Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2020

23.05.2020

A comparative study on enhancer and inhibitor of glycine–nitrate combustion ZnO screen-printed sensor: detection of low concentration ammonia at room temperature

verfasst von: G. Manjunath, P. Nagaraju, Saumen Mandal

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report a comparative study on enhancing and inhibiting the sensing performance of Sr-doped ZnO (Sr0.01 Zn0.99O) and RuO2-activated Sr-doped ZnO heterostructured sensors towards the low concentration (≤ 50 ppm) of ammonia gas at ambient. Sub-microns sized with high specific surface area, high reactive, oxygen-deficient Sr-doped ZnO particles were synthesized at low temperature (196 °C) through facile glycine–nitrate solution combustion synthesis (SCS) method. Porous, adhered screen-printed film of Sr-doped ZnO with optical bandgap (3.22 eV) was dip-coated using 0.02 M RuCl3 aqueous solution to obtain RuO2 activation. Smaller crystallite size and lesser lattice distortion obtained with Sr-doping in ZnO enhance the gas response (S = 71) towards the 50 ppm of ammonia gas at room temperature. RuO2-activated Sr-doped ZnO sensor associated with lesser oxygen vacancies and a lower concentration of chemisorbed oxygen species due to passivation layer and no-spill-over activity of RuO2, which inhibits the gas response from 71 to 3. Sr-doped ZnO-based sensor shows high selectivity towards ammonia against 50 ppm of volatile organic compound (VOCs) vapor. Expeditious sensor kinetics (response time and recovery time) in the Sr-doped ZnO sensor was observed, in which smaller crystallite size offers a shorter distance for the diffusion of oxygen vacancies (Vo). Ultra-high-sensitive and selective sensors with ease and economical fabrication offer feasibility in industries and domestic applications where detection of the less concentration ammonia vapor is crucial.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat S. Cui et al., Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes. ACS Appl. Mater. Interfaces. 4(9), 4898–4904 (2012) S. Cui et al., Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes. ACS Appl. Mater. Interfaces. 4(9), 4898–4904 (2012)
2.
Zurück zum Zitat B. Timmer et al., Ammonia sensors and their applications—a review. Sensors Actuators B 107(2), 666–677 (2005) B. Timmer et al., Ammonia sensors and their applications—a review. Sensors Actuators B 107(2), 666–677 (2005)
3.
Zurück zum Zitat K.-I. Shimizu et al., Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors. Sensors Actuators B 141(2), 410–416 (2009) K.-I. Shimizu et al., Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors. Sensors Actuators B 141(2), 410–416 (2009)
4.
Zurück zum Zitat C. Liu et al., The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the 221 high-index faceted SnO2 octahedra. CrystEngComm 17(33), 6308–6313 (2015) C. Liu et al., The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the 221 high-index faceted SnO2 octahedra. CrystEngComm 17(33), 6308–6313 (2015)
5.
Zurück zum Zitat Z. Pang et al., Fabrication of PA6/TiO2/PANI composite nanofibers by electrospinning–electrospraying for ammonia sensor. Colloids Surf. A 461, 113–118 (2014) Z. Pang et al., Fabrication of PA6/TiO2/PANI composite nanofibers by electrospinning–electrospraying for ammonia sensor. Colloids Surf. A 461, 113–118 (2014)
6.
Zurück zum Zitat W. Liu et al., Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes. Appl. Surf. Sci. 390, 929–935 (2016) W. Liu et al., Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes. Appl. Surf. Sci. 390, 929–935 (2016)
7.
Zurück zum Zitat Y.-F. Sun et al., Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610–2631 (2012) Y.-F. Sun et al., Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610–2631 (2012)
8.
Zurück zum Zitat L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sensors Actuators A 267, 242–261 (2017) L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sensors Actuators A 267, 242–261 (2017)
9.
Zurück zum Zitat G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. 61(1–6), 1–39 (2008) G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. 61(1–6), 1–39 (2008)
10.
