Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 15/2021

22.07.2021

Influence of Au plasmons and their synergistic effects with ZnO nanorods for photoelectrochemical water splitting applications

verfasst von: Sayed Abdul Saboor, Vidhika Sharma, Ebrima L. Darboe, Vidya Doiphode, Ashvini Punde, Pratibha Shinde, Vijaya Jadkar, Yogesh Hase, Ashish Waghmare, Mohit Prasad, Sandesh Jadkar

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 15/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Herein, Au plasmons and their synergistic effects with ZnO nanorods (ZNs) have been investigated for photoelectrochemical (PEC) water splitting application. Au plasmons and ZNs are deposited electrochemically. Au-modified nanostructures have absorption in the visible region as plasmons enhance charge transfer and inhibit charge recombination. ZNs modified with Au (deposition duration ~ 60 s) have a photo-current density of ~ 660 μA cm−2, at a bias of 1.0 V/SCE. X-ray diffraction (XRD) and scanning electron microscopy were used to study the structure and surface morphology of fabricated photoanodes. In addition, UV–Visible absorption and Photoluminescence spectroscopy were used for optical characterization. We have recorded current–voltage measurements and photo-conversion efficiency measurements to substantiate our observations of the synthesized photoanodes for future application in PEC splitting of water. We have also carried out Mott-Schottky and electrochemical impedance spectroscopy analysis. The analysis reveals that Au-modified ZNs-based photoanodes are a better proposition than their bare counterparts for PEC water splitting application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.G. Nocera, The artificial leaf. Acc. Chem. Res. 45(5), 767–776 (2012)CrossRef D.G. Nocera, The artificial leaf. Acc. Chem. Res. 45(5), 767–776 (2012)CrossRef
2.
Zurück zum Zitat Y. Tachibana, L. Vayssieres, J.R. Durrant, Artificial photosynthesis for solar water-splitting. Nat. Photon 6, 511–518 (2012)CrossRef Y. Tachibana, L. Vayssieres, J.R. Durrant, Artificial photosynthesis for solar water-splitting. Nat. Photon 6, 511–518 (2012)CrossRef
3.
Zurück zum Zitat I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy 40(34), 11094–11111 (2015)CrossRef I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy 40(34), 11094–11111 (2015)CrossRef
4.
Zurück zum Zitat C. Acar, I. Dincer, Experimental investigation and analysis of a hybrid photoelectrochemical hydrogen production system. Int. J. Hydrog. Energy 39(28), 15362–15372 (2014)CrossRef C. Acar, I. Dincer, Experimental investigation and analysis of a hybrid photoelectrochemical hydrogen production system. Int. J. Hydrog. Energy 39(28), 15362–15372 (2014)CrossRef
5.
Zurück zum Zitat Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties and outlook. Energy Environ. Sci. 6, 347–370 (2013)CrossRef Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties and outlook. Energy Environ. Sci. 6, 347–370 (2013)CrossRef
6.
Zurück zum Zitat T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy Materials-related aspects. Int. J. Hydrog. Energy 27, 991–1022 (2002)CrossRef T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy Materials-related aspects. Int. J. Hydrog. Energy 27, 991–1022 (2002)CrossRef
7.
Zurück zum Zitat X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)CrossRef X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)CrossRef
8.
Zurück zum Zitat Z. Chen, H. Dinh, E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental, Methods and Protocols (Springer, New York, 2013)CrossRef Z. Chen, H. Dinh, E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental, Methods and Protocols (Springer, New York, 2013)CrossRef
9.
Zurück zum Zitat M. Prasad, V. Sharma, A. Rokade, S. Jadkar, Photoelectrochemical cell: a versatile device for sustainable hydrogen production. Photoelectrochem. Sol Cells 30, 59–119 (2018)CrossRef M. Prasad, V. Sharma, A. Rokade, S. Jadkar, Photoelectrochemical cell: a versatile device for sustainable hydrogen production. Photoelectrochem. Sol Cells 30, 59–119 (2018)CrossRef
10.
