Skip to main content
Erschienen in: Journal of Polymer Research 8/2018

01.08.2018 | ORIGINAL PAPER

Synthesis, structural, thermal, optical and dielectric properties of chitosan biopolymer; influence of PVP and α-Fe2O3 Nanorods

verfasst von: Adel M. El Sayed, Ahmad Desoky M. Mohamad

Erschienen in: Journal of Polymer Research | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work reports the influence of Polyvinylpyrrolidone (PVP) and hematite (α-Fe2O3) nanorods (NRs) on the physicochemical properties of chitosan (Cs), as an approach to broaden its medical and technological applications. Hematite NRs of 11.4 nm diameter and 87.9 nm crystallite size were prepared by a free-template chemical method. Cs, PVP/Cs and blend loaded with hematite NRs were prepared by solution casting. Significant changes in the films’ surface were clarified using the scanning electron microscope (SEM). Fourier transformation infrared spectroscopy (FT-IR) confirmed the interaction between the NRs and the NH2 and OH functional groups of Cs. DSC measurements showed one endothermic peak assigned to the water elimination, and an exothermic one, in the range 268–287 °C, attributed to the decomposition of saccharine structure in Cs. The swelling properties of the films were sensitive to the pH of the solution. PVP/Cs film showed ~ 85% transmittance in the visible region and its optical band gap narrowed from 5.4 eV to 4.05 eV after loading with 2.0 wt.% hematite. The influence of NRs content on the optical constants of the films is discussed. The dielectric properties depend on the film’ structure. The large Polaron tunneling (LPT) model is the best suitable mechanism for the electric conduction. Due to their high thermal stability and decomposition temperature, transmittance and high conductivity, the prepared films are a candidate for the packaging industry, for use in some medical applications such as treating some chronic wounds, and optical windows and fibers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pandey AR, Singh US, Momin M, Bhavsar C (2017) Chitosan: application in tissue engineering and skin grafting. J Polym Res 24:125CrossRef Pandey AR, Singh US, Momin M, Bhavsar C (2017) Chitosan: application in tissue engineering and skin grafting. J Polym Res 24:125CrossRef
2.
Zurück zum Zitat Ryan CC, Bardosova M, Pembl ME (2017) Structural and mechanical properties of a range of chitosan-based hybrid networks loaded with colloidal silica and polystyrene particles. J Mater Sci 52:8338–8347CrossRef Ryan CC, Bardosova M, Pembl ME (2017) Structural and mechanical properties of a range of chitosan-based hybrid networks loaded with colloidal silica and polystyrene particles. J Mater Sci 52:8338–8347CrossRef
3.
Zurück zum Zitat Tyliszczak B, Drabczyk A, K.-Kramarczyk S, B.-Wąs K, S.-Kupiec A (2017) In vitro cytotoxicity of hydrogels based on chitosan and modified with gold nanoparticles. J Polym Res 24:153CrossRef Tyliszczak B, Drabczyk A, K.-Kramarczyk S, B.-Wąs K, S.-Kupiec A (2017) In vitro cytotoxicity of hydrogels based on chitosan and modified with gold nanoparticles. J Polym Res 24:153CrossRef
4.
Zurück zum Zitat Takada K, Yin H, Matsui T, Ali MA, Kaneko T (2017) Bio-based mesoporous sponges of chitosan conjugated with amino acid-diketopiperazine through oil-in-water emulsions. J Polym Res 24:216CrossRef Takada K, Yin H, Matsui T, Ali MA, Kaneko T (2017) Bio-based mesoporous sponges of chitosan conjugated with amino acid-diketopiperazine through oil-in-water emulsions. J Polym Res 24:216CrossRef
5.
Zurück zum Zitat Bhowmick A, Pramanik N, Jana P, Mitra T, Gnanamani A, Das M, Kundu PP (2017) Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. Int J Biol Macromol 95:348–356CrossRefPubMed Bhowmick A, Pramanik N, Jana P, Mitra T, Gnanamani A, Das M, Kundu PP (2017) Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. Int J Biol Macromol 95:348–356CrossRefPubMed
6.
Zurück zum Zitat Ahmed J, Mulla M, Arfat YA, Thai LA (2017) Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocoll 71:141–148CrossRef Ahmed J, Mulla M, Arfat YA, Thai LA (2017) Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocoll 71:141–148CrossRef
7.