Zurück zum Zitat S. Ansari et al., Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films 295(1–2), 271–276 (1997) S. Ansari et al., Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films 295(1–2), 271–276 (1997)
11.
Zurück zum Zitat P. Sahay, R. Nath, Al-doped ZnO thin films as methanol sensors. Sensors Actuators B 134(2), 654–659 (2008) P. Sahay, R. Nath, Al-doped ZnO thin films as methanol sensors. Sensors Actuators B 134(2), 654–659 (2008)
12.
Zurück zum Zitat H.-B. Lin et al., Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers. Scripta Mater. 59(7), 780–783 (2008) H.-B. Lin et al., Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers. Scripta Mater. 59(7), 780–783 (2008)
13.
Zurück zum Zitat Y. Chen et al., Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core–shell nanowire arrays fabricated by ion-replacement method. Appl. Catal. B 209, 110–117 (2017) Y. Chen et al., Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core–shell nanowire arrays fabricated by ion-replacement method. Appl. Catal. B 209, 110–117 (2017)
14.
Zurück zum Zitat P.S. Venkatesh et al., Point defects assisted NH3 gas sensing properties in ZnO nanostructures. Sensors Actuators B 212, 10–17 (2015) P.S. Venkatesh et al., Point defects assisted NH3 gas sensing properties in ZnO nanostructures. Sensors Actuators B 212, 10–17 (2015)
15.
Zurück zum Zitat A.J. Kulandaisamy et al., Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping. J. Alloy. Compd. 688, 422–429 (2016) A.J. Kulandaisamy et al., Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping. J. Alloy. Compd. 688, 422–429 (2016)
16.
Zurück zum Zitat K. Lokesh et al., Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers. IEEE Sens. J. 16(8), 2477–2483 (2016) K. Lokesh et al., Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers. IEEE Sens. J. 16(8), 2477–2483 (2016)
17.
Zurück zum Zitat S.-W. Fan et al., UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 95(14), 142106 (2009) S.-W. Fan et al., UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 95(14), 142106 (2009)
18.
Zurück zum Zitat A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B 229, 206–217 (2018) A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B 229, 206–217 (2018)
19.
Zurück zum Zitat A. Renitta, K. Vijayalakshmi, Highly sensitive hydrogen safety sensor based on Cr incorporated ZnO nano-whiskers array fabricated on ITO substrate. Sensors Actuators B 237, 912–923 (2016) A. Renitta, K. Vijayalakshmi, Highly sensitive hydrogen safety sensor based on Cr incorporated ZnO nano-whiskers array fabricated on ITO substrate. Sensors Actuators B 237, 912–923 (2016)
20.
Zurück zum Zitat K. Ravichandran et al., Effect of tungsten doping on the ammonia vapour sensing ability of ZnO thin films prepared by a cost effective simplified spray technique. Surf. Interfaces 18, 100412 (2019) K. Ravichandran et al., Effect of tungsten doping on the ammonia vapour sensing ability of ZnO thin films prepared by a cost effective simplified spray technique. Surf. Interfaces 18, 100412 (2019)
21.
Zurück zum Zitat G.T. Rao, D.T. Rao, Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature. Sensors Actuators B 55(2–3), 166–169 (1999) G.T. Rao, D.T. Rao, Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature. Sensors Actuators B 55(2–3), 166–169 (1999)
22.
Zurück zum Zitat R.S. Ganesh et al., Tuning the selectivity of NH3 gas sensing response using Cu-doped ZnO nanostructures. Sensors Actuators A 269, 331–341 (2018) R.S. Ganesh et al., Tuning the selectivity of NH3 gas sensing response using Cu-doped ZnO nanostructures. Sensors Actuators A 269, 331–341 (2018)
23.
Zurück zum Zitat D.R. Miller et al., Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B 204, 250–272 (2014) D.R. Miller et al., Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B 204, 250–272 (2014)
24.
Zurück zum Zitat M. Poloju et al., Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater. Sci. Eng. B 227, 61–67 (2018) M. Poloju et al., Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater. Sci. Eng. B 227, 61–67 (2018)
25.
Zurück zum Zitat H. Tang et al., A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sensors Actuators B 114(2), 910–915 (2006) H. Tang et al., A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sensors Actuators B 114(2), 910–915 (2006)
