Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 1/2022

15.01.2022

Synergistic effect of surface-flexoelectricity on electromechanical response of BN-based nanobeam

verfasst von: Madhur Gupta, S. A. Meguid, S. I. Kundalwal

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article is divided into two main sections. The focus of the first is the determination of the effective piezoelectric and dielectric properties of Boron-Nitride (BN) reinforced nanocomposite (BNRC) and the focus of the second is the electromechanical response of the BNRC beam accounting for surface and flexoelectric effects. The effective properties of the BNRC were obtained using micromechanics and homogenization techniques that consider Hill’s average concentration factor, while in the second the electromechanical response, which requires the developed effective BNRC properties, was analytically determined by making use of size-dependent Euler–Bernoulli (E–B) beam description and an extended theory of linear piezoelectricity. The considered beam is subjected to a uniformly distributed load with three different types of support: clamped–clamped, simply-supported, and clamped-free. The outcomes of E–B beam model are also compared with that of FE results and are found to be in excellent agreement. Our results reveal that the electromechanical properties of BNRC are improved in the transverse direction, which in turn activates transverse actuation under the applied field. Furthermore, our results show that the size-dependent flexoelectric and surface effects must be considered for the accurate modeling of active nanostructures. We also observed that the bulk flexoelectric effect stiffens the nanobeam irrespective of the support type, whereas the surface effect stiffens or softens the nanobeam depending on the support type. This foundational study highlights the scope for the development of high-performance and efficient BN-based piezoelectric nanostructures, which can be used in nanoelectromechanical systems and structural health monitoring applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Choyal, V., Choyal, V.K., Kundalwal, S.I.: Effect of atom vacancies on elastic and electronic properties of transversely isotropic boron nitride nanotubes: a comprehensive computational study. Comput. Mater. Sci. 156, 332–345 (2019)CrossRef Choyal, V., Choyal, V.K., Kundalwal, S.I.: Effect of atom vacancies on elastic and electronic properties of transversely isotropic boron nitride nanotubes: a comprehensive computational study. Comput. Mater. Sci. 156, 332–345 (2019)CrossRef
Zurück zum Zitat Ebrahimi, F., Barati, M.R.: Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory. Eur. Phys. J. plus. 132(1), 1–13 (2017)CrossRef Ebrahimi, F., Barati, M.R.: Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory. Eur. Phys. J. plus. 132(1), 1–13 (2017)CrossRef
Zurück zum Zitat Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., Zhi, C.: Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979–2993 (2010)CrossRef Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., Zhi, C.: Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979–2993 (2010)CrossRef
Zurück zum Zitat Gupta, M., Ray, M.C., Patil, N.D., Kundalwal, S.I.: Dynamic modelling and analysis of smart carbon nanotube-based hybrid composite beams: analytical and finite element study. Proc. Inst. Mech. Eng. L 235(10), 2185–2206 (2021) Gupta, M., Ray, M.C., Patil, N.D., Kundalwal, S.I.: Dynamic modelling and analysis of smart carbon nanotube-based hybrid composite beams: analytical and finite element study. Proc. Inst. Mech. Eng. L 235(10), 2185–2206 (2021)
Zurück zum Zitat Hill, R.: Theory of mechanical properties of fibre-strengthened materials: II. Inelastic behaviour. J. Mech. Phys. Solids 12(4), 213–218 (1964)MathSciNetCrossRef Hill, R.: Theory of mechanical properties of fibre-strengthened materials: II. Inelastic behaviour. J. Mech. Phys. Solids 12(4), 213–218 (1964)MathSciNetCrossRef
Zurück zum Zitat Huang, G.Y., Yu, S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Solidi b. 243(4), R22–R24 (2006)CrossRef Huang, G.Y., Yu, S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Solidi b. 243(4), R22–R24 (2006)CrossRef
