Skip to main content
Erschienen in: Journal of Scientific Computing 1/2017

11.03.2017

The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for Solving the Time Multi-term and Distributed-Order Fractional Sub-diffusion Equations

verfasst von: Guang-hua Gao, Anatoly A. Alikhanov, Zhi-zhong Sun

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, a special point is found for the interpolation approximation of the linear combination of multi-term fractional derivatives. The derived numerical differentiation formula can achieve at least second order accuracy. Then the formula is used to numerically solve the time multi-term and distributed-order fractional sub-diffusion equations. Several unconditionally stable and convergent difference schemes are presented. The stability and convergence of the difference schemes are discussed. Some numerical examples are provided to show the efficiency of the proposed difference schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH
2.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH
3.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
4.
Zurück zum Zitat Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. CRC Press, Boca Raton (2015)MATH Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. CRC Press, Boca Raton (2015)MATH
6.
Zurück zum Zitat Chen, C., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)MathSciNetCrossRefMATH Chen, C., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Chen, C., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)MathSciNetCrossRefMATH Chen, C., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)MathSciNetCrossRefMATH Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)MathSciNetCrossRefMATH
9.
10.
Zurück zum Zitat Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetCrossRefMATH Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)MathSciNetCrossRefMATH Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)MathSciNetCrossRefMATH
13.
14.
Zurück zum Zitat Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRefMATH Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)MathSciNetCrossRefMATH Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetCrossRefMATH Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Pang, H., Sun, H.: Fourth order finite difference schemes for time-space fractional sub-diffusion equations. Comput. Math. Appl. 71, 1287–1302 (2016)MathSciNetCrossRef Pang, H., Sun, H.: Fourth order finite difference schemes for time-space fractional sub-diffusion equations. Comput. Math. Appl. 71, 1287–1302 (2016)MathSciNetCrossRef
18.
Zurück zum Zitat Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRefMATH Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRefMATH
19.
20.
Zurück zum Zitat Vong, S., Lyu, P., Chen, X., Lei, S.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72, 195–210 (2016)MathSciNetCrossRefMATH Vong, S., Lyu, P., Chen, X., Lei, S.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72, 195–210 (2016)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Chen, A., Li, C.: A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions. Int. J. Comput. Math. 93, 889–914 (2016)MathSciNetCrossRefMATH Chen, A., Li, C.: A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions. Int. J. Comput. Math. 93, 889–914 (2016)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)MathSciNetCrossRefMATH Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Shiralashetti, S.C., Deshi, A.B.: An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations. Nonlinear Dyn. 83, 293–303 (2016)MathSciNetCrossRef Shiralashetti, S.C., Deshi, A.B.: An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations. Nonlinear Dyn. 83, 293–303 (2016)MathSciNetCrossRef
24.
Zurück zum Zitat Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374, 538–548 (2011)MathSciNetCrossRefMATH Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374, 538–548 (2011)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)MathSciNetCrossRefMATH Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)MathSciNetCrossRefMATH Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Hesameddini, E., Rahimi, A., Asadollahifard, E.: On the convergence of a new reliable algorithm for solving multi-order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 34, 154–164 (2016)MathSciNetCrossRef Hesameddini, E., Rahimi, A., Asadollahifard, E.: On the convergence of a new reliable algorithm for solving multi-order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 34, 154–164 (2016)MathSciNetCrossRef
29.
Zurück zum Zitat Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64, 3377–3388 (2012)MathSciNetCrossRefMATH Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64, 3377–3388 (2012)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Damarla, S.K., Kundu, M.: Numerical solution of multi-order fractional differential equations using generalized triangular function operational matrices. Appl. Math. Comput. 263, 189–203 (2015)MathSciNet Damarla, S.K., Kundu, M.: Numerical solution of multi-order fractional differential equations using generalized triangular function operational matrices. Appl. Math. Comput. 263, 189–203 (2015)MathSciNet
31.
Zurück zum Zitat Ren, J.C., Sun, Z.Z.: Efficient and stable numerical methods for multi-term time fractional sub-diffusion equations. East Asian J. Appl. Math. 4, 242–266 (2014)MathSciNetCrossRefMATH Ren, J.C., Sun, Z.Z.: Efficient and stable numerical methods for multi-term time fractional sub-diffusion equations. East Asian J. Appl. Math. 4, 242–266 (2014)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 825–838 (2015)MathSciNetCrossRefMATH Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 825–838 (2015)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Alikhanov, A.A.: Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation. Appl. Math. Comput. 268, 12–22 (2015)MathSciNet Alikhanov, A.A.: Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation. Appl. Math. Comput. 268, 12–22 (2015)MathSciNet
34.
Zurück zum Zitat Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)MathSciNetCrossRefMATH Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69, 926–948 (2015)MathSciNetCrossRef Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69, 926–948 (2015)MathSciNetCrossRef
36.
Zurück zum Zitat Gao, G.H., Sun, H., Sun, Z.Z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)MathSciNetCrossRefMATH Gao, G.H., Sun, H., Sun, Z.Z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Gao, G.H., Sun, Z.Z.: Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations. Numer. Methods Partial Differ. Equ. 32, 591–615 (2016)MathSciNetCrossRefMATH Gao, G.H., Sun, Z.Z.: Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations. Numer. Methods Partial Differ. Equ. 32, 591–615 (2016)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66, 1281–1312 (2016)MathSciNetCrossRefMATH Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66, 1281–1312 (2016)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Kincaid, D., Cheney, W.: Numerical Analysis: Mathematics of Scientific Computing, 3rd edn. American Mathematical Society, Providence (2002)MATH Kincaid, D., Cheney, W.: Numerical Analysis: Mathematics of Scientific Computing, 3rd edn. American Mathematical Society, Providence (2002)MATH
40.
Zurück zum Zitat Sun, Z.Z., Gao, G.H.: Finite Difference Methods for the Fractional Differential Equations. Science Press, Beijing (2015). (in Chinese) Sun, Z.Z., Gao, G.H.: Finite Difference Methods for the Fractional Differential Equations. Science Press, Beijing (2015). (in Chinese)
41.
Zurück zum Zitat Sun, Z.Z.: Numerical Methods for Partial Differential Equations, 2nd edn. Science Press, Beijing (2012). (in Chinese) Sun, Z.Z.: Numerical Methods for Partial Differential Equations, 2nd edn. Science Press, Beijing (2012). (in Chinese)
42.
Zurück zum Zitat Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, A55–A78 (2015)MathSciNetCrossRefMATH Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, A55–A78 (2015)MathSciNetCrossRefMATH
Metadaten
Titel
The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for Solving the Time Multi-term and Distributed-Order Fractional Sub-diffusion Equations
verfasst von
Guang-hua Gao
Anatoly A. Alikhanov
Zhi-zhong Sun
Publikationsdatum
11.03.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0407-x

Weitere Artikel der Ausgabe 1/2017

Journal of Scientific Computing 1/2017 Zur Ausgabe

Premium Partner