Skip to main content
Erschienen in: Journal of Materials Science 34/2020

01.09.2020 | Composites & nanocomposites

Temperature dependence of single-walled carbon nanotube migration in epoxy resin under DC electric field

verfasst von: Dandan Zhang, Connor Saukas, Yipeng He, Rumin Wang, Alan I. Taub

Erschienen in: Journal of Materials Science | Ausgabe 34/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electric fields have been shown to induce orientation of CNTs in a polymer matrix along the direction of the applied field. When using a DC field, the CNTs also migrate between the two electrodes, resulting in a nonuniform CNT concentration across the composite sample and impacting the strengthening effect gained from the CNT alignment. In this study, we applied a DC electric field to a single-walled carbon nanotube (SWCNT)/epoxy solution and investigated the migration kinetics at different temperatures (34.0–56.6 °C) by tracking the real-time changes of SWCNT concentration. The SWCNTs were found to migrate from the negative electrode to the positive electrode at a constant speed. The rate of CNT migration increases with temperature and follows an Arrhenius relationship. The activation energy (83.3–87.7 kJ/mole) was comparable to the activation energy for the viscous flow of the neat epoxy, indicating the viscosity of the polymer melt is the main factor affecting the migration. The migration process and the resulting CNT concentration gradient across the sample are a function of temperature and time enabling control of the spatial distribution of the CNTs and the selective enhancement of electrical, mechanical and thermal properties of CNT/polymer composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Moon MS, Yun Y, Yoo MH, Song JH, Oh JH (2019) Carbon fiber manufacturing and applications as a benchmark for nanotube superfiber development. In: Schulz M (ed) Nanotube Superfiber Materials. Elsevier, Amsterdam, pp 879–896 Moon MS, Yun Y, Yoo MH, Song JH, Oh JH (2019) Carbon fiber manufacturing and applications as a benchmark for nanotube superfiber development. In: Schulz M (ed) Nanotube Superfiber Materials. Elsevier, Amsterdam, pp 879–896
2.
Zurück zum Zitat Todor MP, Bulei C, Kiss I (2017) An overview on fiber-reinforced composites used in the automotive industry. Ann Faculty Eng Hunedoara- Int J Eng 15(2):181–184 Todor MP, Bulei C, Kiss  I (2017) An overview on fiber-reinforced composites used in the automotive industry. Ann Faculty Eng Hunedoara- Int J Eng 15(2):181–184
3.
Zurück zum Zitat Al-Lami A, Hilmer P, Sinapius M (2018) Eco-efficiency assessment of manufacturing carbon fiber reinforced polymers (cfrp) in aerospace industry. Aerosp Sci Technol 79:669–678 Al-Lami A, Hilmer P, Sinapius M (2018) Eco-efficiency assessment of manufacturing carbon fiber reinforced polymers (cfrp) in aerospace industry. Aerosp Sci Technol 79:669–678
4.
Zurück zum Zitat Jakubinek MB, Ashrafi B, Zhang Y, Martinez-Rubi Y, Kingston CT, Johnston A, Simard B (2015) Single-walled carbon nanotube—epoxy composites for structural and conductive aerospace adhesives. Compos Part B: Eng 69:87–93 Jakubinek MB, Ashrafi B, Zhang Y, Martinez-Rubi Y, Kingston CT, Johnston A, Simard B (2015) Single-walled carbon nanotube—epoxy composites for structural and conductive aerospace adhesives. Compos Part B: Eng 69:87–93
5.
Zurück zum Zitat Barile C, Casavola C (2019) Mechanical characterization of carbon fiber-reinforced plastic specimens for aerospace applications. In: Saba N (ed) Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Elsevier, Amsterdam, pp 387–407 Barile C, Casavola C (2019) Mechanical characterization of carbon fiber-reinforced plastic specimens for aerospace applications. In: Saba N (ed) Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Elsevier, Amsterdam, pp 387–407
6.