Zurück zum Zitat Y. Sivan, Y. Dubi, Recent developments in plasmon-assisted phototcatalysis-A personal perspective. Appl. Phys. Lett. 117, 130501 (2020)CrossRef Y. Sivan, Y. Dubi, Recent developments in plasmon-assisted phototcatalysis-A personal perspective. Appl. Phys. Lett. 117, 130501 (2020)CrossRef
11.
Zurück zum Zitat W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013)CrossRef W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013)CrossRef
12.
Zurück zum Zitat M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)CrossRef M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)CrossRef
13.
Zurück zum Zitat F. Wu, X. Hu, J. Fan, E. Liu, T. Sun, L. Kang, W. Hou, C. Zhu, H. Liu, Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 8(2), 501–508 (2013)CrossRef F. Wu, X. Hu, J. Fan, E. Liu, T. Sun, L. Kang, W. Hou, C. Zhu, H. Liu, Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 8(2), 501–508 (2013)CrossRef
14.
Zurück zum Zitat J. Lee, S. Mubeen, X. Ji, G.D. Stucky, M. Moskovits, Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 12, 5014–5019 (2012)CrossRef J. Lee, S. Mubeen, X. Ji, G.D. Stucky, M. Moskovits, Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 12, 5014–5019 (2012)CrossRef
15.
Zurück zum Zitat Y. Wei, L. Ke, J. Kong, H. Liu, H. Jiao, X. Lu, H. Du, X.W. Sun, Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology 23, 235401–235409 (2012)CrossRef Y. Wei, L. Ke, J. Kong, H. Liu, H. Jiao, X. Lu, H. Du, X.W. Sun, Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology 23, 235401–235409 (2012)CrossRef
16.
Zurück zum Zitat X. Zhang, Y. Liu, Z. Kang, 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. Appl. Mater. Interfaces 6, 4480–4489 (2014)CrossRef X. Zhang, Y. Liu, Z. Kang, 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. Appl. Mater. Interfaces 6, 4480–4489 (2014)CrossRef
17.
Zurück zum Zitat J. Li, S.K. Cushing, P. Zheng, F. Meng, D. Chu, N. Wu, Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 4, 2651–2659 (2013)CrossRef J. Li, S.K. Cushing, P. Zheng, F. Meng, D. Chu, N. Wu, Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 4, 2651–2659 (2013)CrossRef
18.
Zurück zum Zitat I. Zhang, C.Y. Lin, V.K. Valev, E. Reisner, U. Steiner, J.J. Baumberg, Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting. Small 10, 3970–3978 (2014)CrossRef I. Zhang, C.Y. Lin, V.K. Valev, E. Reisner, U. Steiner, J.J. Baumberg, Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting. Small 10, 3970–3978 (2014)CrossRef
19.
Zurück zum Zitat Z. Yin, B. Chen, M. Bosman, X. Cao, J. Chen, B. Zheng, H. Zhang, Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. Small 10, 3537–3543 (2014)CrossRef Z. Yin, B. Chen, M. Bosman, X. Cao, J. Chen, B. Zheng, H. Zhang, Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. Small 10, 3537–3543 (2014)CrossRef
20.
Zurück zum Zitat A. Sheikh, A. Yengantiwar, M. Deo, S. Kelkar, S. Ogale, Near-field plasmonic functionalization of light harvesting oxide–oxide heterojunctions for efficient solar photoelectrochemical water splitting: the AuNP/ZnFe2O4/ZnO system. Small 9, 2091–2096 (2013)CrossRef A. Sheikh, A. Yengantiwar, M. Deo, S. Kelkar, S. Ogale, Near-field plasmonic functionalization of light harvesting oxide–oxide heterojunctions for efficient solar photoelectrochemical water splitting: the AuNP/ZnFe2O4/ZnO system. Small 9, 2091–2096 (2013)CrossRef
21.
Zurück zum Zitat Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, H. Misawa, Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy. Angew Chem. Int. Ed. 53, 10350–10354 (2014)CrossRef Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, H. Misawa, Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy. Angew Chem. Int. Ed. 53, 10350–10354 (2014)CrossRef
22.
