Skip to main content
Erschienen in: Journal of Scientific Computing 2/2019

28.05.2019

Fully Discrete Approximations to the Time-Dependent Navier–Stokes Equations with a Projection Method in Time and Grad-Div Stabilization

verfasst von: Javier de Frutos, Bosco García-Archilla, Julia Novo

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper studies fully discrete approximations to the evolutionary Navier–Stokes equations by means of inf-sup stable \(H^1\)-conforming mixed finite elements with a grad-div type stabilization and the Euler incremental projection method in time. We get error bounds where the constants do not depend on negative powers of the viscosity. We get the optimal rate of convergence in time of the projection method. For the spatial error we get a bound \(O(h^k)\) for the \(L^2\) error of the velocity, k being the degree of the polynomials in the velocity approximation. We prove numerically that this bound is sharp for this method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York-London (1975)MATH Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York-London (1975)MATH
2.
Zurück zum Zitat Ahmed, N., Chacón Rebollo, T., John, V., Rubino, S.: Analysis of full space-time discretization of the Navier–Stokes equations by a local projection stabilization method. IMA J. Numer. Anal. 37, 1437–1467 (2017)MathSciNetMATH Ahmed, N., Chacón Rebollo, T., John, V., Rubino, S.: Analysis of full space-time discretization of the Navier–Stokes equations by a local projection stabilization method. IMA J. Numer. Anal. 37, 1437–1467 (2017)MathSciNetMATH
3.
Zurück zum Zitat Arndt, D., Dallmann, H., Lube, G.: Local projection FEM stabilization for the time-dependent incompressible Navier–Stokes problem. Numer. Methods Partial Differ. Equ. 31, 1224–1250 (2015)MathSciNetCrossRefMATH Arndt, D., Dallmann, H., Lube, G.: Local projection FEM stabilization for the time-dependent incompressible Navier–Stokes problem. Numer. Methods Partial Differ. Equ. 31, 1224–1250 (2015)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Arndt, D., Dallmann, H., Lube, G.: Quasi-optimal error estimates for the incompressible Navier–Stokes problem discretized by finite element methods and pressure-correction projection with velocity stabilization. arXiv:1609.00807v1 Arndt, D., Dallmann, H., Lube, G.: Quasi-optimal error estimates for the incompressible Navier–Stokes problem discretized by finite element methods and pressure-correction projection with velocity stabilization. arXiv:​1609.​00807v1
5.
Zurück zum Zitat Ayuso, B., García-Archilla, B., Novo, J.: The postprocessed mixed finite-element method for the Navier–Stokes equations. SIAM J. Numer. Anal. 43, 1091–1111 (2005)MathSciNetCrossRefMATH Ayuso, B., García-Archilla, B., Novo, J.: The postprocessed mixed finite-element method for the Navier–Stokes equations. SIAM J. Numer. Anal. 43, 1091–1111 (2005)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Badia, S., Codina, R.: Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition. Numer. Math. 107, 533–557 (2007)MathSciNetCrossRefMATH Badia, S., Codina, R.: Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition. Numer. Math. 107, 533–557 (2007)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)CrossRef Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)CrossRef
8.
Zurück zum Zitat Botti, L., Di Pietro, D.A.: A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. J. Comput. Phys. 230, 572–585 (2011)MathSciNetCrossRefMATH Botti, L., Di Pietro, D.A.: A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. J. Comput. Phys. 230, 572–585 (2011)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Bowers, A.L., Le Borne, S., Rebholz, L.G.: Error analysis and iterative solvers for Navier–Stokes projection methods with standard and sparse grad-div stabilization. Comput. Methods Appl. Mech. Eng. 275, 1–19 (2014)MathSciNetCrossRefMATH Bowers, A.L., Le Borne, S., Rebholz, L.G.: Error analysis and iterative solvers for Navier–Stokes projection methods with standard and sparse grad-div stabilization. Comput. Methods Appl. Mech. Eng. 275, 1–19 (2014)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Burman, E.: Robust error estimates for stabilized finite element approximations of the two dimensional Navier–Stokes’ equations at high Reynolds number. Comput. Methods Appl. Mech. Eng. 288, 2–23 (2015)MathSciNetCrossRefMATH Burman, E.: Robust error estimates for stabilized finite element approximations of the two dimensional Navier–Stokes’ equations at high Reynolds number. Comput. Methods Appl. Mech. Eng. 288, 2–23 (2015)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Burman, E., Ern, A., Fernández, M.A.: Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem. ESAIM M2AN 51, 487–507 (2017)MathSciNetCrossRefMATH Burman, E., Ern, A., Fernández, M.A.: Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem. ESAIM M2AN 51, 487–507 (2017)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Burman, E., Fernández, M.A.: Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence. Numer. Math. 107, 39–77 (2007)MathSciNetCrossRefMATH Burman, E., Fernández, M.A.: Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence. Numer. Math. 107, 39–77 (2007)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Burman, E., Fernández, M.A., Hansbo, P.: Continuous interior penalty finite element method for the Oseen’s equations. SIAM J. Numer. Anal. 44, 1437–1453 (2006)MathSciNetMATH Burman, E., Fernández, M.A., Hansbo, P.: Continuous interior penalty finite element method for the Oseen’s equations. SIAM J. Numer. Anal. 44, 1437–1453 (2006)MathSciNetMATH
14.
Zurück zum Zitat Chacón Rebollo, T., Gómez Mármol, M., Restelli, M.: Numerical analysis of penalty stabilized finite element discretizations of evolution Navier–Stokes equations. J. Sci. Comput. 63, 885–912 (2015)MathSciNetCrossRefMATH Chacón Rebollo, T., Gómez Mármol, M., Restelli, M.: Numerical analysis of penalty stabilized finite element discretizations of evolution Navier–Stokes equations. J. Sci. Comput. 63, 885–912 (2015)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Charnyi, S., Heister, T., Olshanskii, M.A., Rebholz, L.G.: On conservation laws of Navier–Stokes Galerkin discretizations. J. Comput. Phys. 337, 289–308 (2017)MathSciNetCrossRefMATH Charnyi, S., Heister, T., Olshanskii, M.A., Rebholz, L.G.: On conservation laws of Navier–Stokes Galerkin discretizations. J. Comput. Phys. 337, 289–308 (2017)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Chen, H.: Pointwise error estimates for finite element solutions of the Stokes problem. SIAM J. Numer. Anal. 44, 1–28 (2006)MathSciNetCrossRefMATH Chen, H.: Pointwise error estimates for finite element solutions of the Stokes problem. SIAM J. Numer. Anal. 44, 1–28 (2006)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978) Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)
18.
Zurück zum Zitat Codina, R.: Pressure stability in fractional step finite element methods for incompressible flows. J. Comput. Phys. 170, 112–140 (2001)MathSciNetCrossRefMATH Codina, R.: Pressure stability in fractional step finite element methods for incompressible flows. J. Comput. Phys. 170, 112–140 (2001)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Constantin, P., Foias, C.: Navier–Stokes Equations. The University of Chicago Press, Chicago (1988)MATH Constantin, P., Foias, C.: Navier–Stokes Equations. The University of Chicago Press, Chicago (1988)MATH
20.
Zurück zum Zitat D’Agnillo, E., Rebholz, L.: On the enforcement of discrete mass conservation in incompressible flow simulations with continuous velocity approximations. In: Li, J., Macharro, E., Yang, H. (eds.) Recent Advances in Scientific Computing and Applications. Proceedings of the 8th International Conference on Scientific Computing and Applications, AMS Contemporary Mathematics, vol. 586, pp. 143–152 (2013) D’Agnillo, E., Rebholz, L.: On the enforcement of discrete mass conservation in incompressible flow simulations with continuous velocity approximations. In: Li, J., Macharro, E., Yang, H. (eds.) Recent Advances in Scientific Computing and Applications. Proceedings of the 8th International Conference on Scientific Computing and Applications, AMS Contemporary Mathematics, vol. 586, pp. 143–152 (2013)
21.
Zurück zum Zitat Dallmann, H., Arndt, D., Lube, G.: Local projection stabilization for the Oseen problem. IMA J. Numer. Anal. 36, 796–823 (2016)MathSciNetCrossRefMATH Dallmann, H., Arndt, D., Lube, G.: Local projection stabilization for the Oseen problem. IMA J. Numer. Anal. 36, 796–823 (2016)MathSciNetCrossRefMATH
22.
Zurück zum Zitat de Frutos, J., John, V., Novo, J.: Projection methods for incompressible flow problems with WENO finite difference schemes. J. Comput. Phys. 309, 1–19 (2016)MathSciNetCrossRefMATH de Frutos, J., John, V., Novo, J.: Projection methods for incompressible flow problems with WENO finite difference schemes. J. Comput. Phys. 309, 1–19 (2016)MathSciNetCrossRefMATH
23.
Zurück zum Zitat de Frutos, J., Garcí-Archilla, B., John, V., Novo, J.: Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements. J. Sci. Comput. 66, 991–1024 (2016)MathSciNetCrossRefMATH de Frutos, J., Garcí-Archilla, B., John, V., Novo, J.: Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements. J. Sci. Comput. 66, 991–1024 (2016)MathSciNetCrossRefMATH