Zurück zum Zitat Ribeiro I, Kaufmann J, Götze U, Peças P, Henriques E (2019) Fibre reinforced polymers in the sports industry–life cycle engineering methodology applied to a snowboard using anisotropic layer design. Int J Sust Eng 12(3):201–211 Ribeiro I, Kaufmann J, Götze U, Peças P, Henriques E (2019) Fibre reinforced polymers in the sports industry–life cycle engineering methodology applied to a snowboard using anisotropic layer design. Int J Sust Eng 12(3):201–211
7.
Zurück zum Zitat Mittal G, Rhee KY, Mišković-Stanković V, Hui D (2018) Reinforcements in multi-scale polymer composites: processing, properties, and applications. Compos Part B: Eng 138:122–139 Mittal G, Rhee KY, Mišković-Stanković V, Hui D (2018) Reinforcements in multi-scale polymer composites: processing, properties, and applications. Compos Part B: Eng 138:122–139
8.
Zurück zum Zitat Taub A, De Moor E, Luo A, Matlock DK, Speer JG, Vaidya U (2019) Materials for automotive lightweighting. Annu Rev Mater Res 49:327–359 Taub A, De Moor E, Luo A, Matlock DK, Speer JG, Vaidya U (2019) Materials for automotive lightweighting. Annu Rev Mater Res 49:327–359
9.
Zurück zum Zitat Nguyen-Tran HD, Hoang VT, Do VT, Chun DM, Yum YJ (2018) Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts. Materials 11(3):429–440 Nguyen-Tran HD, Hoang VT, Do VT, Chun DM, Yum YJ (2018) Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts. Materials 11(3):429–440
10.
Zurück zum Zitat Pervaiz M, Panthapulakkal S, Birat KC, Sain M, Tjong J (2016) Emerging trends in automotive lightweighting through novel composite materials. Mater Sci Appl 7(01):26–38 Pervaiz M, Panthapulakkal S, Birat KC, Sain M, Tjong J (2016) Emerging trends in automotive lightweighting through novel composite materials. Mater Sci Appl 7(01):26–38
11.
Zurück zum Zitat Nickels L (2018) Composites driving the auto industry. Reinf Plast 62(1):38–39 Nickels L (2018) Composites driving the auto industry. Reinf Plast 62(1):38–39
12.
Zurück zum Zitat Zhang Q, Huang J-Q, Qian W-Z, Zhang Y-Y, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8):1237–1265 Zhang Q, Huang J-Q, Qian W-Z, Zhang Y-Y, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8):1237–1265
13.
Zurück zum Zitat Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64 Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64
14.
Zurück zum Zitat Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382(6586):54–56 Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382(6586):54–56
15.
Zurück zum Zitat Hong S, Myung S (2007) Nanotube electronics: a flexible approach to mobility. Nat Nanotechnol 2(4):207–208 Hong S, Myung S (2007) Nanotube electronics: a flexible approach to mobility. Nat Nanotechnol 2(4):207–208
16.
Zurück zum Zitat Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59(4):R2514–R2516 Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59(4):R2514–R2516
17.
Zurück zum Zitat Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100 Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100
18.
Zurück zum Zitat Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944 Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944
19.
Zurück zum Zitat Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640 Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640
20.
Zurück zum Zitat Guo X, Wang JB, Zhang HW (2006) Mechanical properties of single-walled carbon nanotubes based on higher order cauchy–born rule. Int J Solids Struct 43(5):1276–1290 Guo X, Wang JB, Zhang HW (2006) Mechanical properties of single-walled carbon nanotubes based on higher order cauchy–born rule. Int J Solids Struct 43(5):1276–1290
21.
Zurück zum Zitat Dondero WE, Gorga RE (2006) Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. J Polym Sci Part B: Polym Phys 44(5):864–878 Dondero WE, Gorga RE (2006) Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. J Polym Sci Part B: Polym Phys 44(5):864–878
22.