Zurück zum Zitat W.T. Kung, Y.H. Pai, Y.K. Hsu, C.H. Lin, C.M. Wang, Surface plasmon assisted CuxO photocatalyst for pure water splitting. Opt. Express 21, A221–A228 (2013)CrossRef W.T. Kung, Y.H. Pai, Y.K. Hsu, C.H. Lin, C.M. Wang, Surface plasmon assisted CuxO photocatalyst for pure water splitting. Opt. Express 21, A221–A228 (2013)CrossRef
23.
Zurück zum Zitat X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331–2336 (2009)CrossRef X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331–2336 (2009)CrossRef
24.
Zurück zum Zitat M. Gupta, V. Sharma, J. Shrivastava, A. Solanki, A.P. Singh, V.R. Satsangi, S. Dass, R. Shrivastav, Preparation and characterization of nanostructured ZnO thin films for photoelectrochemical splitting of water. Bull. Mater. Sci. 32, 23–30 (2009)CrossRef M. Gupta, V. Sharma, J. Shrivastava, A. Solanki, A.P. Singh, V.R. Satsangi, S. Dass, R. Shrivastav, Preparation and characterization of nanostructured ZnO thin films for photoelectrochemical splitting of water. Bull. Mater. Sci. 32, 23–30 (2009)CrossRef
25.
Zurück zum Zitat J. Han, Z. Liu, K. Guo, B. Wang, X. Zhang, T. Hong, High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays. Appl. Catal. B 163, 179–188 (2015)CrossRef J. Han, Z. Liu, K. Guo, B. Wang, X. Zhang, T. Hong, High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays. Appl. Catal. B 163, 179–188 (2015)CrossRef
26.
Zurück zum Zitat T. Hong, Z. Liu, H. Liu, L. Junqi, X. Zhang, J. Han, K. Guo, B. Wang, Preparation and enhanced photoelectrochemical performance of selenite-sensitized zinc oxide core/shell composite structure. J. Mater. Chem. A 3, 4239–4247 (2015)CrossRef T. Hong, Z. Liu, H. Liu, L. Junqi, X. Zhang, J. Han, K. Guo, B. Wang, Preparation and enhanced photoelectrochemical performance of selenite-sensitized zinc oxide core/shell composite structure. J. Mater. Chem. A 3, 4239–4247 (2015)CrossRef
27.
Zurück zum Zitat L. Yan, W. Zhao, Z. Liu, 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Dalton Trans 45, 11346–11352 (2016)CrossRef L. Yan, W. Zhao, Z. Liu, 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Dalton Trans 45, 11346–11352 (2016)CrossRef
28.
Zurück zum Zitat A. Janotti, C.G.V. Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501–126529 (2009)CrossRef A. Janotti, C.G.V. Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501–126529 (2009)CrossRef
29.
Zurück zum Zitat Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 16, R829–R858 (2004)CrossRef Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 16, R829–R858 (2004)CrossRef
30.
Zurück zum Zitat V. Sharma, P. Kumar, J. Shrivastava, A. Solanki, V.R. Satsangi, S. Dass, R. Shrivastav, Vertically aligned nanocrystalline Cu-ZnO thin films for photoelectrochemical splitting of water. J. Mater. Sci. 46, 3792–3801 (2011)CrossRef V. Sharma, P. Kumar, J. Shrivastava, A. Solanki, V.R. Satsangi, S. Dass, R. Shrivastav, Vertically aligned nanocrystalline Cu-ZnO thin films for photoelectrochemical splitting of water. J. Mater. Sci. 46, 3792–3801 (2011)CrossRef
31.
Zurück zum Zitat V. Sharma, P. Kumar, N. Singh, S. Upadhyay, V.R. Satsangi, S. Dass, R. Shrivastav, Photoelectrochemical water splitting with nanocrystalline Zn1−xRuxO thin films. Int. J. Hydrog. Energy 37, 12138–12149 (2012)CrossRef V. Sharma, P. Kumar, N. Singh, S. Upadhyay, V.R. Satsangi, S. Dass, R. Shrivastav, Photoelectrochemical water splitting with nanocrystalline Zn1−xRuxO thin films. Int. J. Hydrog. Energy 37, 12138–12149 (2012)CrossRef
32.
