Skip to main content
Erschienen in: Journal of Polymer Research 7/2015

01.07.2015 | Original Paper

Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency

verfasst von: Mohammad Sajad Sorayani Bafqi, Roohollah Bagherzadeh, Masoud Latifi

Erschienen in: Journal of Polymer Research | Ausgabe 7/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Composite electrospun nanofibers mats, as a nano-generator, were fabricated through one-step electrospinning method. The structure of fibers is composed of Poly(vinylidene fluoride), PVDF, as the matrix, and Zinc oxide (ZnO) nanoparticles; the nanocomposite were produced using electrospinning technique in order to have the benefit of piezoelectric properties and non-brittle behavior of ZnO and PVDF for the application in wearable electronic devices. Characteristics of these structures were evaluated by using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM). Impedance and the electrical conductivity of the fabricated composites were also evaluated by Keithley instruments. Electrical response of samples was measured using an impedance analyzer made in Aims Lab (http://​aims.​aut.​ac.​ir) at room temperature. Results showed that incorporating the ZnO nanoparticles into the PVDF nanofibers improved the piezoelectric properties of samples compared to PVDF samples. The electrical output of composite samples was improved as high as 1.1 V compared with 0.351 V for the pure PVDF samples. These results imply promising applications, as an enhanced-efficiency energy-scavenging interface, for various wearable self-powered electrical devices and systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fang J et al (2013) Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ Sci 6(7):2196–2202CrossRef Fang J et al (2013) Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ Sci 6(7):2196–2202CrossRef
2.
Zurück zum Zitat Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4(1):18–27CrossRef Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4(1):18–27CrossRef
3.
Zurück zum Zitat Tian B et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889CrossRef Tian B et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889CrossRef
4.
Zurück zum Zitat Li Y et al (2006) Nanowire electronic and optoelectronic devices. Mater Today 9(10):18–27CrossRef Li Y et al (2006) Nanowire electronic and optoelectronic devices. Mater Today 9(10):18–27CrossRef
5.
Zurück zum Zitat Chen J et al (2005) Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310(5751):1171–1174CrossRef Chen J et al (2005) Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310(5751):1171–1174CrossRef
6.
Zurück zum Zitat Javey A et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657CrossRef Javey A et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657CrossRef
7.
Zurück zum Zitat Qin Y, Wang X, Wang ZL (2008) Microfibre–nanowire hybrid structure for energy scavenging. Nature 451(7180):809–813CrossRef Qin Y, Wang X, Wang ZL (2008) Microfibre–nanowire hybrid structure for energy scavenging. Nature 451(7180):809–813CrossRef
8.
Zurück zum Zitat Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18(2):025009CrossRef Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18(2):025009CrossRef
9.
Zurück zum Zitat DuToit NE, Wardle BL (2007) Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J 45(5):1126–1137CrossRef DuToit NE, Wardle BL (2007) Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J 45(5):1126–1137CrossRef
10.
Zurück zum Zitat Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1CrossRef Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1CrossRef
11.
Zurück zum Zitat Shu Y, Lien I (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15(6):1499CrossRef Shu Y, Lien I (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15(6):1499CrossRef
12.
Zurück zum Zitat Beeby SP, Tudor MJ, White N (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef Beeby SP, Tudor MJ, White N (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef
13.
Zurück zum Zitat Guyomar D et al (2005) Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans Ultrason Ferroelectr Freq Control 52(4):584–595CrossRef Guyomar D et al (2005) Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans Ultrason Ferroelectr Freq Control 52(4):584–595CrossRef
14.
