Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 24/2020

02.11.2020

Ultrahigh nitrogen-doped carbon/superfine-Sn particles for lithium ion battery anode

verfasst von: Han Bi, Xin Li, Jingjing Chen, Lexi Zhang, Lijian Bie

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 24/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphitic carbon nitride (g-C3N4) can be indexed as a high-content N-doped carbon material, appealing great attentions in energy storage devices. However, poor conductivity and serious irreversible capacity loss were found for the g-C3N4 due to its high nitrogen content. Urea, dicyandiamide or melamine can be used as organic precursor to form g-C3N4 because they can be pyrolyzed into g-C3N4 easily. In this work, high nitrogen content (up to 17 at.%)-doped carbon materials embedded with superfine-Sn particle are synthesized by one-step thermal treatment of the g-C3N4 organic precursor and SnCl2 in a simple self-designed quartz tube. Regarding their high nitrogen doping content, large surface area and porous structure, the obtained material could deliver a high specific capacity and excellent capacity retention when applied as lithium ion battery anode. Its excellent rate performance is attributed to the high Li diffusion coefficient demonstrated by the GITT kinetics analysis. This extremely simple and low-cost preparation process could provide a new strategy to obtain high nitrogen content carbon-based materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Y. Lou, H.F. Di, C.G. Li, C. Liang, Y. Yu, Z. Shi, D. Zhang, X.B. Chen, S.H. Feng, Delicately designed Sn-based electrode material via spray pyrolysis for high performance lithium-ion battery. Electrochim. Acta 318, 542–550 (2019) Y. Lou, H.F. Di, C.G. Li, C. Liang, Y. Yu, Z. Shi, D. Zhang, X.B. Chen, S.H. Feng, Delicately designed Sn-based electrode material via spray pyrolysis for high performance lithium-ion battery. Electrochim. Acta 318, 542–550 (2019)
2.
Zurück zum Zitat K.E. Aifantis, S.A. Hackney, Mechanical stability for nanostructured Sn- and Si-based anodes. J. Power Sources 196, 2122–2127 (2011) K.E. Aifantis, S.A. Hackney, Mechanical stability for nanostructured Sn- and Si-based anodes. J. Power Sources 196, 2122–2127 (2011)
3.
Zurück zum Zitat L.J. Liu, X.K. Huang, X.R. Guo, S. Mao, J.H. Chen, Decorating in situ ultrasmall tin particles on crumpled N-doped graphene for lithium-ion batteries with a long life cycle. J. Power Sources 328, 482–491 (2016) L.J. Liu, X.K. Huang, X.R. Guo, S. Mao, J.H. Chen, Decorating in situ ultrasmall tin particles on crumpled N-doped graphene for lithium-ion batteries with a long life cycle. J. Power Sources 328, 482–491 (2016)
4.
Zurück zum Zitat J.S. Li, X.J. Xu, Z.S. Luo, C.Q. Zhang, X.T. Yu, Y. Zuo, T. Zhang, P.Y. Tang, J. Arbiol, J. Llorca, J. Liu, A. Cabot, Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. Electrochim. Acta 304, 246–254 (2019) J.S. Li, X.J. Xu, Z.S. Luo, C.Q. Zhang, X.T. Yu, Y. Zuo, T. Zhang, P.Y. Tang, J. Arbiol, J. Llorca, J. Liu, A. Cabot, Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. Electrochim. Acta 304, 246–254 (2019)
5.
Zurück zum Zitat W.B. Liu, X. Chen, P. Xiang, S.C. Zhang, J.Z. Yan, N. Li, S.Q. Shi, Chemically monodisperse tin nanoparticles on monolithic 3D nanoporous copper for lithium ion battery anodes with ultralong cycle life and stable lithium storage properties. Nanoscale 11, 4885–4894 (2019) W.B. Liu, X. Chen, P. Xiang, S.C. Zhang, J.Z. Yan, N. Li, S.Q. Shi, Chemically monodisperse tin nanoparticles on monolithic 3D nanoporous copper for lithium ion battery anodes with ultralong cycle life and stable lithium storage properties. Nanoscale 11, 4885–4894 (2019)
6.