Zurück zum Zitat V. Sharma, M. Dixit, V.R. Satsangi, S. Dass, S. Pal, R. Shrivastav, Photoelectrochemical splitting of water with nanocrystalline Zn1−xMnxO thin films: first-Principle DFT computations supporting the systematic experimental endeavor. Int. J. Hydrog. Energy 39, 3637–3648 (2014)CrossRef V. Sharma, M. Dixit, V.R. Satsangi, S. Dass, S. Pal, R. Shrivastav, Photoelectrochemical splitting of water with nanocrystalline Zn1−xMnxO thin films: first-Principle DFT computations supporting the systematic experimental endeavor. Int. J. Hydrog. Energy 39, 3637–3648 (2014)CrossRef
33.
Zurück zum Zitat V. Sharma, M. Prasad, S. Jadkar, S. Pal, Influence of carbon and phosphorus doping on electronic properties of ZnO. J. Mater. Sci. Mater. Electron. 27(12), 12318–12322 (2013)CrossRef V. Sharma, M. Prasad, S. Jadkar, S. Pal, Influence of carbon and phosphorus doping on electronic properties of ZnO. J. Mater. Sci. Mater. Electron. 27(12), 12318–12322 (2013)CrossRef
34.
Zurück zum Zitat Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun, Y. Zhang, Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res. 8, 2891–2900 (2015)CrossRef Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun, Y. Zhang, Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res. 8, 2891–2900 (2015)CrossRef
35.
Zurück zum Zitat S.M. Lam, J.A. Quek, J.C. Sin, Mechanistic investigation of visible light responsive Ag/ZnO micro/nanoflowers for enhanced photocatalytic performance and antibacterial activity. J. Photochem. Photobiol., A 353, 171–184 (2018)CrossRef S.M. Lam, J.A. Quek, J.C. Sin, Mechanistic investigation of visible light responsive Ag/ZnO micro/nanoflowers for enhanced photocatalytic performance and antibacterial activity. J. Photochem. Photobiol., A 353, 171–184 (2018)CrossRef
36.
Zurück zum Zitat R.B. Wei, P.Y. Kuang, H. Cheng, Y.B. Chen, J.Y. Long, M.Y. Zhang, Z.Q. Liu, Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustain. Chem. Eng. 5(5), 4249–4257 (2017)CrossRef R.B. Wei, P.Y. Kuang, H. Cheng, Y.B. Chen, J.Y. Long, M.Y. Zhang, Z.Q. Liu, Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustain. Chem. Eng. 5(5), 4249–4257 (2017)CrossRef
37.
Zurück zum Zitat T. Wang, R. Lv, P. Zhang, C. Li, J. Gong, Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale 7, 77–81 (2015)CrossRef T. Wang, R. Lv, P. Zhang, C. Li, J. Gong, Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale 7, 77–81 (2015)CrossRef
38.
Zurück zum Zitat B. Kumari, S. Sharma, V.R. Satsangi, S. Dass, R. Shrivastav, Surface deposition of Ag and Au nano-isles on ZnO thin films yields enhanced photoelectrochemical splitting of water. J. Appl. Electrochem. 45, 299–312 (2015)CrossRef B. Kumari, S. Sharma, V.R. Satsangi, S. Dass, R. Shrivastav, Surface deposition of Ag and Au nano-isles on ZnO thin films yields enhanced photoelectrochemical splitting of water. J. Appl. Electrochem. 45, 299–312 (2015)CrossRef
39.
Zurück zum Zitat M. Uddin, M. Alam, A. Asiri, M. Rahman, T. Toupance, M. Islam, A novel highly selective electrochemical chlorobenzene sensor based on ternary oxide RuO2/ZnO/TiO2 nanocomposites. RSC Adv. 10, 122–132 (2020)CrossRef M. Uddin, M. Alam, A. Asiri, M. Rahman, T. Toupance, M. Islam, A novel highly selective electrochemical chlorobenzene sensor based on ternary oxide RuO2/ZnO/TiO2 nanocomposites. RSC Adv. 10, 122–132 (2020)CrossRef
40.