Zurück zum Zitat Izumi, S., Hara, S., Kumagai, T., Sakai, S.: A method for calculating surface stress and surface elastic constants by molecular dynamics: application to the surface of crystal and amorphous silicon. Thin Solid Films 467(1–2), 253–260 (2004)CrossRef Izumi, S., Hara, S., Kumagai, T., Sakai, S.: A method for calculating surface stress and surface elastic constants by molecular dynamics: application to the surface of crystal and amorphous silicon. Thin Solid Films 467(1–2), 253–260 (2004)CrossRef
Zurück zum Zitat Khan, M.H., Liu, H.K., Sun, X., Yamauchi, Y., Bando, Y., Golberg, D., Huang, Z.: Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Mater. Today 20(10), 611–628 (2017)CrossRef Khan, M.H., Liu, H.K., Sun, X., Yamauchi, Y., Bando, Y., Golberg, D., Huang, Z.: Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Mater. Today 20(10), 611–628 (2017)CrossRef
Zurück zum Zitat Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5(10), 2069–2070 (1964) Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5(10), 2069–2070 (1964)
Zurück zum Zitat Kundalwal, S.I.: Review on micromechanics of nano-and micro-fiber reinforced composites. Polym. Compos. 39(12), 4243–4274 (2018)CrossRef Kundalwal, S.I.: Review on micromechanics of nano-and micro-fiber reinforced composites. Polym. Compos. 39(12), 4243–4274 (2018)CrossRef
Zurück zum Zitat Kundalwal, S.I., Ray, M.C.: Improved thermoelastic coefficients of a novel short fuzzy fiber-reinforced composite with wavy carbon nanotubes. J. Mech. Mater. Struct. 9(1), 1–25 (2014a)CrossRef Kundalwal, S.I., Ray, M.C.: Improved thermoelastic coefficients of a novel short fuzzy fiber-reinforced composite with wavy carbon nanotubes. J. Mech. Mater. Struct. 9(1), 1–25 (2014a)CrossRef
Zurück zum Zitat Kundalwal, S.I., Ray, M.C.: Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 225(9), 2621–2643 (2014b)MathSciNetMATHCrossRef Kundalwal, S.I., Ray, M.C.: Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 225(9), 2621–2643 (2014b)MathSciNetMATHCrossRef
Zurück zum Zitat Kundalwal, S.I., Ray, M.C., Meguid, S.A.: Shear lag model for regularly staggered short fuzzy fiber reinforced composite. J. Appl. Mech. 81, 9 091001 (2014)CrossRef Kundalwal, S.I., Ray, M.C., Meguid, S.A.: Shear lag model for regularly staggered short fuzzy fiber reinforced composite. J. Appl. Mech. 81, 9 091001 (2014)CrossRef
Zurück zum Zitat Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon 117, 462–472 (2017)CrossRef Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon 117, 462–472 (2017)CrossRef
Zurück zum Zitat Kundalwal, S.I., Choyal, V.K., Luhadiya, N., Choyal, V.: Effect of carbon doping on electromechanical response of boron nitride nanosheets. Nanotechnology 31(40), 405710 (2020a)CrossRef Kundalwal, S.I., Choyal, V.K., Luhadiya, N., Choyal, V.: Effect of carbon doping on electromechanical response of boron nitride nanosheets. Nanotechnology 31(40), 405710 (2020a)CrossRef
Zurück zum Zitat Kundalwal, S.I., Shingare, K.B., Gupta, M.: Flexoelectric effect on electric potential in piezoelectric graphene-based composite nanowire: analytical and numerical modelling. Eur. J. Mech. A Solids 84, 104050 (2020b)MathSciNetMATHCrossRef Kundalwal, S.I., Shingare, K.B., Gupta, M.: Flexoelectric effect on electric potential in piezoelectric graphene-based composite nanowire: analytical and numerical modelling. Eur. J. Mech. A Solids 84, 104050 (2020b)MathSciNetMATHCrossRef
Zurück zum Zitat Liang, X., Hu, S., Shen, S.: Bernoulli–Euler dielectric beam model based on strain-gradient effect. J. Appl. Mech. 80(4), 044502 (2013)CrossRef Liang, X., Hu, S., Shen, S.: Bernoulli–Euler dielectric beam model based on strain-gradient effect. J. Appl. Mech. 80(4), 044502 (2013)CrossRef
Zurück zum Zitat Liang, X., Hu, S., Shen, S.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct. 23(3), 035020 (2014)CrossRef Liang, X., Hu, S., Shen, S.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct. 23(3), 035020 (2014)CrossRef
Zurück zum Zitat Liu, C., Rajapakse, R.K.N.D.: Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans. Nanotechnol. 9(4), 422–431 (2010)CrossRef Liu, C., Rajapakse, R.K.N.D.: Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans. Nanotechnol. 9(4), 422–431 (2010)CrossRef
