Skip to main content
Erschienen in: Meccanica 3/2020

18.02.2020

A modified conjugated bond-based peridynamic analysis for impact failure of concrete gravity dam

verfasst von: Xin Gu, Qing Zhang

Erschienen in: Meccanica | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Description of the impact damage of dams subjected to projectile penetration objectively is a significant but difficult issue. To take the advantages of bond-based peridynamics (BB PD) in analyzing multiple crack growth and fragmentation, a modified conjugated BB PD model with two micro-moduli is established for analyzing the quasi-static deformation and the projectile impact damage of a typical concrete gravity dam. The nonlocal interaction force in the conjugated BB PD is not only related to the relative normal stretch of a bond, but also related to a series of relative rotation angle of a pair of conjugated bonds. This model can be regarded as considering the tensile spring and the rotation spring together, so that it can break through the fixed Poisson’s ratio limitation of the original BB PD model due to the central pairwise interaction. Furthermore, compared with the original conjugated BB PD model, the definitions of tangent bond force and rotation strain energy density are distinctly different, which will not varied with different geometry discretization; also an attenuation kernel function related to the bond length is incorporated to reflect the decreasing long-range force with the increasing distance between material points. Finally, the failure analysis of a dam subjected to high-velocity projectile impacting at the center of dam crest demonstrates the effectiveness of the PD method for simulating the projectile impact failure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209ADSMathSciNetMATH Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209ADSMathSciNetMATH
2.
Zurück zum Zitat Silling SA, Epton MA, Weckner O, Xu JF, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88:151–184MathSciNetMATH Silling SA, Epton MA, Weckner O, Xu JF, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88:151–184MathSciNetMATH
3.
Zurück zum Zitat Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, New YorkMATH Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, New YorkMATH
4.
Zurück zum Zitat Bobaru F, Foster JT, Geubelle PH, Silling SA (eds) (2016) Handbook of peridynamic modeling. CRC Press, Boca RatonMATH Bobaru F, Foster JT, Geubelle PH, Silling SA (eds) (2016) Handbook of peridynamic modeling. CRC Press, Boca RatonMATH
5.
Zurück zum Zitat Ballarini R, Diana V, Biolzi L, Casolo S (2018) Bond-based peridynamic modelling of singular and nonsingular crack-tip fields. Meccanica 53(14):3495–3515MathSciNet Ballarini R, Diana V, Biolzi L, Casolo S (2018) Bond-based peridynamic modelling of singular and nonsingular crack-tip fields. Meccanica 53(14):3495–3515MathSciNet
6.
Zurück zum Zitat Madenci E, Oterkus S (2016) Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J Mech Phys Solids 86:192–219ADSMathSciNet Madenci E, Oterkus S (2016) Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J Mech Phys Solids 86:192–219ADSMathSciNet
7.
Zurück zum Zitat Asgari M, Kouchakzadeh MA (2019) An equivalent von Mises stress and corresponding equivalent plastic strain for elastic–plastic ordinary peridynamics. Meccanica 54(7):1001–1014MathSciNet Asgari M, Kouchakzadeh MA (2019) An equivalent von Mises stress and corresponding equivalent plastic strain for elastic–plastic ordinary peridynamics. Meccanica 54(7):1001–1014MathSciNet
8.
Zurück zum Zitat Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J (2009) A non-ordinary state-based peridynamic method to model solid material deformation and fracture. Int J Solids Struct 46(5):1186–1195MATH Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J (2009) A non-ordinary state-based peridynamic method to model solid material deformation and fracture. Int J Solids Struct 46(5):1186–1195MATH
9.
Zurück zum Zitat Gu X, Madenci E, Zhang Q (2018) Revisit of non-ordinary state-based peridynamics. Eng Fract Mech 190:31–52 Gu X, Madenci E, Zhang Q (2018) Revisit of non-ordinary state-based peridynamics. Eng Fract Mech 190:31–52
10.