Zurück zum Zitat Y. Liu, X. Yan, Z. Kang, Y. Li, Y. Shen, Y. Sun, L. Wang, Y. Zhang, Synergistic effect of surface plasmonic particles and surface passivation layer on ZnO nanorods array for improved photoelectrochemical water splitting. Sci. Rep. 6, 29907 (2016)CrossRef Y. Liu, X. Yan, Z. Kang, Y. Li, Y. Shen, Y. Sun, L. Wang, Y. Zhang, Synergistic effect of surface plasmonic particles and surface passivation layer on ZnO nanorods array for improved photoelectrochemical water splitting. Sci. Rep. 6, 29907 (2016)CrossRef
41.
Zurück zum Zitat T.H. Nguyen, T.A. Do, H.T. Giang, T.G. Ho, Q.N. Pham, M.T. Man, Effect of metal-support couplings on the photocatalytic performance of Au-decorated ZnO nanorods. J. Mater. Sci.: Mater. Electron. 31, 14946–14952 (2020) T.H. Nguyen, T.A. Do, H.T. Giang, T.G. Ho, Q.N. Pham, M.T. Man, Effect of metal-support couplings on the photocatalytic performance of Au-decorated ZnO nanorods. J. Mater. Sci.: Mater. Electron. 31, 14946–14952 (2020)
42.
Zurück zum Zitat T. Do, T.G. Ho, T.H. Bui, Q.N. Pham, H.T. Giang, T.T. Do, D.V. Nguyen, D.L. Tran, Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices. Beilstein J. Nanotechnol. 9, 771–779 (2018)CrossRef T. Do, T.G. Ho, T.H. Bui, Q.N. Pham, H.T. Giang, T.T. Do, D.V. Nguyen, D.L. Tran, Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices. Beilstein J. Nanotechnol. 9, 771–779 (2018)CrossRef
44.
Zurück zum Zitat J. Lin, Y.U. Heo, A. Nattestad, Z. Sun, L. Wang, J.H. Kim, S.X. Dou, 3D Hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency. Sci. Rep. 4, 5769 (2014)CrossRef J. Lin, Y.U. Heo, A. Nattestad, Z. Sun, L. Wang, J.H. Kim, S.X. Dou, 3D Hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency. Sci. Rep. 4, 5769 (2014)CrossRef
45.
Zurück zum Zitat C. Windisch, G. Exarhos, Vac, Mott-Schottky analysis of thin ZnO films. J. Sci. Technol. 18, 1677–1680 (2000) C. Windisch, G. Exarhos, Vac, Mott-Schottky analysis of thin ZnO films. J. Sci. Technol. 18, 1677–1680 (2000)
46.
Zurück zum Zitat B. Bera, A. Chakraborty, T. Kar, P. Leuaa, M. Neergat, Density of states, carrier concentration, and flat band potential derived from electrochemical impedance measurements of N doped carbon and their influence on electrocatalysis of oxygen reduction reaction. Phys. J. Chem. C. 121, 20850–20856 (2017)CrossRef B. Bera, A. Chakraborty, T. Kar, P. Leuaa, M. Neergat, Density of states, carrier concentration, and flat band potential derived from electrochemical impedance measurements of N doped carbon and their influence on electrocatalysis of oxygen reduction reaction. Phys. J. Chem. C. 121, 20850–20856 (2017)CrossRef
Metadaten
Titel
Influence of Au plasmons and their synergistic effects with ZnO nanorods for photoelectrochemical water splitting applications
verfasst von
Sayed Abdul Saboor
Vidhika Sharma
Ebrima L. Darboe
Vidya Doiphode
Ashvini Punde
Pratibha Shinde
Vijaya Jadkar
Yogesh Hase
Ashish Waghmare
Mohit Prasad
Sandesh Jadkar
Publikationsdatum
22.07.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 15/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06564-4

Weitere Artikel der Ausgabe 15/2021

Journal of Materials Science: Materials in Electronics 15/2021 Zur Ausgabe

Neuer Inhalt