Zurück zum Zitat Sodano HA, Park G, Inman D (2004) Estimation of electric charge output for piezoelectric energy harvesting. Strain 40(2):49–58CrossRef Sodano HA, Park G, Inman D (2004) Estimation of electric charge output for piezoelectric energy harvesting. Strain 40(2):49–58CrossRef
15.
Zurück zum Zitat Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26(11):1131–1144CrossRef Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26(11):1131–1144CrossRef
16.
Zurück zum Zitat Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–206CrossRef Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–206CrossRef
17.
Zurück zum Zitat Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246CrossRef Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246CrossRef
18.
Zurück zum Zitat Huang CT et al (2010) Single‐InN‐nanowire nanogenerator with up to 1 V Output Voltage. Adv Mater 22(36):4008–4013CrossRef Huang CT et al (2010) Single‐InN‐nanowire nanogenerator with up to 1 V Output Voltage. Adv Mater 22(36):4008–4013CrossRef
19.
Zurück zum Zitat Huang C-T et al (2010) GaN nanowire arrays for high-output nanogenerators. J Am Chem Soc 132(13):4766–4771CrossRef Huang C-T et al (2010) GaN nanowire arrays for high-output nanogenerators. J Am Chem Soc 132(13):4766–4771CrossRef
20.
Zurück zum Zitat Lin YF et al (2008) Alternating the output of a CdS nanowire nanogenerator by a white‐light‐stimulated optoelectronic effect. Adv Mater 20(16):3127–3130CrossRef Lin YF et al (2008) Alternating the output of a CdS nanowire nanogenerator by a white‐light‐stimulated optoelectronic effect. Adv Mater 20(16):3127–3130CrossRef
21.
Zurück zum Zitat Lu M-Y et al (2009) ZnO− ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 3(2):357–362CrossRef Lu M-Y et al (2009) ZnO− ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 3(2):357–362CrossRef
22.
Zurück zum Zitat Li Z et al (2010) Muscle‐driven in vivo nanogenerator. Adv Mater 22(23):2534–2537CrossRef Li Z et al (2010) Muscle‐driven in vivo nanogenerator. Adv Mater 22(23):2534–2537CrossRef
23.
Zurück zum Zitat Yang R et al (2009) Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett 9(3):1201–1205CrossRef Yang R et al (2009) Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett 9(3):1201–1205CrossRef
24.
Zurück zum Zitat Wang X et al (2009) Output of an ultrasonic wave-driven nanogenerator in a confined tube. Nano Res 2(3):177–182CrossRef Wang X et al (2009) Output of an ultrasonic wave-driven nanogenerator in a confined tube. Nano Res 2(3):177–182CrossRef
25.
Zurück zum Zitat Wang X et al (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821):102–105CrossRef Wang X et al (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821):102–105CrossRef
26.
Zurück zum Zitat Wang X et al (2007) Integrated nanogenerators in biofluid. Nano Lett 7(8):2475–2479CrossRef Wang X et al (2007) Integrated nanogenerators in biofluid. Nano Lett 7(8):2475–2479CrossRef
27.
Zurück zum Zitat Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J Mater Chem 21(30):11088–11091CrossRef Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J Mater Chem 21(30):11088–11091CrossRef
28.
Zurück zum Zitat Liu Z et al (2013) Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensors Actuators A Phys 193:13–24CrossRef Liu Z et al (2013) Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensors Actuators A Phys 193:13–24CrossRef
29.
Zurück zum Zitat Chen X et al (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10(6):2133–2137CrossRef Chen X et al (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10(6):2133–2137CrossRef
30.
Zurück zum Zitat Hansen BJ et al (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647–3652CrossRef Hansen BJ et al (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647–3652CrossRef
31.
Zurück zum Zitat Chang J et al (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3):356–371CrossRef Chang J et al (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3):356–371CrossRef
32.
Zurück zum Zitat Lovinger AJ (1983) Ferroelectric polymers. Science 220(4602):1115–1121CrossRef Lovinger AJ (1983) Ferroelectric polymers. Science 220(4602):1115–1121CrossRef
33.
Zurück zum Zitat Chang C et al (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10(2):726–731CrossRef Chang C et al (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10(2):726–731CrossRef
34.
Zurück zum Zitat Meyers FN et al (2013) Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites. Nanotechnology 24(18):185501CrossRef Meyers FN et al (2013) Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites. Nanotechnology 24(18):185501CrossRef