Zurück zum Zitat Patel GB, Singh NL, Singh F (2017) Modification of chitosan-based biod egradable polymer by irradiation with MeV ions for electrolyte applications. Mater Sci Eng B 225:150–159CrossRef Patel GB, Singh NL, Singh F (2017) Modification of chitosan-based biod egradable polymer by irradiation with MeV ions for electrolyte applications. Mater Sci Eng B 225:150–159CrossRef
8.
Zurück zum Zitat Aziz SB (2017) Morphological and optical characteristics of chitosan(1-x):Cuo x (4 ≤ x ≤ 12) based polymer Nano-composites: optical dielectric loss as an alternative method for Tauc’s model. Nanomaterials 7:444CrossRefPubMedCentral Aziz SB (2017) Morphological and optical characteristics of chitosan(1-x):Cuo x (4 ≤ x ≤ 12) based polymer Nano-composites: optical dielectric loss as an alternative method for Tauc’s model. Nanomaterials 7:444CrossRefPubMedCentral
9.
Zurück zum Zitat Wang J, Song S, Gao S, Muchakayala R, Liu R, Ma Q (2017) Mg-ion conducting gel polymer electrolyte membranes containing biodegradable chitosan: preparation, structural, electrical and electrochemical properties. Polym Test 62:278–286CrossRef Wang J, Song S, Gao S, Muchakayala R, Liu R, Ma Q (2017) Mg-ion conducting gel polymer electrolyte membranes containing biodegradable chitosan: preparation, structural, electrical and electrochemical properties. Polym Test 62:278–286CrossRef
10.
Zurück zum Zitat Mafirad S, Mehrnia MR, Zahedi P, Hosseini SN (2017) Chitosan-based nanocomposite membranes with improved properties: effect of cellulose acetate blending and TiO2 nanoparticles incorporation. Polym Compos. https://doi.org/10.1002/pc.24539 Mafirad S, Mehrnia MR, Zahedi P, Hosseini SN (2017) Chitosan-based nanocomposite membranes with improved properties: effect of cellulose acetate blending and TiO2 nanoparticles incorporation. Polym Compos. https://​doi.​org/​10.​1002/​pc.​24539
11.
Zurück zum Zitat Youssef AM, El-Nahrawy AM, Abou Hammad AB (2017) Sol-gel synthesis and characterizations of hybrid chitosan-PEG/calcium silicate nanocomposite modified with ZnO-NPs and (E102) for optical and antibacterial applications. Int J Biol Macromol 97:561–567CrossRefPubMed Youssef AM, El-Nahrawy AM, Abou Hammad AB (2017) Sol-gel synthesis and characterizations of hybrid chitosan-PEG/calcium silicate nanocomposite modified with ZnO-NPs and (E102) for optical and antibacterial applications. Int J Biol Macromol 97:561–567CrossRefPubMed
12.
Zurück zum Zitat Nivethaa EAK, Narayanan V, Stephen A (2015) Synthesis and spectral characterization of silver embedded chitosan matrix nanocomposite for the selective colorimetric sensing of toxic mercury. Spectrochim Acta A 143:242–250CrossRef Nivethaa EAK, Narayanan V, Stephen A (2015) Synthesis and spectral characterization of silver embedded chitosan matrix nanocomposite for the selective colorimetric sensing of toxic mercury. Spectrochim Acta A 143:242–250CrossRef
13.
Zurück zum Zitat Biranje S, Madiwale P, Adivarekar RV (2017) Electrospinning of chitosan/PVA nanofibrous membrane at ultralow solvent concentration. J Polym Res 24:92CrossRef Biranje S, Madiwale P, Adivarekar RV (2017) Electrospinning of chitosan/PVA nanofibrous membrane at ultralow solvent concentration. J Polym Res 24:92CrossRef
14.
Zurück zum Zitat Johns J, Nakason C (2011) Dielectric properties of natural rubber/chitosan blends: effects of blend ratio and compatibilization. J Non-Cryst Solids 357:1816–1821CrossRef Johns J, Nakason C (2011) Dielectric properties of natural rubber/chitosan blends: effects of blend ratio and compatibilization. J Non-Cryst Solids 357:1816–1821CrossRef
15.