Zurück zum Zitat Tarfaoui M, Lafdi K, El Moumen A (2016) Mechanical properties of carbon nanotubes based polymer composites. Compos B Eng 103:113–121 Tarfaoui M, Lafdi K, El Moumen A (2016) Mechanical properties of carbon nanotubes based polymer composites. Compos B Eng 103:113–121
23.
Zurück zum Zitat Chatterjee T, Mitchell CA, Hadjiev VG, Krishnamoorti R (2007) Hierarchical polymer–nanotube composites. Adv Mater 19(22):3850–3853 Chatterjee T, Mitchell CA, Hadjiev VG, Krishnamoorti R (2007) Hierarchical polymer–nanotube composites. Adv Mater 19(22):3850–3853
24.
Zurück zum Zitat Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37 Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37
25.
Zurück zum Zitat Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362(6414):547–553 Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362(6414):547–553
26.
Zurück zum Zitat Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (mwnt/hdpe) composite films. Carbon 41(14):2779–2785 Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (mwnt/hdpe) composite films. Carbon 41(14):2779–2785
27.
Zurück zum Zitat Wang L, Tan Y, Wang X, Ting Xu, Xiao C, Qi Z (2018) Mechanical and fracture properties of hyperbranched polymer covalent functionalized multiwalled carbon nanotube-reinforced epoxy composites. Chem Phys Lett 706:31–39 Wang L, Tan Y, Wang X, Ting Xu, Xiao C, Qi Z (2018) Mechanical and fracture properties of hyperbranched polymer covalent functionalized multiwalled carbon nanotube-reinforced epoxy composites. Chem Phys Lett 706:31–39
28.
Zurück zum Zitat Chauvet O, Forro L, Bacsa W, Ugarte D, Doudin B, de Heer WA (1995) Magnetic anisotropies of aligned carbon nanotubes. Phys Rev B 52(10):R6963–R6965 Chauvet O, Forro L, Bacsa W, Ugarte D, Doudin B, de Heer WA (1995) Magnetic anisotropies of aligned carbon nanotubes. Phys Rev B 52(10):R6963–R6965
29.
Zurück zum Zitat Prasse T, Cavaille J-Y, Bauhofer W (2003) Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment. Compos Sci Technol 63(13):1835–1841 Prasse T, Cavaille J-Y, Bauhofer W (2003) Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment. Compos Sci Technol 63(13):1835–1841
30.
Zurück zum Zitat Brandley E, Greenhalgh ES, Shaffer MSP, Li Q (2018) Mapping carbon nanotube orientation by fast fourier transform of scanning electron micrographs. Carbon 137:78–87 Brandley E, Greenhalgh ES, Shaffer MSP, Li Q (2018) Mapping carbon nanotube orientation by fast fourier transform of scanning electron micrographs. Carbon 137:78–87
31.
Zurück zum Zitat Cai J, Li X, Ma L, Jiang Y, Zhang D (2019) Facile large-scale alignment and assembly of conductive micro/nano particles by combining both flow shear and electrostatic interaction. Compos Sci Technol 171:199–205 Cai J, Li X, Ma L, Jiang Y, Zhang D (2019) Facile large-scale alignment and assembly of conductive micro/nano particles by combining both flow shear and electrostatic interaction. Compos Sci Technol 171:199–205
32.
Zurück zum Zitat Wan-Cheng Yu, Jia-Zhuang Xu, Wang Z-G, Huang Y-F, Yin H-M, Ling Xu, Chen Y-W, Yan D-X, Li Z-M (2018) Constructing highly oriented segregated structure towards high-strength carbon nanotube/ultrahigh-molecular-weight polyethylene composites for electromagnetic interference shielding. Compos A Appl Sci Manuf 110:237–245 Wan-Cheng Yu, Jia-Zhuang Xu, Wang Z-G, Huang Y-F, Yin H-M, Ling Xu, Chen Y-W, Yan D-X, Li Z-M (2018) Constructing highly oriented segregated structure towards high-strength carbon nanotube/ultrahigh-molecular-weight polyethylene composites for electromagnetic interference shielding. Compos A Appl Sci Manuf 110:237–245
33.