26.
Zurück zum Zitat G.H. Mhlongo et al., Room temperature ferromagnetism and gas sensing in ZnO nanostructures: influence of intrinsic defects and Mn Co, Cu doping. Appl. Surf. Sci. 390, 804–815 (2016) G.H. Mhlongo et al., Room temperature ferromagnetism and gas sensing in ZnO nanostructures: influence of intrinsic defects and Mn Co, Cu doping. Appl. Surf. Sci. 390, 804–815 (2016)
27.
Zurück zum Zitat D. Patil et al., Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature. Sensors Actuators B 126(2), 368–374 (2007) D. Patil et al., Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature. Sensors Actuators B 126(2), 368–374 (2007)
28.
Zurück zum Zitat J. Iqbal et al., Effect of Co doping on morphology, optical and magnetic properties of ZnO 1-D nanostructures. J. Mater. Sci.: Mater. Electron. 24(11), 4393–4398 (2013) J. Iqbal et al., Effect of Co doping on morphology, optical and magnetic properties of ZnO 1-D nanostructures. J. Mater. Sci.: Mater. Electron. 24(11), 4393–4398 (2013)
29.
Zurück zum Zitat R.S. Ganesh et al., Controlled synthesis of Ni-doped ZnO hexagonal microdiscs and their gas sensing properties at low temperature. Chem. Phys. Lett. 689, 92–99 (2017) R.S. Ganesh et al., Controlled synthesis of Ni-doped ZnO hexagonal microdiscs and their gas sensing properties at low temperature. Chem. Phys. Lett. 689, 92–99 (2017)
30.
Zurück zum Zitat W. Wen et al., Gas-sensing property of a nitrogen-doped zinc oxide fabricated by combustion synthesis. Sensors Actuators B 184, 78–84 (2013) W. Wen et al., Gas-sensing property of a nitrogen-doped zinc oxide fabricated by combustion synthesis. Sensors Actuators B 184, 78–84 (2013)
31.
Zurück zum Zitat M. Graf et al., Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films. J. Nanopart. Res. 8(6), 823–839 (2006) M. Graf et al., Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films. J. Nanopart. Res. 8(6), 823–839 (2006)
32.
Zurück zum Zitat M. Zhang et al., Electromagnetic functions of patterned 2d materials for micro–nano devices covering ghz, thz, and optical frequency. Adv. Opt. Mater. 7(19), 1900689 (2019) M. Zhang et al., Electromagnetic functions of patterned 2d materials for micro–nano devices covering ghz, thz, and optical frequency. Adv. Opt. Mater. 7(19), 1900689 (2019)
33.
Zurück zum Zitat G. Manjunath et al., A scalable screen-printed high performance ZnO-UV and gas sensor: effect of solution combustion. Mater. Sci. Semicond. Process. 107, 104828 (2020) G. Manjunath et al., A scalable screen-printed high performance ZnO-UV and gas sensor: effect of solution combustion. Mater. Sci. Semicond. Process. 107, 104828 (2020)
34.
Zurück zum Zitat T. Vijayan et al., Comparative investigation on nanocrystal structure, optical, and electrical properties of ZnO and Sr-doped ZnO thin films using chemical bath deposition method. J. Mater. Sci. 43(6), 1776–1782 (2008) T. Vijayan et al., Comparative investigation on nanocrystal structure, optical, and electrical properties of ZnO and Sr-doped ZnO thin films using chemical bath deposition method. J. Mater. Sci. 43(6), 1776–1782 (2008)
35.
Zurück zum Zitat R. Heller et al., Precision determination of the lattice constants of zinc oxide. J. Appl. Phys. 21(12), 1283–1284 (1950) R. Heller et al., Precision determination of the lattice constants of zinc oxide. J. Appl. Phys. 21(12), 1283–1284 (1950)
36.
Zurück zum Zitat K.P. Raj et al., Structural, optical, photoluminescence and photocatalytic assessment of Sr-doped ZnO nanoparticles. Mater. Chem. Phys. 183, 24–36 (2016) K.P. Raj et al., Structural, optical, photoluminescence and photocatalytic assessment of Sr-doped ZnO nanoparticles. Mater. Chem. Phys. 183, 24–36 (2016)
37.
Zurück zum Zitat J. Shen et al., An ESCA study of the interaction of oxygen with the surface of ruthenium. Appl. Surf. Sci. 51(1–2), 47–60 (1991) J. Shen et al., An ESCA study of the interaction of oxygen with the surface of ruthenium. Appl. Surf. Sci. 51(1–2), 47–60 (1991)
38.
Zurück zum Zitat G. Lemay et al., Synthesis of some ring-substituted ruthenocenes and their use in the preparation of Ru/ZSM-5 catalysts. Can. J. Chem. 64(9), 1943–1948 (1986) G. Lemay et al., Synthesis of some ring-substituted ruthenocenes and their use in the preparation of Ru/ZSM-5 catalysts. Can. J. Chem. 64(9), 1943–1948 (1986)