Zurück zum Zitat Gu X, Zhang Q, Madenci E, Xia X (2019) Possible causes of numerical oscillations in non-ordinary state-based peridynamics and a bond-associated higher-order stabilized model. Comput Methods Appl Mech Eng 357:112592ADSMathSciNet Gu X, Zhang Q, Madenci E, Xia X (2019) Possible causes of numerical oscillations in non-ordinary state-based peridynamics and a bond-associated higher-order stabilized model. Comput Methods Appl Mech Eng 357:112592ADSMathSciNet
11.
Zurück zum Zitat Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535 Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535
12.
Zurück zum Zitat Parks ML, Lehoucq RB, Plimpton SJ, Silling SA (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179(11):777–783ADSMATH Parks ML, Lehoucq RB, Plimpton SJ, Silling SA (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179(11):777–783ADSMATH
13.
Zurück zum Zitat Huang D, Zhang Q, Qiao P (2011) Damage and progressive failure of concrete structures using non-local peridynamic modeling. Sci China Technol Sci 54(3):591–596 Huang D, Zhang Q, Qiao P (2011) Damage and progressive failure of concrete structures using non-local peridynamic modeling. Sci China Technol Sci 54(3):591–596
14.
Zurück zum Zitat Henke SF, Shanbhag S (2014) Mesh sensitivity in peridynamic simulations. Comput Phys Commun 185(1):181–193ADSMathSciNetMATH Henke SF, Shanbhag S (2014) Mesh sensitivity in peridynamic simulations. Comput Phys Commun 185(1):181–193ADSMathSciNetMATH
15.
Zurück zum Zitat Oterkus E, Guven I, Madenci E (2012) Impact damage assessment by using peridynamic theory. Cent Eur J Eng 2(4):523–531 Oterkus E, Guven I, Madenci E (2012) Impact damage assessment by using peridynamic theory. Cent Eur J Eng 2(4):523–531
16.
Zurück zum Zitat Xu J, Askari A, Weckner O, Silling S (2008) Peridynamic analysis of impact damage in composite laminates. J Aerosp Eng 21(3):187–194 Xu J, Askari A, Weckner O, Silling S (2008) Peridynamic analysis of impact damage in composite laminates. J Aerosp Eng 21(3):187–194
17.
Zurück zum Zitat Askari A, Nelson K, Weckner O, Xu J, Silling S (2011) Hail impact characteristics of a hybrid material by advanced analysis techniques and testing. J Aerosp Eng 24(2):210–217 Askari A, Nelson K, Weckner O, Xu J, Silling S (2011) Hail impact characteristics of a hybrid material by advanced analysis techniques and testing. J Aerosp Eng 24(2):210–217
18.
Zurück zum Zitat Sun C, Huang Z (2015) Peridynamic simulation to impacting damage in composite laminate. Compos Struct 138:335–341 Sun C, Huang Z (2015) Peridynamic simulation to impacting damage in composite laminate. Compos Struct 138:335–341
19.
Zurück zum Zitat Levine JA, Bargteil AW, Corsi C, Tessendorf J, Geist R (2014) A peridynamic perspective on spring-mass fracture. In: Proceedings of ACM SIGGRAPH/eurographics symposium on computer animation, pp 47–55 Levine JA, Bargteil AW, Corsi C, Tessendorf J, Geist R (2014) A peridynamic perspective on spring-mass fracture. In: Proceedings of ACM SIGGRAPH/eurographics symposium on computer animation, pp 47–55
20.
Zurück zum Zitat Hu W, Wang Y, Yu J, Yen CF, Bobaru F (2013) Impact damage on a thin glass plate with a thin polycarbonate backing. Int J Impact Eng 62:152–165 Hu W, Wang Y, Yu J, Yen CF, Bobaru F (2013) Impact damage on a thin glass plate with a thin polycarbonate backing. Int J Impact Eng 62:152–165
21.
Zurück zum Zitat Ren B, Wu CT, Askari E (2017) A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis. Int J Impact Eng 99:14–25 Ren B, Wu CT, Askari E (2017) A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis. Int J Impact Eng 99:14–25
22.