Zurück zum Zitat Liu, C., Rajapakse, R.K.N.D., Phani, A.S.: Finite element modeling of beams with surface energy effects. J. Appl. Mech. 78(3), 031014 (2011)CrossRef Liu, C., Rajapakse, R.K.N.D., Phani, A.S.: Finite element modeling of beams with surface energy effects. J. Appl. Mech. 78(3), 031014 (2011)CrossRef
Zurück zum Zitat Ma, W., Cross, L.E.: Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82(19), 3293–3295 (2003)CrossRef Ma, W., Cross, L.E.: Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82(19), 3293–3295 (2003)CrossRef
Zurück zum Zitat Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77(12), 125424 (2008)CrossRef Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77(12), 125424 (2008)CrossRef
Zurück zum Zitat Majdoub, M.S., Sharma, P., Çağin, T.: Erratum: Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures [Phys. Rev. B 78, 121407(R)(2008)]. Phys. Rev. B 79(15), 159901 (2009)CrossRef Majdoub, M.S., Sharma, P., Çağin, T.: Erratum: Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures [Phys. Rev. B 78, 121407(R)(2008)]. Phys. Rev. B 79(15), 159901 (2009)CrossRef
Zurück zum Zitat Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74(1), 014110 (2006)CrossRef Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74(1), 014110 (2006)CrossRef
Zurück zum Zitat Matsunaga, K., Iwamoto, Y., Ikuhara, Y.: Atomic structure and diffusion in amorphous Si-BCN by molecular dynamics simulation. Mater. Trans. 43(7), 1506–1511 (2002)CrossRef Matsunaga, K., Iwamoto, Y., Ikuhara, Y.: Atomic structure and diffusion in amorphous Si-BCN by molecular dynamics simulation. Mater. Trans. 43(7), 1506–1511 (2002)CrossRef
Zurück zum Zitat Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139 (2000)CrossRef Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139 (2000)CrossRef
Zurück zum Zitat Mohammadimehr, M., Mohandes, M., Moradi, M.: Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory. J. Vib. Control 22(7), 1790–1807 (2016)MathSciNetCrossRef Mohammadimehr, M., Mohandes, M., Moradi, M.: Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory. J. Vib. Control 22(7), 1790–1807 (2016)MathSciNetCrossRef
Zurück zum Zitat Odegard, G.M.: Constitutive modeling of piezoelectric polymer composites. Acta Mater. 52(18), 5315–5330 (2004)CrossRef Odegard, G.M.: Constitutive modeling of piezoelectric polymer composites. Acta Mater. 52(18), 5315–5330 (2004)CrossRef
Zurück zum Zitat Odegard, G.M., Clancy, T.C., Gates, T.S.: Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46(2), 553–562 (2005)CrossRef Odegard, G.M., Clancy, T.C., Gates, T.S.: Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46(2), 553–562 (2005)CrossRef
Zurück zum Zitat Pacile, D., Meyer, J.C., Girit, Ç.Ö., Zettl, A.J.A.P.L.: The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92(13), 133107 (2008)CrossRef Pacile, D., Meyer, J.C., Girit, Ç.Ö., Zettl, A.J.A.P.L.: The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92(13), 133107 (2008)CrossRef
Zurück zum Zitat Permal, A., Devarajan, M., Huong, L.H., Zahner, T., Lacey, D., Ibrahim, K.: Enhanced thermal and mechanical properties of epoxy composites filled with hybrid filler system of aluminium nitride and boron nitride. Polym. Compos. 39(S3), E1372–E1380 (2018)CrossRef Permal, A., Devarajan, M., Huong, L.H., Zahner, T., Lacey, D., Ibrahim, K.: Enhanced thermal and mechanical properties of epoxy composites filled with hybrid filler system of aluminium nitride and boron nitride. Polym. Compos. 39(S3), E1372–E1380 (2018)CrossRef
Zurück zum Zitat Pettermann, H.E., Suresh, S.: A comprehensive unit cell model: a study of coupled effects in piezoelectric 1–3 composites. Int. J. Solids Struct. 37(39), 5447–5464 (2000)MATHCrossRef Pettermann, H.E., Suresh, S.: A comprehensive unit cell model: a study of coupled effects in piezoelectric 1–3 composites. Int. J. Solids Struct. 37(39), 5447–5464 (2000)MATHCrossRef
Zurück zum Zitat Ray, M.C.: Micromechanics of piezoelectric composites with improved effective piezoelectric constant. Int. J. Mech. Mater. Des. 3(4), 361–371 (2006)CrossRef Ray, M.C.: Micromechanics of piezoelectric composites with improved effective piezoelectric constant. Int. J. Mech. Mater. Des. 3(4), 361–371 (2006)CrossRef