Zurück zum Zitat X. Dong, W.B. Liu, X. Chen, J.Z. Yan, N. Li, S.Q. Shi, S.C. Zhang, X.S. Yang, Novel three dimensional hierarchical porous Sn-Ni alloys as anode for lithium ion batteries with long cycle life by pulse electrodeposition. Chem. Eng. J. 350, 791–798 (2018) X. Dong, W.B. Liu, X. Chen, J.Z. Yan, N. Li, S.Q. Shi, S.C. Zhang, X.S. Yang, Novel three dimensional hierarchical porous Sn-Ni alloys as anode for lithium ion batteries with long cycle life by pulse electrodeposition. Chem. Eng. J. 350, 791–798 (2018)
7.
Zurück zum Zitat G.H. Yang, Z.X. Yan, L.S. Cui, Y.H. Qu, Q.Y. Li, X. Li, Y.Y. Wang, H.Q. Wang, Electroless plating of a Sn-Ni/graphite sheet composite with improved cyclability as an anode material for lithium ion batteries. RSC Adv. 8, 15427–15435 (2018) G.H. Yang, Z.X. Yan, L.S. Cui, Y.H. Qu, Q.Y. Li, X. Li, Y.Y. Wang, H.Q. Wang, Electroless plating of a Sn-Ni/graphite sheet composite with improved cyclability as an anode material for lithium ion batteries. RSC Adv. 8, 15427–15435 (2018)
8.
Zurück zum Zitat S.T. Wang, M. He, M. Walter, F. Krumeich, K.V. Kravchyk, M.V. Kovalenko, Monodisperse CoSn2 and FeSn2 nanocrystals as high-performance anode materials for lithium-ion batteries. Nanoscale 10, 6827–6831 (2018) S.T. Wang, M. He, M. Walter, F. Krumeich, K.V. Kravchyk, M.V. Kovalenko, Monodisperse CoSn2 and FeSn2 nanocrystals as high-performance anode materials for lithium-ion batteries. Nanoscale 10, 6827–6831 (2018)
9.
Zurück zum Zitat H.J. Ying, W.Q. Han, Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 4, 298 (2017) H.J. Ying, W.Q. Han, Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 4, 298 (2017)
10.
Zurück zum Zitat D.H. Youn, A. Heller, C.B. Mullins, Simple synthesis of nanostructured sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode. Chem. Mater. 28, 1343–1347 (2016) D.H. Youn, A. Heller, C.B. Mullins, Simple synthesis of nanostructured sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode. Chem. Mater. 28, 1343–1347 (2016)
11.
Zurück zum Zitat Z.M. Wang, L. Yu, L.M. Chang, L.M. Wang, Y. Cheng, Facile synthesis of nitrogen-doped Sn@NC composites as high-performance anodes for lithium-ion batteries. Int. J. Hydrogen Energy 43, 22401–22408 (2018) Z.M. Wang, L. Yu, L.M. Chang, L.M. Wang, Y. Cheng, Facile synthesis of nitrogen-doped Sn@NC composites as high-performance anodes for lithium-ion batteries. Int. J. Hydrogen Energy 43, 22401–22408 (2018)
12.
Zurück zum Zitat R.H. Li, J.L. Li, K.Y. Qi, X. Ge, Q.W. Zhang, B.W. Zhang, One-step synthesis of 3D sulfur/nitrogen dual-doped graphene supported nano silicon as anode for Li-ion batteries. Appl. Surf. Sci. 433, 367–373 (2018) R.H. Li, J.L. Li, K.Y. Qi, X. Ge, Q.W. Zhang, B.W. Zhang, One-step synthesis of 3D sulfur/nitrogen dual-doped graphene supported nano silicon as anode for Li-ion batteries. Appl. Surf. Sci. 433, 367–373 (2018)
13.
Zurück zum Zitat M. Sha, H. Zhang, Y.T. Nie, K.Q. Nie, X.X. Lv, N. Sun, X.K. Xie, Y.Y. Ma, X.H. Sun, Sn nanoparticles@ nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. J. Mater. Chem. A 5, 6277–6283 (2017) M. Sha, H. Zhang, Y.T. Nie, K.Q. Nie, X.X. Lv, N. Sun, X.K. Xie, Y.Y. Ma, X.H. Sun, Sn nanoparticles@ nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. J. Mater. Chem. A 5, 6277–6283 (2017)
14.