Zurück zum Zitat Liu Q, Lomov SV, Gorbatikh L (2019) The interplay between multiple toughening mechanisms in nanocomposites with spatially distributed and oriented carbon nanotubes as revealed by dual-scale simulations. Carbon 142:141–149 Liu Q, Lomov SV, Gorbatikh L (2019) The interplay between multiple toughening mechanisms in nanocomposites with spatially distributed and oriented carbon nanotubes as revealed by dual-scale simulations. Carbon 142:141–149
34.
Zurück zum Zitat Lin Qiu Pu, Guo XY, Ouyang Y, Feng Y, Zhang X, Zhao J, Zhang X, Li Q (2019) Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon 145:650–657 Lin Qiu Pu, Guo XY, Ouyang Y, Feng Y, Zhang X, Zhao J, Zhang X, Li Q (2019) Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon 145:650–657
35.
Zurück zum Zitat Morais MVC, Oliva-Avilés AI, Matos MAS, Tagarielli VL, Pinho ST, Hübner C, Henning F (2019) On the effect of electric field application during the curing process on the electrical conductivity of single-walled carbon nanotubes–epoxy composites. Carbon 150:153–167 Morais MVC, Oliva-Avilés AI, Matos MAS, Tagarielli VL, Pinho ST, Hübner C, Henning F (2019) On the effect of electric field application during the curing process on the electrical conductivity of single-walled carbon nanotubes–epoxy composites. Carbon 150:153–167
36.
Zurück zum Zitat Khan SU, Pothnis JR, Kim JK (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos Part A: Appl Sci Manuf 49:26–34 Khan SU, Pothnis JR, Kim JK (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos Part A: Appl Sci Manuf 49:26–34
37.
Zurück zum Zitat Ma C, Liu HY, Du X, Mach L, Xu F, Mai YW (2015) Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field. Compos Sci Technol 114:126–135 Ma C, Liu HY, Du X, Mach L, Xu F, Mai YW (2015) Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field. Compos Sci Technol 114:126–135
38.
Zurück zum Zitat Liu M, Younes H, Hong H, Peterson GP (2019) Polymer nanocomposites with improved mechanical and thermal properties by magnetically aligned carbon nanotubes. Polymer 166:81–87 Liu M, Younes H, Hong H, Peterson GP (2019) Polymer nanocomposites with improved mechanical and thermal properties by magnetically aligned carbon nanotubes. Polymer 166:81–87
39.
Zurück zum Zitat Goh GL, Agarwala S, Yeong WY (2019) Directed and on-demand alignment of carbon nanotube: A review toward 3d printing of electronics. Adv Mater Interfaces 6(4):1801318–1801346 Goh GL, Agarwala S, Yeong WY (2019) Directed and on-demand alignment of carbon nanotube: A review toward 3d printing of electronics. Adv Mater Interfaces 6(4):1801318–1801346
40.
Zurück zum Zitat Y He (2019) Carbon Nanotube Alignment: Electromagnetic Field and Shear Force. PhD thesis, 2019 Y He (2019) Carbon Nanotube Alignment: Electromagnetic Field and Shear Force. PhD thesis, 2019
41.
Zurück zum Zitat Miansari M, Qi A, Yeo LY, Friend JR (2015) Vibration-induced deagglomeration and shear-induced alignment of carbon nanotubes in air. Adv Funct Mater 25(7):1014–1023 Miansari M, Qi A, Yeo LY, Friend JR (2015) Vibration-induced deagglomeration and shear-induced alignment of carbon nanotubes in air. Adv Funct Mater 25(7):1014–1023
42.
Zurück zum Zitat Gupta P, Rajput M, Singla N, Kumar V, Lahiri D (2016) Electric field and current assisted alignment of cnt inside polymer matrix and its effects on electrical and mechanical properties. Polymer 89:119–127 Gupta P, Rajput M, Singla N, Kumar V, Lahiri D (2016) Electric field and current assisted alignment of cnt inside polymer matrix and its effects on electrical and mechanical properties. Polymer 89:119–127
43.