35.
Zurück zum Zitat Bae S-H et al (2013) Graphene-P (VDF-TrFE) multilayer film for flexible applications. ACS Nano 7(4):3130–3138CrossRef Bae S-H et al (2013) Graphene-P (VDF-TrFE) multilayer film for flexible applications. ACS Nano 7(4):3130–3138CrossRef
36.
Zurück zum Zitat Xi Y et al (2009) Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J Mater Chem 19(48):9260–9264CrossRef Xi Y et al (2009) Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J Mater Chem 19(48):9260–9264CrossRef
37.
Zurück zum Zitat Loh K, Kim J, Lynch J (2008) Self-sensing and power harvesting carbon nanotube-composites based on piezoelectric polymers. Bridge maintenance, safety, management, health monitoring and informatics, IABMAS, 8 Loh K, Kim J, Lynch J (2008) Self-sensing and power harvesting carbon nanotube-composites based on piezoelectric polymers. Bridge maintenance, safety, management, health monitoring and informatics, IABMAS, 8
38.
Zurück zum Zitat Dagdeviren C, Papila M (2010) Dielectric behavior characterization of a fibrous‐ZnO/PVDF nanocomposite. Polym Compos 31(6):1003–1010CrossRef Dagdeviren C, Papila M (2010) Dielectric behavior characterization of a fibrous‐ZnO/PVDF nanocomposite. Polym Compos 31(6):1003–1010CrossRef
39.
Zurück zum Zitat Jia N et al (2015) Enhanced β-crystalline phase in poly (vinylidene fluoride) films by polydopamine-coated BaTiO 3 nanoparticles. Mater Lett 139:212–215CrossRef Jia N et al (2015) Enhanced β-crystalline phase in poly (vinylidene fluoride) films by polydopamine-coated BaTiO 3 nanoparticles. Mater Lett 139:212–215CrossRef
40.
Zurück zum Zitat Niu Y et al (2015) Enhanced dielectric performance of BaTiO 3/PVDF composites prepared by modified process for energy storage applications. IEEE Trans Ultrason Ferroelectr Freq Control 62(1):108–115CrossRef Niu Y et al (2015) Enhanced dielectric performance of BaTiO 3/PVDF composites prepared by modified process for energy storage applications. IEEE Trans Ultrason Ferroelectr Freq Control 62(1):108–115CrossRef
41.
Zurück zum Zitat Montazer M, Maali Amiri M (2014) ZnO nano reactor on textiles and polymers: ex situ and in situ synthesis, application, and characterization. J Phys Chem B 118(6):1453–1470CrossRef Montazer M, Maali Amiri M (2014) ZnO nano reactor on textiles and polymers: ex situ and in situ synthesis, application, and characterization. J Phys Chem B 118(6):1453–1470CrossRef
42.
Zurück zum Zitat Trolier-McKinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroceram 12(1–2):7–17CrossRef Trolier-McKinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroceram 12(1–2):7–17CrossRef
43.
Zurück zum Zitat Gheibi A et al (2014) Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications. J Polym Res 21(7):1–7CrossRef Gheibi A et al (2014) Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications. J Polym Res 21(7):1–7CrossRef
44.
Zurück zum Zitat Gheibi A et al (2014) Electrical power generation from piezoelectric electrospun nanofibers membranes: electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. J Polym Res 21(11):1–14CrossRef Gheibi A et al (2014) Electrical power generation from piezoelectric electrospun nanofibers membranes: electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. J Polym Res 21(11):1–14CrossRef
45.
Zurück zum Zitat Persano L et al (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633CrossRef Persano L et al (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633CrossRef
46.
Zurück zum Zitat Satapathy S et al (2011) Effect of annealing on the phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bull Mater Sci 34(4):727–733CrossRef Satapathy S et al (2011) Effect of annealing on the phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bull Mater Sci 34(4):727–733CrossRef
47.
Zurück zum Zitat Choi S-S et al (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta 50(2):339–343CrossRef Choi S-S et al (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta 50(2):339–343CrossRef
Metadaten
Titel
Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency
verfasst von
Mohammad Sajad Sorayani Bafqi
Roohollah Bagherzadeh
Masoud Latifi
Publikationsdatum
01.07.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 7/2015
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-015-0765-8

Weitere Artikel der Ausgabe 7/2015

Journal of Polymer Research 7/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.