Zurück zum Zitat X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009) X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)
15.
Zurück zum Zitat J.P. Pender, J.V. Guerrera, B.R. Wygant, J.A. Weeks, R.A. Ciufo, J.N. Burrow, M.F. Walk, M.Z. Rahman, A. Heller, C.B. Mullins, Carbon nitride transforms into a high lithium storage capacity nitrogen-rich carbon. ACS Nano 13, 9279–9291 (2019) J.P. Pender, J.V. Guerrera, B.R. Wygant, J.A. Weeks, R.A. Ciufo, J.N. Burrow, M.F. Walk, M.Z. Rahman, A. Heller, C.B. Mullins, Carbon nitride transforms into a high lithium storage capacity nitrogen-rich carbon. ACS Nano 13, 9279–9291 (2019)
16.
Zurück zum Zitat D. Adekoya, X.X. Gu, M. Rudge, W. Wen, C. Lai, M. Hankel, S.Q. Zhang, Carbon nitride nanofibres with exceptional lithium storage capacity: from theoretical prediction to experimental implementation. Adv. Funct. Mater. 28, 1803972 (2018) D. Adekoya, X.X. Gu, M. Rudge, W. Wen, C. Lai, M. Hankel, S.Q. Zhang, Carbon nitride nanofibres with exceptional lithium storage capacity: from theoretical prediction to experimental implementation. Adv. Funct. Mater. 28, 1803972 (2018)
17.
Zurück zum Zitat W.H. Niu, Y. Yang, Graphitic carbon nitride for electrochemical energy conversion and storage. ACS Energy Lett. 3, 2796–2815 (2018) W.H. Niu, Y. Yang, Graphitic carbon nitride for electrochemical energy conversion and storage. ACS Energy Lett. 3, 2796–2815 (2018)
18.
Zurück zum Zitat J.Q. Wen, J. Xie, X.B. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017) J.Q. Wen, J. Xie, X.B. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017)
19.
Zurück zum Zitat E.G. Gillan, Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater. 12, 3906–3912 (2000) E.G. Gillan, Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater. 12, 3906–3912 (2000)
20.
Zurück zum Zitat S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-c3n4 fabricated by directly heating melamine. Langmuir 25(17), 10397–10401 (2009) S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-c3n4 fabricated by directly heating melamine. Langmuir 25(17), 10397–10401 (2009)
21.
Zurück zum Zitat J.J. Chen, Z.Y. Mao, L.X. Zhang, D.J. Wang, R. Xu, L.J. Bie, B.D. Fahlman, Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 11, 12650–12657 (2017) J.J. Chen, Z.Y. Mao, L.X. Zhang, D.J. Wang, R. Xu, L.J. Bie, B.D. Fahlman, Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 11, 12650–12657 (2017)
22.
Zurück zum Zitat M.H. Wu, Q. Wang, Q. Sun, P.R. Jena, Functionalized graphitic carbon nitride for efficient energy storage. J. Phys. Chem. C 117, 6055–6059 (2013) M.H. Wu, Q. Wang, Q. Sun, P.R. Jena, Functionalized graphitic carbon nitride for efficient energy storage. J. Phys. Chem. C 117, 6055–6059 (2013)
23.
Zurück zum Zitat L. Huang, H.B. Wei, F.S. Ke, X.Y. Fan, J.T. Li, S.G. Sun, Electrodeposition and lithium storage performance of three-dimensional porous reticular Sn-Ni alloy electrodes. Electrochim. Acta 54, 2693–2698 (2009) L. Huang, H.B. Wei, F.S. Ke, X.Y. Fan, J.T. Li, S.G. Sun, Electrodeposition and lithium storage performance of three-dimensional porous reticular Sn-Ni alloy electrodes. Electrochim. Acta 54, 2693–2698 (2009)
24.
Zurück zum Zitat L.X. Zhang, J.H. Zhao, H.Q. Lu, L. Li, J.F. Zheng, H. Li, Z.P. Zhu, Facile synthesis and ultrahigh ethanol response of hierarchically porous ZnO nanosheets. Sens. Actuators B 161, 209–215 (2012) L.X. Zhang, J.H. Zhao, H.Q. Lu, L. Li, J.F. Zheng, H. Li, Z.P. Zhu, Facile synthesis and ultrahigh ethanol response of hierarchically porous ZnO nanosheets. Sens. Actuators B 161, 209–215 (2012)
25.
