Skip to main content
Erschienen in: Meccanica 11/2014

01.11.2014 | Multi-Scale and Multi-Physics Modelling for Complex Materials

Nonlocal elasticity: an approach based on fractional calculus

verfasst von: Alberto Carpinteri, Pietro Cornetti, Alberto Sapora

Erschienen in: Meccanica | Ausgabe 11/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fractional calculus is the mathematical subject dealing with integrals and derivatives of non-integer order. Although its age approaches that of classical calculus, its applications in mechanics are relatively recent and mainly related to fractional damping. Investigations using fractional spatial derivatives are even newer. In the present paper spatial fractional calculus is exploited to investigate a material whose nonlocal stress is defined as the fractional integral of the strain field. The developed fractional nonlocal elastic model is compared with standard integral nonlocal elasticity, which dates back to Eringen’s works. Analogies and differences are highlighted. The long tails of the power law kernel of fractional integrals make the mechanical behaviour of fractional nonlocal elastic materials peculiar. Peculiar are also the power law size effects yielded by the anomalous physical dimension of fractional operators. Furthermore we prove that the fractional nonlocal elastic medium can be seen as the continuum limit of a lattice model whose points are connected by three levels of springs with stiffness decaying with the power law of the distance between the connected points. Interestingly, interactions between bulk and surface material points are taken distinctly into account by the fractional model. Finally, the fractional differential equation in terms of the displacement function along with the proper static and kinematic boundary conditions are derived and solved implementing a suitable numerical algorithm. Applications to some example problems conclude the paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. Imperial College Press, LondonCrossRef Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. Imperial College Press, LondonCrossRef
2.
Zurück zum Zitat Rossikhin YA, Shitikova MV (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev 63(010801):1–52 Rossikhin YA, Shitikova MV (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev 63(010801):1–52
3.
Zurück zum Zitat Mainardi F, Luchko Y, Pagnini G (2001) The fundamental solution of the space-time fractional diffusion equation. Fract Calc Appl Anal 4:153–192MathSciNetMATH Mainardi F, Luchko Y, Pagnini G (2001) The fundamental solution of the space-time fractional diffusion equation. Fract Calc Appl Anal 4:153–192MathSciNetMATH
4.
Zurück zum Zitat Metzler R, Nonnenmacher TF (2002) Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation. Chem Phys 284:67–90CrossRefADS Metzler R, Nonnenmacher TF (2002) Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation. Chem Phys 284:67–90CrossRefADS
5.
Zurück zum Zitat Zoia A, Rosso A, Kardar M (2007) Fractional laplacian in bounded domains. Phys Rev E 76(021116):1–11MathSciNet Zoia A, Rosso A, Kardar M (2007) Fractional laplacian in bounded domains. Phys Rev E 76(021116):1–11MathSciNet
6.
Zurück zum Zitat Magin RL, Abdullah O, Baleanu D, Zhou XJ (2008) Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation. J Magn Reson 190:255–270CrossRefADS Magin RL, Abdullah O, Baleanu D, Zhou XJ (2008) Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation. J Magn Reson 190:255–270CrossRefADS
7.
Zurück zum Zitat Macdonald JR, Evangelista LR, Lenzi EK, Barbero G (2011) Comparison of impedance spectroscopy expressions and responses of alternate anomalous Poisson–Nernst–Planck diffusion equations for finite-length situations. J Phys Chem C 115:7648–7655CrossRef Macdonald JR, Evangelista LR, Lenzi EK, Barbero G (2011) Comparison of impedance spectroscopy expressions and responses of alternate anomalous Poisson–Nernst–Planck diffusion equations for finite-length situations. J Phys Chem C 115:7648–7655CrossRef