Zurück zum Zitat Ji Y, Huang YY, Rungsawang R, Terentjev EM (2010) Dispersion and alignment of carbon nanotubes in liquid crystalline polymers and elastomers. Adv Mater 22(31):3436–3440 Ji Y, Huang YY, Rungsawang R, Terentjev EM (2010) Dispersion and alignment of carbon nanotubes in liquid crystalline polymers and elastomers. Adv Mater 22(31):3436–3440
44.
Zurück zum Zitat Gao J, He Y, Gong X (2018) Effect of electric field induced alignment and dispersion of functionalized carbon nanotubes on properties of natural rubber. Res Phys 9:493–499 Gao J, He Y, Gong X (2018) Effect of electric field induced alignment and dispersion of functionalized carbon nanotubes on properties of natural rubber. Res Phys 9:493–499
45.
Zurück zum Zitat Monti M, Natali M, Torre L, Kenny JM (2012) The alignment of sin-´ gle walled carbon nanotubes in an epoxy resin by applying a dc electric field. Carbon 50(7):2453–2464 Monti M, Natali M, Torre L, Kenny JM (2012) The alignment of sin-´ gle walled carbon nanotubes in an epoxy resin by applying a dc electric field. Carbon 50(7):2453–2464
46.
Zurück zum Zitat Martin CA, Sandler JKW, Windle AH, Schwarz M-K, Bauhofer W, Schulte K, Shaffer MSP (2005) Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46(3):877–886 Martin CA, Sandler JKW, Windle AH, Schwarz M-K, Bauhofer W, Schulte K, Shaffer MSP (2005) Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46(3):877–886
47.
Zurück zum Zitat Oliva-Avilés AI, Avilés F, Sosa V, Oliva AI, Gamboa F (2012) Dynamics of carbon nanotube alignment by electric fields. Nanotechnology 23(46):465710–465719 Oliva-Avilés AI, Avilés F, Sosa V, Oliva AI, Gamboa F (2012) Dynamics of carbon nanotube alignment by electric fields. Nanotechnology 23(46):465710–465719
48.
Zurück zum Zitat Chapkin WA, McNerny DQ, Aldridge MF, He Y, Wang W, Kieffer J, Taub AI (2016) Real-time assessment of carbon nanotube alignment in a polymer matrix under an applied electric field via polarized raman spectroscopy. Polym Test 56:29–35 Chapkin WA, McNerny DQ, Aldridge MF, He Y, Wang W, Kieffer J, Taub AI (2016) Real-time assessment of carbon nanotube alignment in a polymer matrix under an applied electric field via polarized raman spectroscopy. Polym Test 56:29–35
49.
Zurück zum Zitat W Chapkin (2017) Electrostatically induced carbon nanotube alignment for polymer composite applications W Chapkin (2017) Electrostatically induced carbon nanotube alignment for polymer composite applications
50.
Zurück zum Zitat Zhu Y-F, Ma C, Zhang W, Zhang R-P, Koratkar N, Liang Ji (2009) Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J Appl Phys 105(5):054319–054324 Zhu Y-F, Ma C, Zhang W, Zhang R-P, Koratkar N, Liang Ji (2009) Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J Appl Phys 105(5):054319–054324
51.
Zurück zum Zitat Oliva-Avilés AI, Avilés F, Sosa V, Seidel GD (2014) Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields. Carbon 69:342–354 Oliva-Avilés AI, Avilés F, Sosa V, Seidel GD (2014) Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields. Carbon 69:342–354
52.
Zurück zum Zitat Martin CA, Sandler JKW, Shaffer MSP, Schwarz M-K, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos Sci Technol 64(15):2309–2316 Martin CA, Sandler JKW, Shaffer MSP, Schwarz M-K, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos Sci Technol 64(15):2309–2316
53.