Zurück zum Zitat H. Uwe, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation. Nat. Nanotech. 6, 534–534 (2011) H. Uwe, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation. Nat. Nanotech. 6, 534–534 (2011)
26.
Zurück zum Zitat X.H. Chang, T. Wang, Z.L. Liu, X.Y. Zheng, J. Zheng, X.G. Li, Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res 10, 1950–1958 (2017) X.H. Chang, T. Wang, Z.L. Liu, X.Y. Zheng, J. Zheng, X.G. Li, Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res 10, 1950–1958 (2017)
27.
Zurück zum Zitat J.H. Liu, T.K. Zhang, Z.C. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 21, 14398–14401 (2011) J.H. Liu, T.K. Zhang, Z.C. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 21, 14398–14401 (2011)
28.
Zurück zum Zitat P.A. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, J. Brauer, Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 424, 131–142 (2004) P.A. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, J. Brauer, Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 424, 131–142 (2004)
29.
Zurück zum Zitat B.D. Guo, Q.A. Liu, E.D. Chen, H.W. Zhu, L.A. Fang, J.R. Gong, Controllable N-doping of graphene. Nano Lett. 10, 4975–4980 (2010) B.D. Guo, Q.A. Liu, E.D. Chen, H.W. Zhu, L.A. Fang, J.R. Gong, Controllable N-doping of graphene. Nano Lett. 10, 4975–4980 (2010)
30.
Zurück zum Zitat G.P. Dong, Y.H. Zhang, Q.W. Pan, J.R. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 20, 33–50 (2014) G.P. Dong, Y.H. Zhang, Q.W. Pan, J.R. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 20, 33–50 (2014)
31.
Zurück zum Zitat J. Cao, C. Qin, Y. Wang, H. Zhang, G. Sun, Z. Zhang, Solid-state method synthesis of SnO2-decorated g-C3N4 nanocomposites with enhanced gas-sensing property to ethanol. Materials 10, 604 (2017) J. Cao, C. Qin, Y. Wang, H. Zhang, G. Sun, Z. Zhang, Solid-state method synthesis of SnO2-decorated g-C3N4 nanocomposites with enhanced gas-sensing property to ethanol. Materials 10, 604 (2017)
32.
Zurück zum Zitat C. Chen, Y. Lu, Y.Q. Ge, J.D. Zhu, H. Jiang, Y.Q. Li, Y. Hu, X.W. Zhang, Synthesis of nitrogen-doped electrospun carbon nanofibers as anode material for high-performance sodium-ion batteries. Energy Technol 4, 1440–1449 (2016) C. Chen, Y. Lu, Y.Q. Ge, J.D. Zhu, H. Jiang, Y.Q. Li, Y. Hu, X.W. Zhang, Synthesis of nitrogen-doped electrospun carbon nanofibers as anode material for high-performance sodium-ion batteries. Energy Technol 4, 1440–1449 (2016)
33.
Zurück zum Zitat G.H. Qin, H.J. Zhang, C.Y. Wang, Ultrasmall TiO2 nanoparticles embedded in nitrogen doped porous graphene for high rate and long life lithium ion batteries. J. Power Sources 272, 491–500 (2014) G.H. Qin, H.J. Zhang, C.Y. Wang, Ultrasmall TiO2 nanoparticles embedded in nitrogen doped porous graphene for high rate and long life lithium ion batteries. J. Power Sources 272, 491–500 (2014)
34.
Zurück zum Zitat K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008) K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008)
35.
Zurück zum Zitat B.H. He, G.Y. Li, L. Chen, Z.G. Chen, M.J. Jing, M.J. Zhou, N.B. Zhou, J.H. Zeng, Z.H. Hou, A facile N doping strategy to prepare mass-produced pyrrolic N-enriched carbon fibers with enhanced lithium storage properties. Electrochim. Acta 278, 106–113 (2018) B.H. He, G.Y. Li, L. Chen, Z.G. Chen, M.J. Jing, M.J. Zhou, N.B. Zhou, J.H. Zeng, Z.H. Hou, A facile N doping strategy to prepare mass-produced pyrrolic N-enriched carbon fibers with enhanced lithium storage properties. Electrochim. Acta 278, 106–113 (2018)
36.