8.
Zurück zum Zitat Carpinteri A, Cornetti P (2002) A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos, Solitons Fractals 13:85–94CrossRefMATHADS Carpinteri A, Cornetti P (2002) A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos, Solitons Fractals 13:85–94CrossRefMATHADS
9.
Zurück zum Zitat Carpinteri A, Chiaia B, Cornetti P (2001) Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput Meth Appl Mech Eng 191:3–19CrossRefMATH Carpinteri A, Chiaia B, Cornetti P (2001) Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput Meth Appl Mech Eng 191:3–19CrossRefMATH
10.
11.
Zurück zum Zitat Michelitsch TM, Maugin GA, Rahman M, Derogar S, Nowakowski AF, Nicolleau FCGA (2012) An approach to generalized one-dimensional self-similar elasticity. Int J Eng Sci 61:103–111MathSciNetCrossRef Michelitsch TM, Maugin GA, Rahman M, Derogar S, Nowakowski AF, Nicolleau FCGA (2012) An approach to generalized one-dimensional self-similar elasticity. Int J Eng Sci 61:103–111MathSciNetCrossRef
12.
Zurück zum Zitat Carpinteri A, Cornetti P, Sapora A (2009) Static-kinematic fractional operators for fractal and non-local solids. ZAMM-Z Angew Math Mech 89:207–217MathSciNetCrossRefMATH Carpinteri A, Cornetti P, Sapora A (2009) Static-kinematic fractional operators for fractal and non-local solids. ZAMM-Z Angew Math Mech 89:207–217MathSciNetCrossRefMATH
14.
Zurück zum Zitat Di Paola M, Zingales M (2008) Long-range cohesive interactions of nonlocal continuum mechanics faced by fractional calculus. Int J Solids Struct 45:5642–5659CrossRefMATH Di Paola M, Zingales M (2008) Long-range cohesive interactions of nonlocal continuum mechanics faced by fractional calculus. Int J Solids Struct 45:5642–5659CrossRefMATH
15.
Zurück zum Zitat Carpinteri A, Cornetti P, Sapora A, Di Paola M, Zingales M (2009) An explicit mechanical interpretation of Eringen non-local elasticity by means of fractional calculus. In: Proceedings of 19th Italian Conference on Theoretical and Applied Mechanics, Ancona, Italy, 14–17 September 2009 Carpinteri A, Cornetti P, Sapora A, Di Paola M, Zingales M (2009) An explicit mechanical interpretation of Eringen non-local elasticity by means of fractional calculus. In: Proceedings of 19th Italian Conference on Theoretical and Applied Mechanics, Ancona, Italy, 14–17 September 2009
16.
Zurück zum Zitat Carpinteri A, Cornetti P, Sapora A (2011) A fractional calculus approach to nonlocal elasticity. Eur Phys J 193:193–204 Carpinteri A, Cornetti P, Sapora A (2011) A fractional calculus approach to nonlocal elasticity. Eur Phys J 193:193–204
17.
Zurück zum Zitat Atanackovič TM, Stankovič B (2009) Generalized wave equation in nonlocal elasticity. Acta Mech 208:1–10CrossRefMATH Atanackovič TM, Stankovič B (2009) Generalized wave equation in nonlocal elasticity. Acta Mech 208:1–10CrossRefMATH
18.
Zurück zum Zitat Cottone G, Di Paola M, Zingales M (2009) Elastic waves propagation in 1D fractional non-local continuum. Phys E 42:95–103CrossRef Cottone G, Di Paola M, Zingales M (2009) Elastic waves propagation in 1D fractional non-local continuum. Phys E 42:95–103CrossRef
19.
Zurück zum Zitat Sapora A, Cornetti P, Carpinteri A (2013) Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Commun Nonlinear Sci Numer Simul 18:63–74MathSciNetCrossRefMATHADS Sapora A, Cornetti P, Carpinteri A (2013) Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Commun Nonlinear Sci Numer Simul 18:63–74MathSciNetCrossRefMATHADS
20.
Zurück zum Zitat Challamel N, Zorica D, Atanackovič TM, Spasič DT (2013) On the fractional generalization of Eringen’s nonlocal elasticity for wave propagation. C R Mec 341:298–303CrossRefADS Challamel N, Zorica D, Atanackovič TM, Spasič DT (2013) On the fractional generalization of Eringen’s nonlocal elasticity for wave propagation. C R Mec 341:298–303CrossRefADS
23.
