Skip to main content
Erschienen in: Journal of Scientific Computing 2/2017

12.11.2016

Parallel Multi-Block ADMM with o(1 / k) Convergence

verfasst von: Wei Deng, Ming-Jun Lai, Zhimin Peng, Wotao Yin

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints:
$$\begin{aligned} \text {minimize} ~~&f_1(\mathbf{x}_1) + \cdots + f_N(\mathbf{x}_N)\\ \text {subject to}~~&A_1 \mathbf{x}_1 ~+ \cdots + A_N\mathbf{x}_N =c,\\&\mathbf{x}_1\in {\mathcal {X}}_1,~\ldots , ~\mathbf{x}_N\in {\mathcal {X}}_N, \end{aligned}$$
where \(N \ge 2\), \(f_i\) are convex functions, \(A_i\) are matrices, and \({\mathcal {X}}_i\) are feasible sets for variable \(\mathbf{x}_i\). Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the N-block Jacobi fashion and preserve convergence in the following two cases: (i) matrices \(A_i\) are mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to the N subproblems (but without any assumption on matrices \(A_i\)). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that \(\Vert {\mathbf {x}}^{k+1} - {\mathbf {x}}^k\Vert _M^2\) converges at a rate of o(1 / k) where M is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Awanou, G., Lai, M.J., Wenston, P.: The multivariate spline method for numerical solution of partial differential equations and scattered data interpolation. In: Chen, G., Lai, M.J. (eds.) Wavelets and Splines, pp. 24–74. Nashboro Press, Nashville (2006) Awanou, G., Lai, M.J., Wenston, P.: The multivariate spline method for numerical solution of partial differential equations and scattered data interpolation. In: Chen, G., Lai, M.J. (eds.) Wavelets and Splines, pp. 24–74. Nashboro Press, Nashville (2006)
2.
Zurück zum Zitat Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical Methods, 2nd edn. Athena Scientific, Belmont (1997)MATH Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical Methods, 2nd edn. Athena Scientific, Belmont (1997)MATH
3.
Zurück zum Zitat Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)CrossRefMATH Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)CrossRefMATH
4.
Zurück zum Zitat Chandrasekaran, V., Parrilo, P.A., Willsky, A.S.: Latent variable graphical model selection via convex optimization. Ann. Stat. 40(4), 1935–1967 (2012)MathSciNetCrossRefMATH Chandrasekaran, V., Parrilo, P.A., Willsky, A.S.: Latent variable graphical model selection via convex optimization. Ann. Stat. 40(4), 1935–1967 (2012)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Chen, C., He, B.S., Ye, Y.Y., Yuan, X.M.: The direct extension of admm for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155(1), 57–79 (2016)MathSciNetCrossRefMATH Chen, C., He, B.S., Ye, Y.Y., Yuan, X.M.: The direct extension of admm for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155(1), 57–79 (2016)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Chen, C., Shen, Y., You, Y.: On the convergence analysis of the alternating direction method of multipliers with three blocks. Abstr. Appl. Anal. 2013, 183961 (2013)MathSciNetMATH Chen, C., Shen, Y., You, Y.: On the convergence analysis of the alternating direction method of multipliers with three blocks. Abstr. Appl. Anal. 2013, 183961 (2013)MathSciNetMATH
7.
Zurück zum Zitat Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64(1), 81–101 (1994)MathSciNetCrossRefMATH Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64(1), 81–101 (1994)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Corman, E., Yuan, X.M.: A generalized proximal point algorithm and its convergence rate. SIAM J. Optim. 24(4), 1614–1638 (2014)MathSciNetCrossRefMATH Corman, E., Yuan, X.M.: A generalized proximal point algorithm and its convergence rate. SIAM J. Optim. 24(4), 1614–1638 (2014)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. UCLA CAM Report, pp. 14–51 (2014) Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. UCLA CAM Report, pp. 14–51 (2014)
10.
Zurück zum Zitat Davis, D., Yin, W.: Convergence rates of relaxed peaceman–rachford and admm under regularity assumptions. UCLA CAM Report, pp. 14–58 (2014) Davis, D., Yin, W.: Convergence rates of relaxed peaceman–rachford and admm under regularity assumptions. UCLA CAM Report, pp. 14–58 (2014)
11.
Zurück zum Zitat Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. UCLA CAM Report, pp. 15–13 (2015) Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. UCLA CAM Report, pp. 15–13 (2015)
12.
Zurück zum Zitat Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)MathSciNetCrossRef Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)MathSciNetCrossRef
13.
Zurück zum Zitat Everett, H.: Generalized lagrange multiplier method for solving problems of optimum allocation of resources. Oper. Res. 11(3), 399–417 (1963)MathSciNetCrossRefMATH Everett, H.: Generalized lagrange multiplier method for solving problems of optimum allocation of resources. Oper. Res. 11(3), 399–417 (1963)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)CrossRefMATH Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)CrossRefMATH
15.
Zurück zum Zitat Glowinski, R.: Numerical methods for nonlinear variational problems. Springer Series in Computational Physics. Springer, Berlin (1984) Glowinski, R.: Numerical methods for nonlinear variational problems. Springer Series in Computational Physics. Springer, Berlin (1984)
16.
Zurück zum Zitat Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Laboria (1975) Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Laboria (1975)
17.