Zurück zum Zitat Dayarian S, Zamani A, Moheb A, Masoomi M (2014) Physico-mechanical properties of films of chitosan, carboxymethyl chitosan, and their blends. J Polym Environ 22:409–416CrossRef Dayarian S, Zamani A, Moheb A, Masoomi M (2014) Physico-mechanical properties of films of chitosan, carboxymethyl chitosan, and their blends. J Polym Environ 22:409–416CrossRef
16.
Zurück zum Zitat Lewandowska K (2015) Miscibility and physical properties of chitosan and polyacrylamide blends. J Mol Liq 209:301–305CrossRef Lewandowska K (2015) Miscibility and physical properties of chitosan and polyacrylamide blends. J Mol Liq 209:301–305CrossRef
17.
Zurück zum Zitat Islam A, Riaz M, Yasin T (2013) Structural and viscoelastic properties of chitosan-based hydrogel and its drug delivery application. Int J Biol Macromol 59:119–124CrossRefPubMed Islam A, Riaz M, Yasin T (2013) Structural and viscoelastic properties of chitosan-based hydrogel and its drug delivery application. Int J Biol Macromol 59:119–124CrossRefPubMed
18.
Zurück zum Zitat Islam A, Yasin T, Gull N, Khan SM, Munawar MA, Shafiq M, Sabir A, Jamil T (2016) Evaluation of selected properties of biocompatible chitosan/poly(vinyl alcohol) blends. Int J Biol Macromol 82:551–556CrossRefPubMed Islam A, Yasin T, Gull N, Khan SM, Munawar MA, Shafiq M, Sabir A, Jamil T (2016) Evaluation of selected properties of biocompatible chitosan/poly(vinyl alcohol) blends. Int J Biol Macromol 82:551–556CrossRefPubMed
19.
Zurück zum Zitat Sionkowska A, Wisniewski M, Skopinska J, Vicini S, Marsano E (2005) The influence of UV irradiation on the mechanical properties of chitosan/poly(vinyl pyrrolidone) blends. Polym Degrad Stab 88:261–267CrossRef Sionkowska A, Wisniewski M, Skopinska J, Vicini S, Marsano E (2005) The influence of UV irradiation on the mechanical properties of chitosan/poly(vinyl pyrrolidone) blends. Polym Degrad Stab 88:261–267CrossRef
20.
Zurück zum Zitat Wang S, Shen L, Zhang W, Tong Y (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072CrossRefPubMed Wang S, Shen L, Zhang W, Tong Y (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072CrossRefPubMed
21.
Zurück zum Zitat Yang X, Meng N, Zhu Y, Zhou Y, Nie W, Chen P (2016) Greatly improved mechanical and thermal properties of chitosan by carboxyl-functionalized MoS2 nanosheets. J Mater Sci 51:1344–1353CrossRef Yang X, Meng N, Zhu Y, Zhou Y, Nie W, Chen P (2016) Greatly improved mechanical and thermal properties of chitosan by carboxyl-functionalized MoS2 nanosheets. J Mater Sci 51:1344–1353CrossRef
22.
Zurück zum Zitat Sambudi NS, Park SB, Cho K (2016) Enhancing the mechanical properties of electrospun chitosan/poly(vinyl alcohol) fibers by mineralization with calcium carbonate. J Mater Sci 51:7742–7753CrossRef Sambudi NS, Park SB, Cho K (2016) Enhancing the mechanical properties of electrospun chitosan/poly(vinyl alcohol) fibers by mineralization with calcium carbonate. J Mater Sci 51:7742–7753CrossRef
23.
Zurück zum Zitat Li J, Hou Y, Chen X, Ding X, Liu Y, Shen X, Cai K (2014) Recyclable heparin and chitosan conjugated magnetic nanocomposites for selective removal of low-density lipoprotein from plasma. J Mater Sci Mater Med 25:1055–1064CrossRefPubMed Li J, Hou Y, Chen X, Ding X, Liu Y, Shen X, Cai K (2014) Recyclable heparin and chitosan conjugated magnetic nanocomposites for selective removal of low-density lipoprotein from plasma. J Mater Sci Mater Med 25:1055–1064CrossRefPubMed
24.
Zurück zum Zitat Zhang Z, Li T, Chen B, Wang S, Guo Z (2017) Self-healing supramolecular hydrogel of poly(vinyl alcohol)/chitosan carbon dots. J Mater Sci 52:10614–10623CrossRef Zhang Z, Li T, Chen B, Wang S, Guo Z (2017) Self-healing supramolecular hydrogel of poly(vinyl alcohol)/chitosan carbon dots. J Mater Sci 52:10614–10623CrossRef
25.