Zurück zum Zitat Tarasov VE (2013) Lattice model with power-law spatial dispersion for fractional elasticity. Cent Eur J Phys 11:1580–1588CrossRef Tarasov VE (2013) Lattice model with power-law spatial dispersion for fractional elasticity. Cent Eur J Phys 11:1580–1588CrossRef
24.
Zurück zum Zitat Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New YorkMATH Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New YorkMATH
25.
Zurück zum Zitat Samko G, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. Gordon and Breach, AmsterdamMATH Samko G, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. Gordon and Breach, AmsterdamMATH
26.
Zurück zum Zitat Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH
28.
Zurück zum Zitat Gorenflo R, Mainardi F (2001) Random walk models approximating symmetric space-fractional diffusion processes. In: Elschner J, Gohberg I, Silbermann B (eds) Problems in mathematical physics (Siegfried Prössdorf Memorial Volume). Birkhäuser Verlag, Boston-Basel-Berlin, pp 120–145CrossRef Gorenflo R, Mainardi F (2001) Random walk models approximating symmetric space-fractional diffusion processes. In: Elschner J, Gohberg I, Silbermann B (eds) Problems in mathematical physics (Siegfried Prössdorf Memorial Volume). Birkhäuser Verlag, Boston-Basel-Berlin, pp 120–145CrossRef
29.
Zurück zum Zitat Mainardi F, Gorenflo R, Moretti D, Pagnini G, Paradisi P (2002) Discrete random walk models for space-time fractional diffusion. Chem Phys 284:521–541CrossRefADS Mainardi F, Gorenflo R, Moretti D, Pagnini G, Paradisi P (2002) Discrete random walk models for space-time fractional diffusion. Chem Phys 284:521–541CrossRefADS
31.
Zurück zum Zitat Kröner E (1967) Elasticity theory of materials with long range cohesive forces. Int J Solids Struct 3:731–742CrossRefMATH Kröner E (1967) Elasticity theory of materials with long range cohesive forces. Int J Solids Struct 3:731–742CrossRefMATH
34.
36.
Zurück zum Zitat Aifantis EC (1999) Gradient deformation models at nano, micro, and macro scales. J Eng Mater 121:189–202 Aifantis EC (1999) Gradient deformation models at nano, micro, and macro scales. J Eng Mater 121:189–202
37.
Zurück zum Zitat Metrikine AV, Askes H (2002) One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: generic formulation. Eur J Mech A 21:555–572CrossRefMATH Metrikine AV, Askes H (2002) One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: generic formulation. Eur J Mech A 21:555–572CrossRefMATH
38.
Zurück zum Zitat Sumelka W, Blaszczyk T (2014) Fractional continua for linear elasticity. Arch Mech 66:147–172MATH Sumelka W, Blaszczyk T (2014) Fractional continua for linear elasticity. Arch Mech 66:147–172MATH
39.
Zurück zum Zitat Carpinteri A, Mainardi F (1997) Fractals and fractional calculus in continuum mechanics. Springer-Verlag, WienCrossRefMATH Carpinteri A, Mainardi F (1997) Fractals and fractional calculus in continuum mechanics. Springer-Verlag, WienCrossRefMATH
40.
Zurück zum Zitat Yang Q, Liu F, Turner I (2010) Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl Math Model 34:200–218MathSciNetCrossRefMATH Yang Q, Liu F, Turner I (2010) Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl Math Model 34:200–218MathSciNetCrossRefMATH
Metadaten
Titel
Nonlocal elasticity: an approach based on fractional calculus
verfasst von
Alberto Carpinteri
Pietro Cornetti
Alberto Sapora
Publikationsdatum
01.11.2014
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 11/2014
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-014-0044-5

Weitere Artikel der Ausgabe 11/2014

Meccanica 11/2014 Zur Ausgabe

MULTI-SCALE AND MULTI-PHYSICS MODELLING FOR COMPLEX MATERIALS

Equilibrium of a second-gradient fluid and an elastic solid with surface stresses

Multi-Scale and Multi-Physics Modelling for Complex Materials

Multi-scale and multi-physics modelling for complex materials

Multi-Scale and Multi-Physics Modelling for Complex Materials

Particulate random composites homogenized as micropolar materials

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.