Zurück zum Zitat Ray, M.C., Pradhan, A.K.: The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures. Smart Mater. Struct. 15(2), 631 (2006)CrossRef Ray, M.C., Pradhan, A.K.: The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures. Smart Mater. Struct. 15(2), 631 (2006)CrossRef
Zurück zum Zitat Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58(5), 665–677 (2010)MathSciNetMATHCrossRef Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58(5), 665–677 (2010)MathSciNetMATHCrossRef
Zurück zum Zitat Spanos, K.N., Anifantis, N.K.: Mechanical characterization of hexagonal boron nitride nanocomposites: a multiscale finite element prediction. J. Compos. Mater. 52(16), 2229–2241 (2018)CrossRef Spanos, K.N., Anifantis, N.K.: Mechanical characterization of hexagonal boron nitride nanocomposites: a multiscale finite element prediction. J. Compos. Mater. 52(16), 2229–2241 (2018)CrossRef
Zurück zum Zitat Tagantsev, A.K.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34(8), 5883 (1986)CrossRef Tagantsev, A.K.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34(8), 5883 (1986)CrossRef
Zurück zum Zitat Wang, K.F., Wang, B.L.: An analytical model for nanoscale unimorph piezoelectric energy harvesters with flexoelectric effect. Compos. Struct. 153, 253–261 (2016)CrossRef Wang, K.F., Wang, B.L.: An analytical model for nanoscale unimorph piezoelectric energy harvesters with flexoelectric effect. Compos. Struct. 153, 253–261 (2016)CrossRef
Zurück zum Zitat Yan, Z., Jiang, L.: Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J. Phys. D Appl. Phys. 44(7), 075404 (2011)CrossRef Yan, Z., Jiang, L.: Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J. Phys. D Appl. Phys. 44(7), 075404 (2011)CrossRef
Zurück zum Zitat Yan, Z., Jiang, L.Y.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113(19), 194102 (2013)CrossRef Yan, Z., Jiang, L.Y.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113(19), 194102 (2013)CrossRef
Zurück zum Zitat Yan, Z., Jiang, L.: Effect of flexoelectricity on the electroelastic fields of a hollow piezoelectric nanocylinder. Smart Mater. Struct. 24(6), 065003 (2015)CrossRef Yan, Z., Jiang, L.: Effect of flexoelectricity on the electroelastic fields of a hollow piezoelectric nanocylinder. Smart Mater. Struct. 24(6), 065003 (2015)CrossRef
Zurück zum Zitat Yan, H., Tang, Y., Su, J., Yang, X.: Enhanced thermal–mechanical properties of polymer composites with hybrid boron nitride nanofillers. Appl. Phys. A 114(2), 331–337 (2014)CrossRef Yan, H., Tang, Y., Su, J., Yang, X.: Enhanced thermal–mechanical properties of polymer composites with hybrid boron nitride nanofillers. Appl. Phys. A 114(2), 331–337 (2014)CrossRef
Zurück zum Zitat Zhang, C., Chen, W., Zhang, C.: On propagation of anti-plane shear waves in piezoelectric plates with surface effect. Phys. Lett. a. 376(45), 3281–3286 (2012)CrossRef Zhang, C., Chen, W., Zhang, C.: On propagation of anti-plane shear waves in piezoelectric plates with surface effect. Phys. Lett. a. 376(45), 3281–3286 (2012)CrossRef
Zurück zum Zitat Zhang, C., Zhu, J., Chen, W., Zhang, C.: Two-dimensional theory of piezoelectric shells considering surface effect. Eur. J. Mech. A Solids. 43, 109–117 (2014a)MathSciNetMATHCrossRef Zhang, C., Zhu, J., Chen, W., Zhang, C.: Two-dimensional theory of piezoelectric shells considering surface effect. Eur. J. Mech. A Solids. 43, 109–117 (2014a)MathSciNetMATHCrossRef
Zurück zum Zitat Zhang, Z., Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. Int. J. Appl. Phys. 116(1), 014307 (2014b)CrossRef Zhang, Z., Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. Int. J. Appl. Phys. 116(1), 014307 (2014b)CrossRef
Metadaten
Titel
Synergistic effect of surface-flexoelectricity on electromechanical response of BN-based nanobeam
verfasst von
Madhur Gupta
S. A. Meguid
S. I. Kundalwal
Publikationsdatum
15.01.2022
Verlag
Springer Netherlands
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 1/2022
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-021-09582-6

Weitere Artikel der Ausgabe 1/2022

International Journal of Mechanics and Materials in Design 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.