39.
Zurück zum Zitat A. Iriondo et al., Butyraldehyde production by butanol oxidation over Ru and Cu catalysts supported on ZrO2, TiO2 and CeO2. Studies in surface science and catalysis (Elsevier, Amsterdam, 2010), pp. 453–456 A. Iriondo et al., Butyraldehyde production by butanol oxidation over Ru and Cu catalysts supported on ZrO2, TiO2 and CeO2. Studies in surface science and catalysis (Elsevier, Amsterdam, 2010), pp. 453–456
40.
Zurück zum Zitat M. Navaneethan et al., Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods. J. Alloy. Compd. 698, 555–564 (2017) M. Navaneethan et al., Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods. J. Alloy. Compd. 698, 555–564 (2017)
41.
Zurück zum Zitat J. Liao et al., The influence of post-annealing on the chemical structures and dielectric properties of the surface layer of Ba0.6Sr0.4TiO3 films. J. Phys. D 39(11), 2473 (2006) J. Liao et al., The influence of post-annealing on the chemical structures and dielectric properties of the surface layer of Ba0.6Sr0.4TiO3 films. J. Phys. D 39(11), 2473 (2006)
42.
Zurück zum Zitat M. Sosulnikov, Y.A. Teterin, X-ray photoelectron studies of Ca, Sr and Ba and their oxides and carbonates. J. Electron Spectrosc. Relat. Phenom. 59(2), 111–126 (1992) M. Sosulnikov, Y.A. Teterin, X-ray photoelectron studies of Ca, Sr and Ba and their oxides and carbonates. J. Electron Spectrosc. Relat. Phenom. 59(2), 111–126 (1992)
43.
Zurück zum Zitat W. Wang et al., Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci. Rep. 4, 4452 (2014) W. Wang et al., Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci. Rep. 4, 4452 (2014)
44.
Zurück zum Zitat Q. Zhu et al., Selectively enhanced UV and NIR photoluminescence from a degenerate ZnO nanorod array film. J. Mater. Chem. C 2(23), 4566–4580 (2014) Q. Zhu et al., Selectively enhanced UV and NIR photoluminescence from a degenerate ZnO nanorod array film. J. Mater. Chem. C 2(23), 4566–4580 (2014)
45.
Zurück zum Zitat M. Wagh et al., Modified zinc oxide thick film resistors as NH3 gas sensor. Sensors Actuators B 115(1), 128–133 (2006) M. Wagh et al., Modified zinc oxide thick film resistors as NH3 gas sensor. Sensors Actuators B 115(1), 128–133 (2006)
46.
Zurück zum Zitat C. Xu et al., Grain size effects on gas sensitivity of porous SnO2-based elements. Sensors Actuators B 3(2), 147–155 (1991) C. Xu et al., Grain size effects on gas sensitivity of porous SnO2-based elements. Sensors Actuators B 3(2), 147–155 (1991)
47.
Zurück zum Zitat N. Izu et al., The effects of the particle size and crystallite size on the response time for resistive oxygen gas sensor using cerium oxide thick film. Sensors Actuators B 94(2), 222–227 (2003) N. Izu et al., The effects of the particle size and crystallite size on the response time for resistive oxygen gas sensor using cerium oxide thick film. Sensors Actuators B 94(2), 222–227 (2003)
48.
Zurück zum Zitat A.K. Bal et al., Characterization and ammonia sensing properties of pure and ámodified ZnO films. Appl. Phys. A 103(2), 497–503 (2011) A.K. Bal et al., Characterization and ammonia sensing properties of pure and ámodified ZnO films. Appl. Phys. A 103(2), 497–503 (2011)
49.
Zurück zum Zitat G.K. Mani, J.B.B. Rayappan, Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films. Appl. Surf. Sci. 311, 405–412 (2014) G.K. Mani, J.B.B. Rayappan, Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films. Appl. Surf. Sci. 311, 405–412 (2014)
50.
Zurück zum Zitat G.K. Mani, J.B.B. Rayappan, A highly selective and wide range ammonia sensor—nanostructured ZnO: Co thin film. Mater. Sci. Eng. B 191, 41–50 (2015) G.K. Mani, J.B.B. Rayappan, A highly selective and wide range ammonia sensor—nanostructured ZnO: Co thin film. Mater. Sci. Eng. B 191, 41–50 (2015)
Metadaten
Titel
A comparative study on enhancer and inhibitor of glycine–nitrate combustion ZnO screen-printed sensor: detection of low concentration ammonia at room temperature
verfasst von
G. Manjunath
P. Nagaraju
Saumen Mandal
Publikationsdatum
23.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03584-4

Weitere Artikel der Ausgabe 13/2020

Journal of Materials Science: Materials in Electronics 13/2020 Zur Ausgabe

Neuer Inhalt