24.
Zurück zum Zitat de Frutos, J., Garcí-Archilla, B., Novo, J.: Error analysis of projection methods for non inf-sup stable mixed finite elements. The transient Stokes problem. Appl. Math. Comput. 322, 154–173 (2018)MathSciNetMATH de Frutos, J., Garcí-Archilla, B., Novo, J.: Error analysis of projection methods for non inf-sup stable mixed finite elements. The transient Stokes problem. Appl. Math. Comput. 322, 154–173 (2018)MathSciNetMATH
25.
Zurück zum Zitat de Frutos, J., Garcí-Archilla, B., Novo, J.: Error analysis of projection methods for non inf-sup stable mixed finite elements. The Navier–Stokes equations. J. Sci. Comput. 74, 426–455 (2018)MathSciNetCrossRefMATH de Frutos, J., Garcí-Archilla, B., Novo, J.: Error analysis of projection methods for non inf-sup stable mixed finite elements. The Navier–Stokes equations. J. Sci. Comput. 74, 426–455 (2018)MathSciNetCrossRefMATH
26.
Zurück zum Zitat de Frutos, J., Garcí-Archilla, B., John, V., Novo, J.: Analysis of the grad-div stabilization for the time-dependent Navier–Stokes equations with inf-sup stable finite elements. Adv. Comput. Math. 44, 195–225 (2018)MathSciNetCrossRefMATH de Frutos, J., Garcí-Archilla, B., John, V., Novo, J.: Analysis of the grad-div stabilization for the time-dependent Navier–Stokes equations with inf-sup stable finite elements. Adv. Comput. Math. 44, 195–225 (2018)MathSciNetCrossRefMATH
27.
Zurück zum Zitat de Frutos, J., Garcí-Archilla, B., John, V., Novo, J.: Error analysis of non inf-sup stable discretizations of the time-dependent Navier–Stokes equations with local projection stabilization. IMA J. Numer. Anal. https://doi.org/10.1093/imanum/dry044. (to appear) de Frutos, J., Garcí-Archilla, B., John, V., Novo, J.: Error analysis of non inf-sup stable discretizations of the time-dependent Navier–Stokes equations with local projection stabilization. IMA J. Numer. Anal. https://​doi.​org/​10.​1093/​imanum/​dry044. (to appear)
28.
Zurück zum Zitat Fehn, N., Wall, W.A., Kronbichler, M.: On the stability of projection methods for the incompressible Navier–Stokes equations based on high-order discontinuous Galerkin discretizations. J. Comput. Phys. 351, 392–421 (2017)MathSciNetCrossRefMATH Fehn, N., Wall, W.A., Kronbichler, M.: On the stability of projection methods for the incompressible Navier–Stokes equations based on high-order discontinuous Galerkin discretizations. J. Comput. Phys. 351, 392–421 (2017)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Franca, L.P., Hughes, T.J.R.: Two classes of mixed finite element methods. Comput. Methods Appl. Mech. Eng. 69(1), 89–129 (1988)MathSciNetCrossRefMATH Franca, L.P., Hughes, T.J.R.: Two classes of mixed finite element methods. Comput. Methods Appl. Mech. Eng. 69(1), 89–129 (1988)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations Theory and Algorithms. Volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986)MATH Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations Theory and Algorithms. Volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986)MATH
31.
Zurück zum Zitat Guermond, J.L., Marra, A., Quartapelle, L.: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers. Comput. Methods Appl. Mech. Eng. 195, 5857–5876 (2006)MathSciNetCrossRefMATH Guermond, J.L., Marra, A., Quartapelle, L.: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers. Comput. Methods Appl. Mech. Eng. 195, 5857–5876 (2006)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)MathSciNetCrossRefMATH Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Guermond, J.L., Quartapelle, L.: On the approximation of the unsteady Navier–Stokes equations by finite element projection methods. Numer. Math. 80, 207–238 (1998)MathSciNetCrossRefMATH Guermond, J.L., Quartapelle, L.: On the approximation of the unsteady Navier–Stokes equations by finite element projection methods. Numer. Math. 80, 207–238 (1998)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. IV. Error analysis for second order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)MathSciNetCrossRefMATH Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. IV. Error analysis for second order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)MathSciNetCrossRefMATH
35.
Zurück zum Zitat John, V.: Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. Int. J. Numer. Meth. Fluids 44, 777–788 (2004)CrossRefMATH John, V.: Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. Int. J. Numer. Meth. Fluids 44, 777–788 (2004)CrossRefMATH
36.