Zurück zum Zitat Kumar PS, Selvakumar M, Babu SG, Jaganathan SK, Karuthapandian S, Chattopadhyay S (2015) Novel CuO/chitosan nanocomposite thin film: facile hand picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv 5:57493–57501CrossRef Kumar PS, Selvakumar M, Babu SG, Jaganathan SK, Karuthapandian S, Chattopadhyay S (2015) Novel CuO/chitosan nanocomposite thin film: facile hand picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv 5:57493–57501CrossRef
26.
Zurück zum Zitat Azzam EMS, Solyman SM, Abd-Elaal AA (2016) Fabrication of chitosan/ag-nanoparticles/clay nanocomposites for catalytic control on oxidative polymerization of aniline. Colloid Surface A 510:221–230CrossRef Azzam EMS, Solyman SM, Abd-Elaal AA (2016) Fabrication of chitosan/ag-nanoparticles/clay nanocomposites for catalytic control on oxidative polymerization of aniline. Colloid Surface A 510:221–230CrossRef
27.
Zurück zum Zitat Bibi S, Nawaz M, Yasin T, Riaz M (2016) Chitosan/CNTs nanocomposite as green carrier material for pesticides controlled release. J Polym Res 23:154CrossRef Bibi S, Nawaz M, Yasin T, Riaz M (2016) Chitosan/CNTs nanocomposite as green carrier material for pesticides controlled release. J Polym Res 23:154CrossRef
28.
Zurück zum Zitat Mohamed RR, Rizk NA, Abd El Hady BM, Abdallah HM, Sabaa MW (2017) Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(ethylene glycol) clay nanocomposites. J Polym Environ 25:667–682CrossRef Mohamed RR, Rizk NA, Abd El Hady BM, Abdallah HM, Sabaa MW (2017) Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(ethylene glycol) clay nanocomposites. J Polym Environ 25:667–682CrossRef
29.
Zurück zum Zitat Saravanan A, Ramasamy RP (2016) Chitosan-maghemite-LiClO4 – a new green conducting superpara magnetic nanocomposite. J Polym Res 23:174CrossRef Saravanan A, Ramasamy RP (2016) Chitosan-maghemite-LiClO4 – a new green conducting superpara magnetic nanocomposite. J Polym Res 23:174CrossRef
30.
Zurück zum Zitat Cocarta AI, Gutanu V, Dragan ES (2017) Structural, morphological and magnetic characterization of metal-chitosan/poly (vinyl amine) complexes. J Polym Res 24:20CrossRef Cocarta AI, Gutanu V, Dragan ES (2017) Structural, morphological and magnetic characterization of metal-chitosan/poly (vinyl amine) complexes. J Polym Res 24:20CrossRef
31.
Zurück zum Zitat Singh J, Srivastava M, Dutta J, Dutta PK (2011) Preparation and properties of hybrid monodispersed magnetic α-Fe2O3 based chitosan nanocomposite film for industrial and biomedical applications. Int J Biol Macromol 48:170–176CrossRefPubMed Singh J, Srivastava M, Dutta J, Dutta PK (2011) Preparation and properties of hybrid monodispersed magnetic α-Fe2O3 based chitosan nanocomposite film for industrial and biomedical applications. Int J Biol Macromol 48:170–176CrossRefPubMed
32.
Zurück zum Zitat Cabanas-Polo S, Distaso M, Peukert W, Boccaccini AR (2015) Electrophoretic deposition of α-Fe2O3/chitosan nanocomposite coatings for functional and biomedical applications. J Nanosci Nanotechnol 15:10149–10155CrossRefPubMed Cabanas-Polo S, Distaso M, Peukert W, Boccaccini AR (2015) Electrophoretic deposition of α-Fe2O3/chitosan nanocomposite coatings for functional and biomedical applications. J Nanosci Nanotechnol 15:10149–10155CrossRefPubMed
33.
Zurück zum Zitat Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481CrossRef Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481CrossRef
34.
Zurück zum Zitat Mohammed G, El Sayed AM, Morsi WM (2018) Spectroscopic, thermal, and electrical properties of MgO/ polyvinylpyrrolidone/ polyvinyl alcohol nanocomposites. J Phys Chem Solids 115:238–247CrossRef Mohammed G, El Sayed AM, Morsi WM (2018) Spectroscopic, thermal, and electrical properties of MgO/ polyvinylpyrrolidone/ polyvinyl alcohol nanocomposites. J Phys Chem Solids 115:238–247CrossRef
35.