Zurück zum Zitat A. Matkovic, A. Beltaos, M. Milicevic, U. Ralevic, B. Vasic, D. Jovanovic, R. Gajic, Spectroscopic imaging ellipsometry and Fano resonance modeling of graphene. J. Appl. Phys. 112, 123523 (2012) A. Matkovic, A. Beltaos, M. Milicevic, U. Ralevic, B. Vasic, D. Jovanovic, R. Gajic, Spectroscopic imaging ellipsometry and Fano resonance modeling of graphene. J. Appl. Phys. 112, 123523 (2012)
37.
Zurück zum Zitat R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, G. Gryglewicz, Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy. Materials 11, 1050 (2018) R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, G. Gryglewicz, Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy. Materials 11, 1050 (2018)
38.
Zurück zum Zitat Z.R. Wu, L.P. Wang, J. Huang, J. Zou, S.L. Chen, H. Cheng, C. Jiang, P. Gao, X.B. Niu, Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries. Electrochim. Acta 306, 446–453 (2019) Z.R. Wu, L.P. Wang, J. Huang, J. Zou, S.L. Chen, H. Cheng, C. Jiang, P. Gao, X.B. Niu, Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries. Electrochim. Acta 306, 446–453 (2019)
39.
Zurück zum Zitat Z.L. Xu, L. Fan, X.Y. Ni, J. Han, R. Guo, Sn-encapsulated N-doped porous carbon fibers for enhancing lithium-ion battery performance. RSC Adv. 9, 8753–8758 (2019) Z.L. Xu, L. Fan, X.Y. Ni, J. Han, R. Guo, Sn-encapsulated N-doped porous carbon fibers for enhancing lithium-ion battery performance. RSC Adv. 9, 8753–8758 (2019)
40.
Zurück zum Zitat H. Pan, graphitic carbon nitride nanotubes as Li-ion battery materials: a first-principles study. J. Phys. Chem. C 118, 9318–9323 (2014) H. Pan, graphitic carbon nitride nanotubes as Li-ion battery materials: a first-principles study. J. Phys. Chem. C 118, 9318–9323 (2014)
41.
Zurück zum Zitat Y.Q. Luo, Y. Yan, S.S. Zheng, H.G. Xue, H. Pang, Graphitic carbon nitride based materials for electrochemical energy storage. J. Mater. Chem. A 7, 901–924 (2019) Y.Q. Luo, Y. Yan, S.S. Zheng, H.G. Xue, H. Pang, Graphitic carbon nitride based materials for electrochemical energy storage. J. Mater. Chem. A 7, 901–924 (2019)
42.
Zurück zum Zitat J. Hassoun, G. Derrien, S. Panero, B. Scrosati, A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 20, 3169–3175 (2008) J. Hassoun, G. Derrien, S. Panero, B. Scrosati, A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 20, 3169–3175 (2008)
43.
Zurück zum Zitat Y. Yu, L. Gu, C.L. Wang, A. Dhanabalan, P.A. van Aken, J. Maier, Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew. Chem. Int. Ed. 48, 6485–6489 (2009) Y. Yu, L. Gu, C.L. Wang, A. Dhanabalan, P.A. van Aken, J. Maier, Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew. Chem. Int. Ed. 48, 6485–6489 (2009)
44.
Zurück zum Zitat Y.H. Xu, Q. Liu, Y.J. Zhu, Y.H. Liu, A. Langrock, M.R. Zachariah, C.S. Wang, Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 13, 470–474 (2013) Y.H. Xu, Q. Liu, Y.J. Zhu, Y.H. Liu, A. Langrock, M.R. Zachariah, C.S. Wang, Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 13, 470–474 (2013)
45.
Zurück zum Zitat C.F. Deng, Y. Liu, Z.P. Lu, C. Ma, T. Ge, W.L. Li, G. Yang, The effect of passivation film in preparation 3D structural carbon paper/tin oxide@carbon as freestanding anode for lithium-ion batteries. Appl. Surf. Sci. 435, 1307–1313 (2018) C.F. Deng, Y. Liu, Z.P. Lu, C. Ma, T. Ge, W.L. Li, G. Yang, The effect of passivation film in preparation 3D structural carbon paper/tin oxide@carbon as freestanding anode for lithium-ion batteries. Appl. Surf. Sci. 435, 1307–1313 (2018)
46.