Zurück zum Zitat Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7(3), 1588–1623 (2014)MathSciNetCrossRefMATH Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7(3), 1588–1623 (2014)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Han, D., Yuan, X.: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155(1), 227–238 (2012)MathSciNetCrossRefMATH Han, D., Yuan, X.: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155(1), 227–238 (2012)MathSciNetCrossRefMATH
19.
Zurück zum Zitat He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35(1), 69–76 (1997)MathSciNetCrossRefMATH He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35(1), 69–76 (1997)MathSciNetCrossRefMATH
20.
Zurück zum Zitat He, B.S.: Parallel splitting augmented lagrangian methods for monotone structured variational inequalities. Comput. Optim. Appl. 42(2), 195–212 (2009)MathSciNetCrossRefMATH He, B.S.: Parallel splitting augmented lagrangian methods for monotone structured variational inequalities. Comput. Optim. Appl. 42(2), 195–212 (2009)MathSciNetCrossRefMATH
21.
Zurück zum Zitat He, B.S., Hou, L.S., Yuan, X.M.: On full Jacobian decomposition of the augmented lagrangian method for separable convex programming. SIAM J. Optim. 25, 2274–2312 (2015)MathSciNetCrossRefMATH He, B.S., Hou, L.S., Yuan, X.M.: On full Jacobian decomposition of the augmented lagrangian method for separable convex programming. SIAM J. Optim. 25, 2274–2312 (2015)MathSciNetCrossRefMATH
22.
Zurück zum Zitat He, B.S., Tao, M., Yuan, X.M.: Alternating direction method with gaussian back substitution for separable convex programming. SIAM J. Optim. 22(2), 313–340 (2012)MathSciNetCrossRefMATH He, B.S., Tao, M., Yuan, X.M.: Alternating direction method with gaussian back substitution for separable convex programming. SIAM J. Optim. 22(2), 313–340 (2012)MathSciNetCrossRefMATH
23.
Zurück zum Zitat He, B.S., Yuan, X.M.: On the \(O(1/n)\) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)MathSciNetCrossRefMATH He, B.S., Yuan, X.M.: On the \(O(1/n)\) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)MathSciNetCrossRefMATH
24.
Zurück zum Zitat He, B.S., Yuan, X.M.: On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers. Numer. Math. 130(3), 567–577 (2015)MathSciNetCrossRefMATH He, B.S., Yuan, X.M.: On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers. Numer. Math. 130(3), 567–577 (2015)MathSciNetCrossRefMATH
25.
26.
Zurück zum Zitat Li, M., Sun, D., Toh, K.C.: A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block. arXiv:1410.7933 [math] (2014) Li, M., Sun, D., Toh, K.C.: A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block. arXiv:​1410.​7933 [math] (2014)
28.
Zurück zum Zitat Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)MathSciNetCrossRefMATH Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Mota, J.F., Xavier, J.M., Aguiar, P.M., Puschel, M.: D-admm: a communication-efficient distributed algorithm for separable optimization. IEEE Trans. Signal Process. 61, 2718–2723 (2013)MathSciNetCrossRef Mota, J.F., Xavier, J.M., Aguiar, P.M., Puschel, M.: D-admm: a communication-efficient distributed algorithm for separable optimization. IEEE Trans. Signal Process. 61, 2718–2723 (2013)MathSciNetCrossRef
31.
Zurück zum Zitat Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2233–2246 (2012)CrossRef Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2233–2246 (2012)CrossRef
32.
Zurück zum Zitat Peng, Z., Yan, M., Yin, W.: Parallel and distributed sparse optimization. In: IEEE Asilomar Conference on Signals Systems and Computers (2013) Peng, Z., Yan, M., Yin, W.: Parallel and distributed sparse optimization. In: IEEE Asilomar Conference on Signals Systems and Computers (2013)
33.
Zurück zum Zitat Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997)MATH Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997)MATH
34.
Zurück zum Zitat Shor, N.Z., Kiwiel, K.C., Ruszcayski, A.: Minimization Methods for Non-differentiable Functions. Springer, New York (1985)CrossRef Shor, N.Z., Kiwiel, K.C., Ruszcayski, A.: Minimization Methods for Non-differentiable Functions. Springer, New York (1985)CrossRef
35.
Zurück zum Zitat Tao, M., Yuan, X.M.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21(1), 57–81 (2011)MathSciNetCrossRefMATH Tao, M., Yuan, X.M.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21(1), 57–81 (2011)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Wang, X.F., Hong, M.Y., Ma, S.Q., Luo, Z.Q.: Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers. Pac. J. Optim. 11(4), 57–81 (2015)MathSciNetMATH Wang, X.F., Hong, M.Y., Ma, S.Q., Luo, Z.Q.: Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers. Pac. J. Optim. 11(4), 57–81 (2015)MathSciNetMATH
37.
Zurück zum Zitat Yang, J.F., Zhang, Y.: Alternating direction algorithms for \(\ell _1\)-problems in compressive sensing. SIAM J. Sci. Comput. 33(1), 250–278 (2011)MathSciNetCrossRef Yang, J.F., Zhang, Y.: Alternating direction algorithms for \(\ell _1\)-problems in compressive sensing. SIAM J. Sci. Comput. 33(1), 250–278 (2011)MathSciNetCrossRef
38.
Zurück zum Zitat Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)MathSciNetCrossRefMATH Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)MathSciNetCrossRefMATH
Metadaten
Titel
Parallel Multi-Block ADMM with o(1 / k) Convergence
verfasst von
Wei Deng
Ming-Jun Lai
Zhimin Peng
Wotao Yin
Publikationsdatum
12.11.2016
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0318-2

Weitere Artikel der Ausgabe 2/2017

Journal of Scientific Computing 2/2017 Zur Ausgabe

Premium Partner