Zurück zum Zitat Garcia EJ, Wardle BL, Hart AJ (2008) Joining prepreg composite interfaces with aligned carbon nanotubes. Compos Part A: Appl Sci Manuf 39(6):1065–1070 Garcia EJ, Wardle BL, Hart AJ (2008) Joining prepreg composite interfaces with aligned carbon nanotubes. Compos Part A: Appl Sci Manuf 39(6):1065–1070
54.
Zurück zum Zitat Ogasawara T, Moon S-Y, Inoue Y, Shimamura Y (2011) Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method. Compos Sci Technol 71(16):1826–1833 Ogasawara T, Moon S-Y, Inoue Y, Shimamura Y (2011) Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method. Compos Sci Technol 71(16):1826–1833
55.
Zurück zum Zitat Natarajan B, Stein IY, Lachman N, Yamamoto N, Jacobs DS, Sharma R, Liddle JA, Wardle BL (2019) Aligned carbon nanotube morphogenesis predicts physical properties of their polymer nanocomposites. Nanoscale 11:16327–16335 Natarajan B, Stein IY, Lachman N, Yamamoto N, Jacobs DS, Sharma R, Liddle JA, Wardle BL (2019) Aligned carbon nanotube morphogenesis predicts physical properties of their polymer nanocomposites. Nanoscale 11:16327–16335
56.
Zurück zum Zitat Laidler KJ (1984) The development of the arrhenius equation. J Chem Educ 61(6):494–498 Laidler KJ (1984) The development of the arrhenius equation. J Chem Educ 61(6):494–498
57.
Zurück zum Zitat Yamamoto U, Schweizer KS (2014) Microscopic theory of the long-time diffusivity and intermediate-time anomalous transport of a nanoparticle in polymer melts. Macromolecules 48(1):152–163 Yamamoto U, Schweizer KS (2014) Microscopic theory of the long-time diffusivity and intermediate-time anomalous transport of a nanoparticle in polymer melts. Macromolecules 48(1):152–163
58.
Zurück zum Zitat Kalathi JT, Yamamoto U, Schweizer KS, Grest GS, Kumar SK (2014) Nanoparticle diffusion in polymer nanocomposites. Phys Rev Lett 112(10):108301–108305 Kalathi JT, Yamamoto U, Schweizer KS, Grest GS, Kumar SK (2014) Nanoparticle diffusion in polymer nanocomposites. Phys Rev Lett 112(10):108301–108305
59.
Zurück zum Zitat Yamamoto U, Schweizer KS (2013) Spatially dependent relative diffusion of nanoparticles in polymer melts. J Chem Phys 139(6):064907–064916 Yamamoto U, Schweizer KS (2013) Spatially dependent relative diffusion of nanoparticles in polymer melts. J Chem Phys 139(6):064907–064916
60.
Zurück zum Zitat Choi J, Cargnello M, Murray CB, Clarke N, Winey KI, Composto RJ (2015) Fast nanorod diffusion through entangled polymer melts. ACS Macro Lett 4(9):952–956 Choi J, Cargnello M, Murray CB, Clarke N, Winey KI, Composto RJ (2015) Fast nanorod diffusion through entangled polymer melts. ACS Macro Lett 4(9):952–956
61.
Zurück zum Zitat Omari RA, Aneese AM, Grabowski CA, Mukhopadhyay A (2009) Diffusion of nanoparticles in semidilute and entangled polymer solutions. J Phys Chem B 113(25):8449–8452 Omari RA, Aneese AM, Grabowski CA, Mukhopadhyay A (2009) Diffusion of nanoparticles in semidilute and entangled polymer solutions. J Phys Chem B 113(25):8449–8452
Metadaten
Titel
Temperature dependence of single-walled carbon nanotube migration in epoxy resin under DC electric field
verfasst von
Dandan Zhang
Connor Saukas
Yipeng He
Rumin Wang
Alan I. Taub
Publikationsdatum
01.09.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 34/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05150-z

Weitere Artikel der Ausgabe 34/2020

Journal of Materials Science 34/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.