Zurück zum Zitat J.P. Zou, L.C. Wang, J.M. Luo, Y.C. Nie, Q.J. Xing, X.B. Luo, H.M. Du, S.L. Luo, S.L. Suib, Synthesis and efficient visible light photocatalytic H-2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst. Appl. Catal. B 193, 103–109 (2016) J.P. Zou, L.C. Wang, J.M. Luo, Y.C. Nie, Q.J. Xing, X.B. Luo, H.M. Du, S.L. Luo, S.L. Suib, Synthesis and efficient visible light photocatalytic H-2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst. Appl. Catal. B 193, 103–109 (2016)
47.
Zurück zum Zitat C.C. Ma, X.H. Shao, D.P. Cao, Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J. Mater. Chem. 22, 8911–8915 (2012) C.C. Ma, X.H. Shao, D.P. Cao, Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J. Mater. Chem. 22, 8911–8915 (2012)
48.
Zurück zum Zitat F.C. Zheng, Y. Yang, Q.W. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 5, 5261 (2014) F.C. Zheng, Y. Yang, Q.W. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 5, 5261 (2014)
49.
Zurück zum Zitat G.H. An, Y.G. Lee, H.J. Ahn, Ultrafast ionic diffusion of debossed carbon nanocomposites for lithium storage. J Alloys Compd. 764, 416–423 (2018) G.H. An, Y.G. Lee, H.J. Ahn, Ultrafast ionic diffusion of debossed carbon nanocomposites for lithium storage. J Alloys Compd. 764, 416–423 (2018)
50.
Zurück zum Zitat Z.T. Li, G.L. Wu, S.Z. Deng, S.J. Wang, Y.K. Wang, J.Y. Zhou, S.P. Liu, W.T. Wu, M.B. Wu, Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode. Chem. Eng. J. 283, 1435–1442 (2016) Z.T. Li, G.L. Wu, S.Z. Deng, S.J. Wang, Y.K. Wang, J.Y. Zhou, S.P. Liu, W.T. Wu, M.B. Wu, Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode. Chem. Eng. J. 283, 1435–1442 (2016)
51.
Zurück zum Zitat Y.Y. Hsieh, Y.B. Fang, J. Daum, S.N. Kanakaraj, G.Q. Zhang, S. Mishra, S. Gbordzoe, V. Shanov, Bio-inspired, nitrogen doped CNT-graphene hybrid with amphiphilic properties as a porous current collector for lithium-ion batteries. Carbon 145, 677–689 (2019) Y.Y. Hsieh, Y.B. Fang, J. Daum, S.N. Kanakaraj, G.Q. Zhang, S. Mishra, S. Gbordzoe, V. Shanov, Bio-inspired, nitrogen doped CNT-graphene hybrid with amphiphilic properties as a porous current collector for lithium-ion batteries. Carbon 145, 677–689 (2019)
52.
Zurück zum Zitat X.D. Hu, X.H. Sun, S.J. Yoo, B. Evanko, F.R. Fan, S. Cai, C.M. Zheng, W.B. Hu, G.D. Stucky, Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy 56, 828–839 (2019) X.D. Hu, X.H. Sun, S.J. Yoo, B. Evanko, F.R. Fan, S. Cai, C.M. Zheng, W.B. Hu, G.D. Stucky, Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy 56, 828–839 (2019)
53.
Zurück zum Zitat Y.L. Zhang, Z.J. Mu, J.P. Lai, Y.G. Chao, Y. Yang, P. Zhou, Y.J. Li, W.X. Yang, Z.H. Xia, S.J. Guo, MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13, 2167–2175 (2019) Y.L. Zhang, Z.J. Mu, J.P. Lai, Y.G. Chao, Y. Yang, P. Zhou, Y.J. Li, W.X. Yang, Z.H. Xia, S.J. Guo, MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13, 2167–2175 (2019)
54.