Zurück zum Zitat El Fewaty NH, El Sayed AM, Hafez RS (2016) Synthesis, structural and optical properties of tin oxide nanoparticles and its CMC/PEG–PVA nanocomposite films. Polym Sci Ser A 58:1004–1016CrossRef El Fewaty NH, El Sayed AM, Hafez RS (2016) Synthesis, structural and optical properties of tin oxide nanoparticles and its CMC/PEG–PVA nanocomposite films. Polym Sci Ser A 58:1004–1016CrossRef
36.
Zurück zum Zitat Tretinnikov ON, Zagorskaya SA (2012) Determination of the degree of crystallinity of poly (vinyl alcohol) by FTIR spectroscopy. J Appl Spectrosc 79:521–526CrossRef Tretinnikov ON, Zagorskaya SA (2012) Determination of the degree of crystallinity of poly (vinyl alcohol) by FTIR spectroscopy. J Appl Spectrosc 79:521–526CrossRef
37.
Zurück zum Zitat Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83:438–446CrossRef Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83:438–446CrossRef
38.
Zurück zum Zitat Song C, Yu H, Zhang M, Yang Y, Zhang G (2013) Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. Int J Biolog Macromol 60:347–354CrossRef Song C, Yu H, Zhang M, Yang Y, Zhang G (2013) Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. Int J Biolog Macromol 60:347–354CrossRef
39.
Zurück zum Zitat Novoselova LY (2016) Hematite nanopowder obtained from waste: iron-removal sludge. Powder Technol 287:364–372CrossRef Novoselova LY (2016) Hematite nanopowder obtained from waste: iron-removal sludge. Powder Technol 287:364–372CrossRef
40.
Zurück zum Zitat Lassoued A, Lassoued MS, Dkhil B, Gadri A, Ammar S (2017) Structural, optical and morphological characterization of cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique. J Mol Struct 1148:276–281CrossRef Lassoued A, Lassoued MS, Dkhil B, Gadri A, Ammar S (2017) Structural, optical and morphological characterization of cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique. J Mol Struct 1148:276–281CrossRef
41.
Zurück zum Zitat Mishra SK, Ferreira JMF, Kannan S (2015) Mechanically stable antimicrobial chitosan–PVA–silver nanocomposite coatings deposited on titanium implants. Carbohydr Polym 121:37–48CrossRefPubMed Mishra SK, Ferreira JMF, Kannan S (2015) Mechanically stable antimicrobial chitosan–PVA–silver nanocomposite coatings deposited on titanium implants. Carbohydr Polym 121:37–48CrossRefPubMed
42.
Zurück zum Zitat Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62:97–103CrossRef Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62:97–103CrossRef
43.
Zurück zum Zitat Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle S, Illum L (2012) PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci 37:659–685CrossRef Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle S, Illum L (2012) PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci 37:659–685CrossRef
44.
Zurück zum Zitat Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res 55:20–27CrossRefPubMed Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res 55:20–27CrossRefPubMed
45.
Zurück zum Zitat Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41:7051–7056CrossRef Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41:7051–7056CrossRef
46.
Zurück zum Zitat Lewandowska K (2009) Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim Acta 493:42–48CrossRef Lewandowska K (2009) Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim Acta 493:42–48CrossRef
47.
Zurück zum Zitat El Sayed AM, Morsi WM (2014) α-Fe2O3 /(PVA + PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. J Mater Sci 49:5378–5387CrossRef El Sayed AM, Morsi WM (2014) α-Fe2O3 /(PVA + PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. J Mater Sci 49:5378–5387CrossRef
48.
Zurück zum Zitat Aziz SB, Rasheed MA, Hussein AM, Ahmed HM (2017) Fabrication of polymer blend composites based on [PVA-PVP](1-x):(Ag2S)x (0.01 ≤x ≤ 0.03) with small optical band gaps: structural and optical properties. Mater Sci Semicond Process 71:197–203CrossRef Aziz SB, Rasheed MA, Hussein AM, Ahmed HM (2017) Fabrication of polymer blend composites based on [PVA-PVP](1-x):(Ag2S)x (0.01 ≤x ≤ 0.03) with small optical band gaps: structural and optical properties. Mater Sci Semicond Process 71:197–203CrossRef
49.