Zurück zum Zitat John, V., Kindl, A.: Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput. Methods Appl. Mech. Engrg. 199, 841–852 (2010)MathSciNetCrossRefMATH John, V., Kindl, A.: Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput. Methods Appl. Mech. Engrg. 199, 841–852 (2010)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, Scd edn. Oxford University Press, Oxford (2005)CrossRefMATH Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, Scd edn. Oxford University Press, Oxford (2005)CrossRefMATH
39.
Zurück zum Zitat Layton, W., Manica, C., Neda, M., Rebholz, L.: On the accuracy of the rotation form in simulations of the Navier–Stokes equations. J. Comput. Phys. 228, 3433–3447 (2009)MathSciNetCrossRefMATH Layton, W., Manica, C., Neda, M., Rebholz, L.: On the accuracy of the rotation form in simulations of the Navier–Stokes equations. J. Comput. Phys. 228, 3433–3447 (2009)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Linke, A., Rebholz, L.: On a reduced sparsity stabilization of grad-div type for incompressible flow problems. Comput. Methods Appl. Mech. Eng. 261–262, 142–153 (2013)MathSciNetCrossRefMATH Linke, A., Rebholz, L.: On a reduced sparsity stabilization of grad-div type for incompressible flow problems. Comput. Methods Appl. Mech. Eng. 261–262, 142–153 (2013)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Minev, P.D.: A stabilized incremental projection scheme for the Incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 36, 441–464 (2001)MathSciNetCrossRefMATH Minev, P.D.: A stabilized incremental projection scheme for the Incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 36, 441–464 (2001)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Prohl, A.: Projection and Quasi-compressibility Methods for Solving the Incompressible Navier–Stokes Equations. B. G. Teubner, Stuttgart (1997)CrossRefMATH Prohl, A.: Projection and Quasi-compressibility Methods for Solving the Incompressible Navier–Stokes Equations. B. G. Teubner, Stuttgart (1997)CrossRefMATH
43.
Zurück zum Zitat Prohl, A.: On pressure approximations via projection methods for nonstationary incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 29, 158–180 (2008)MathSciNetMATH Prohl, A.: On pressure approximations via projection methods for nonstationary incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 29, 158–180 (2008)MathSciNetMATH
44.
Zurück zum Zitat Rannacher, R.: On Chorin’s Projection Method for the Incompressible Navier–Stokes Equations. Lecture Notes in Mathematics, vol. 1530. Springer, Berlin (1992)MATH Rannacher, R.: On Chorin’s Projection Method for the Incompressible Navier–Stokes Equations. Lecture Notes in Mathematics, vol. 1530. Springer, Berlin (1992)MATH
45.
Zurück zum Zitat Röhe, L., Lube, G.: Analysis of a variational multiscale method for large-eddy simulation and its application to homogeneous isotropic turbulence. Comput. Methods Appl. Mech. Eng. 199, 2331–2342 (2010)MathSciNetCrossRefMATH Röhe, L., Lube, G.: Analysis of a variational multiscale method for large-eddy simulation and its application to homogeneous isotropic turbulence. Comput. Methods Appl. Mech. Eng. 199, 2331–2342 (2010)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Schäfer, M., Turek, S.: Benchmark computations of laminar flow around a cylinder, With support by Durst, F., Krause, E., Rannacher, R. In: Flow Simulation with High-Performance Computers II. DFG Priority Research Programme Results 1993–1995, Vieweg, Wiesbaden, pp. 547–566 (1996) Schäfer, M., Turek, S.: Benchmark computations of laminar flow around a cylinder, With support by Durst, F., Krause, E., Rannacher, R. In: Flow Simulation with High-Performance Computers II. DFG Priority Research Programme Results 1993–1995, Vieweg, Wiesbaden, pp. 547–566 (1996)
47.
Zurück zum Zitat Schroeder, P.W., Lube, G.: Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier–Stokes flows. J. Numer. Anal. 25, 249–276 (2017)MathSciNetMATH Schroeder, P.W., Lube, G.: Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier–Stokes flows. J. Numer. Anal. 25, 249–276 (2017)MathSciNetMATH
48.
Zurück zum Zitat Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29, 57–77 (1992)MathSciNetCrossRefMATH Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29, 57–77 (1992)MathSciNetCrossRefMATH
Metadaten
Titel
Fully Discrete Approximations to the Time-Dependent Navier–Stokes Equations with a Projection Method in Time and Grad-Div Stabilization
verfasst von
Javier de Frutos
Bosco García-Archilla
Julia Novo
Publikationsdatum
28.05.2019
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00980-9

Weitere Artikel der Ausgabe 2/2019

Journal of Scientific Computing 2/2019 Zur Ausgabe

Premium Partner