Zurück zum Zitat D. Han, S. Xu, J. Li, B. Liu, G. Song, Z. Guo, N-doped onion-like carbon coated Sn nanocapsules as advanced anode for lithium-ion batteries. Mater. Lett. 199, 93–96 (2017) D. Han, S. Xu, J. Li, B. Liu, G. Song, Z. Guo, N-doped onion-like carbon coated Sn nanocapsules as advanced anode for lithium-ion batteries. Mater. Lett. 199, 93–96 (2017)
55.
Zurück zum Zitat B. Luo, B. Wang, X. Li, Y. Jia, M. Liang, L. Zhi, Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater. 24, 3538–3543 (2012) B. Luo, B. Wang, X. Li, Y. Jia, M. Liang, L. Zhi, Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater. 24, 3538–3543 (2012)
56.
Zurück zum Zitat M.Q. Guo, W.J. Meng, X.G. Zhang, X. Liu, Z.C. Bai, S. Chen, Z.H. Wang, F.Q. Yang, Electrochemical behavior and self-organization of porous Sn nanocrystals@acetylene black microspheres in lithium-ion half cells. Appl. Surf. Sci. 470, 36–43 (2019) M.Q. Guo, W.J. Meng, X.G. Zhang, X. Liu, Z.C. Bai, S. Chen, Z.H. Wang, F.Q. Yang, Electrochemical behavior and self-organization of porous Sn nanocrystals@acetylene black microspheres in lithium-ion half cells. Appl. Surf. Sci. 470, 36–43 (2019)
57.
Zurück zum Zitat Z.W. Zhang, L.W. Yin, Polyvinyl pyrrolidone wrapped sn nanoparticles/carbon xerogel composite as anode material for high performance lithium ion batteries. Electrochim. Acta 212, 594–602 (2016) Z.W. Zhang, L.W. Yin, Polyvinyl pyrrolidone wrapped sn nanoparticles/carbon xerogel composite as anode material for high performance lithium ion batteries. Electrochim. Acta 212, 594–602 (2016)
58.
Zurück zum Zitat S.L. Zhang, H.P. Du, J.J. He, C.S. Huang, H.B. Liu, G.L. Cui, Y.L. Li, Nitrogen-doped graphdiyne applied for lithium-ion storage. ACS Appl. Mater. Inter 8, 8467–8473 (2016) S.L. Zhang, H.P. Du, J.J. He, C.S. Huang, H.B. Liu, G.L. Cui, Y.L. Li, Nitrogen-doped graphdiyne applied for lithium-ion storage. ACS Appl. Mater. Inter 8, 8467–8473 (2016)
59.
Zurück zum Zitat W.H. Shin, H.M. Jeong, B.G. Kim, J.K. Kang, J.W. Choi, Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 12, 2283–2288 (2012) W.H. Shin, H.M. Jeong, B.G. Kim, J.K. Kang, J.W. Choi, Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 12, 2283–2288 (2012)
60.
Zurück zum Zitat Z.L. Jian, Z.Y. Xing, C. Bommier, Z.F. Li, X.L. Ji, Hard s. Adv. Energy Mater. 6, 1501874 (2016) Z.L. Jian, Z.Y. Xing, C. Bommier, Z.F. Li, X.L. Ji, Hard s. Adv. Energy Mater. 6, 1501874 (2016)
61.
Zurück zum Zitat Y.H. Tang, J.J. Chen, X. Wang, X.X. Wang, Y. Zhao, Z.Y. Mao, D.J. Wang, Fabrication of highly N-Doped graphene-like carbon templated from g-C3N4 nanosheets as promising Li-ions battery anode. Electrochim. Acta 324, 134880 (2019) Y.H. Tang, J.J. Chen, X. Wang, X.X. Wang, Y. Zhao, Z.Y. Mao, D.J. Wang, Fabrication of highly N-Doped graphene-like carbon templated from g-C3N4 nanosheets as promising Li-ions battery anode. Electrochim. Acta 324, 134880 (2019)
Metadaten
Titel
Ultrahigh nitrogen-doped carbon/superfine-Sn particles for lithium ion battery anode
verfasst von
Han Bi
Xin Li
Jingjing Chen
Lexi Zhang
Lijian Bie
Publikationsdatum
02.11.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 24/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04723-7

Weitere Artikel der Ausgabe 24/2020

Journal of Materials Science: Materials in Electronics 24/2020 Zur Ausgabe