Zurück zum Zitat Abdullah OG, Aziz SB, Omer KM, Salih YM (2015) Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J Mater Sci 26:5303–5309 Abdullah OG, Aziz SB, Omer KM, Salih YM (2015) Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J Mater Sci 26:5303–5309
50.
Zurück zum Zitat Bhatt AS, Bhat DK, Santosh MS (2010) Electrical and magnetic properties of chitosan-magnetite nanocomposites. Physica B 405:2078–2082CrossRef Bhatt AS, Bhat DK, Santosh MS (2010) Electrical and magnetic properties of chitosan-magnetite nanocomposites. Physica B 405:2078–2082CrossRef
51.
Zurück zum Zitat Shaban M, Mustafa M, El Sayed AM (2016) Structural, optical, and photocatalytic properties of the spray deposited nanoporous CdS thin films; influence of copper doping, annealing, and deposition parameters. Mater Sci Semicond Process 56:329–343CrossRef Shaban M, Mustafa M, El Sayed AM (2016) Structural, optical, and photocatalytic properties of the spray deposited nanoporous CdS thin films; influence of copper doping, annealing, and deposition parameters. Mater Sci Semicond Process 56:329–343CrossRef
52.
Zurück zum Zitat Singh NL, Qureshi A, Singh F, Avasthi DK (2007) Effect of swift heavy ion irradiation on dielectrics properties of polymer composite films. Mater Sci Eng B 137:85–92CrossRef Singh NL, Qureshi A, Singh F, Avasthi DK (2007) Effect of swift heavy ion irradiation on dielectrics properties of polymer composite films. Mater Sci Eng B 137:85–92CrossRef
53.
Zurück zum Zitat Badry MD, Wahba MA, Khaled RK, Farghali AA (2015) Preparation and dielectric properties of magnetite/chitosan nanocomposite film. Middle East J Appl Sci 05:940–944 Badry MD, Wahba MA, Khaled RK, Farghali AA (2015) Preparation and dielectric properties of magnetite/chitosan nanocomposite film. Middle East J Appl Sci 05:940–944
54.
Zurück zum Zitat Sudhakar YN, Selvakumar M, Bhat DK (2013) LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Ionics 19:277–285CrossRef Sudhakar YN, Selvakumar M, Bhat DK (2013) LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Ionics 19:277–285CrossRef
55.
Zurück zum Zitat Prajapati GK, Gupta PN (2009) Conduction mechanism in un-irradiated and c-irradiated PVA–H3PO4 polymer electrolytes. Nucl Instrum Meth B 267:3328–3332CrossRef Prajapati GK, Gupta PN (2009) Conduction mechanism in un-irradiated and c-irradiated PVA–H3PO4 polymer electrolytes. Nucl Instrum Meth B 267:3328–3332CrossRef
56.
Zurück zum Zitat Winie T, Arof AK (2004) Dielectric behaviour and AC conductivity of LiCF3SO3 doped H-chitosan polymer films. Ionics 10:193–199CrossRef Winie T, Arof AK (2004) Dielectric behaviour and AC conductivity of LiCF3SO3 doped H-chitosan polymer films. Ionics 10:193–199CrossRef
57.
Zurück zum Zitat Buraidah MH, Teo LP, Majid SR, Arof AK (2009) Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B 404:1373–1379CrossRef Buraidah MH, Teo LP, Majid SR, Arof AK (2009) Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B 404:1373–1379CrossRef
58.
Zurück zum Zitat Shukur MF, Majid NA, Ithnin R, Kadir MFZ (2013) Effect of plasticization on the conductivity and dielectric properties of starch–chitosan blend biopolymer electrolytes infused with NH4Br. Phys Scr T157:014051CrossRef Shukur MF, Majid NA, Ithnin R, Kadir MFZ (2013) Effect of plasticization on the conductivity and dielectric properties of starch–chitosan blend biopolymer electrolytes infused with NH4Br. Phys Scr T157:014051CrossRef
Metadaten
Titel
Synthesis, structural, thermal, optical and dielectric properties of chitosan biopolymer; influence of PVP and α-Fe2O3 Nanorods
verfasst von
Adel M. El Sayed
Ahmad Desoky M. Mohamad
Publikationsdatum
01.08.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 8/2018
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-018-1571-x

Weitere Artikel der Ausgabe 8/2018

Journal of Polymer Research 8/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.