart devices. ACS Appl Mater Int 10:27215–27223CrossRef Wang W, Xiang C, Zhu Q, Zhong W, Li M, Yan K, Wang D (2018) Multistimulus responsive actuator with go and carbon nanotube/pdms bilayer structure for flexible and smart devices. ACS Appl Mater Int 10:27215–27223CrossRef
17.
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
18.
Zurück zum Zitat Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127CrossRef Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127CrossRef
19.
Zurück zum Zitat Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47:493–499CrossRef Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47:493–499CrossRef
20.
Zurück zum Zitat Casiraghi C, Hartschuh A, Qian H et al (2009) Raman spectroscopy of graphene edges. Nano Lett 9:1433–1441CrossRef Casiraghi C, Hartschuh A, Qian H et al (2009) Raman spectroscopy of graphene edges. Nano Lett 9:1433–1441CrossRef
21.
Zurück zum Zitat Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2010) Raman spectroscopy in graphene. Phys Rep 473:51–87CrossRef Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2010) Raman spectroscopy in graphene. Phys Rep 473:51–87CrossRef
22.
Zurück zum Zitat Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871CrossRef Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871CrossRef
23.
Zurück zum Zitat Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011) Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5:3645–3650CrossRef Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011) Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5:3645–3650CrossRef
24.
Zurück zum Zitat Camino G, Lomakin SM, Lazzari M (2001) Polydimethylsiloxane thermal degradation. Part 1. Kinetic aspects. Polymer 42:2395–2402CrossRef Camino G, Lomakin SM, Lazzari M (2001) Polydimethylsiloxane thermal degradation. Part 1. Kinetic aspects. Polymer 42:2395–2402CrossRef
25.
Zurück zum Zitat Zhang W, Srivastava I, Zhu YF, Picu CR, Koratkar NA (2009) Heterogeneity in epoxy nanocomposites initiates crazing: significant improvements in fatigue resistance and toughening. Small 5:1403–1407CrossRef Zhang W, Srivastava I, Zhu YF, Picu CR, Koratkar NA (2009) Heterogeneity in epoxy nanocomposites initiates crazing: significant improvements in fatigue resistance and toughening. Small 5:1403–1407CrossRef
26.
Zurück zum Zitat Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183CrossRef Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183CrossRef
27.
Zurück zum Zitat Asi O (2008) Mechanical properties of glass–fiber reinforced epoxy composites filled with Al2O3 particles. J Reinf Plast Compos 28:2861–2867CrossRef Asi O (2008) Mechanical properties of glass–fiber reinforced epoxy composites filled with Al2O3 particles. J Reinf Plast Compos 28:2861–2867CrossRef
28.
Zurück zum Zitat Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRef Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRef
29.
Zurück zum Zitat Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York
30.
Zurück zum Zitat Mark JE (2004) Some interesting things about polysiloxanes. Acc Chem Res 37:946–953CrossRef Mark JE (2004) Some interesting things about polysiloxanes. Acc Chem Res 37:946–953CrossRef
31.
Zurück zum Zitat Xue L, Pham JT, Iturri J, del Campo A (2016) Stick–slip friction of PDMS surfaces for bioinspired adhesives. Langmuir 32:2428–2435CrossRef Xue L, Pham JT, Iturri J, del Campo A (2016) Stick–slip friction of PDMS surfaces for bioinspired adhesives. Langmuir 32:2428–2435CrossRef
32.
Zurück zum Zitat Yilgör E, Yilgör I (2014) Silicone containing copolymers: synthesis, properties and applications. Prog Polym Sci 39:1165–1195CrossRef Yilgör E, Yilgör I (2014) Silicone containing copolymers: synthesis, properties and applications. Prog Polym Sci 39:1165–1195CrossRef
Metadaten
Titel
Interfacial interaction-induced temperature-dependent mechanical property of graphene-PDMS nanocomposite
verfasst von
Xin Wang
Zhekun Shi
Fandong Meng
Yan Zhao
Zhongshuai Wu
Yifeng Lei
Longjian Xue
Publikationsdatum
01.11.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04126-y

Weitere Artikel der Ausgabe 4/2020

Journal of Materials Science 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.