Zurück zum Zitat Lai X, Liu L, Li S, Zeleke M, Liu Q, Wang Z (2018) A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials. Int J Impact Eng 111:130–146 Lai X, Liu L, Li S, Zeleke M, Liu Q, Wang Z (2018) A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials. Int J Impact Eng 111:130–146
23.
Zurück zum Zitat Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15):1169–1178MathSciNet Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15):1169–1178MathSciNet
24.
Zurück zum Zitat Lee J, Liu W, Hong JW (2016) Impact fracture analysis enhanced by contact of peridynamic and finite element formulations. Int J Impact Eng 87:108–119 Lee J, Liu W, Hong JW (2016) Impact fracture analysis enhanced by contact of peridynamic and finite element formulations. Int J Impact Eng 87:108–119
25.
Zurück zum Zitat Gu X, Zhang Q, Huang D, Yv Y (2016) Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics. Eng Fract Mech 160:124–137 Gu X, Zhang Q, Huang D, Yv Y (2016) Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics. Eng Fract Mech 160:124–137
26.
Zurück zum Zitat Zhang G, Gazonas GA, Bobaru F (2018) Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: a peridynamic analysis. Int J Impact Eng 113:73–87 Zhang G, Gazonas GA, Bobaru F (2018) Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: a peridynamic analysis. Int J Impact Eng 113:73–87
27.
Zurück zum Zitat Tupek MR, Rimoli JJ, Radovitzky R (2013) An approach for incorporating classical continuum damage models in state-based peridynamics. Comput Methods Appl Mech Eng 263:20–26ADSMathSciNetMATH Tupek MR, Rimoli JJ, Radovitzky R (2013) An approach for incorporating classical continuum damage models in state-based peridynamics. Comput Methods Appl Mech Eng 263:20–26ADSMathSciNetMATH
28.
Zurück zum Zitat Silling SA, Parks ML, Kamm JR, Weckner O, Rassaian M (2017) Modeling shockwaves and impact phenomena with Eulerian peridynamics. Int J Impact Eng 107:47–57 Silling SA, Parks ML, Kamm JR, Weckner O, Rassaian M (2017) Modeling shockwaves and impact phenomena with Eulerian peridynamics. Int J Impact Eng 107:47–57
29.
Zurück zum Zitat Demmie P, Silling S (2007) An approach to modeling extreme loading of structures using peridynamics. J Mech Mater Struct 2(10):1921–1945 Demmie P, Silling S (2007) An approach to modeling extreme loading of structures using peridynamics. J Mech Mater Struct 2(10):1921–1945
30.
Zurück zum Zitat Diyaroglu C, Oterkus E, Madenci E, Rabczuk T, Siddiq A (2016) Peridynamic modeling of composite laminates under explosive loading. Compos Struct 144:14–23 Diyaroglu C, Oterkus E, Madenci E, Rabczuk T, Siddiq A (2016) Peridynamic modeling of composite laminates under explosive loading. Compos Struct 144:14–23
31.
Zurück zum Zitat Wang Q, Wang Y, Zan Y, Lu W, Bai X, Guo J (2018) Peridynamics simulation of the fragmentation of ice cover by blast loads of an underwater explosion. J Mar Sci Technol 23(1):52–66 Wang Q, Wang Y, Zan Y, Lu W, Bai X, Guo J (2018) Peridynamics simulation of the fragmentation of ice cover by blast loads of an underwater explosion. J Mar Sci Technol 23(1):52–66
32.
Zurück zum Zitat Ren B, Fan H, Bergel GL, Regueiro RA, Lai X, Li S (2014) A peridynamics–SPH coupling approach to simulate soil fragmentation induced by shock waves. Comput Mech 55(2):287–302MathSciNetMATH Ren B, Fan H, Bergel GL, Regueiro RA, Lai X, Li S (2014) A peridynamics–SPH coupling approach to simulate soil fragmentation induced by shock waves. Comput Mech 55(2):287–302MathSciNetMATH
33.
Zurück zum Zitat Lai X, Ren B, Fan H, Li S, Wu CT, Regueiro RA, Liu L (2015) Peridynamics simulations of geomaterial fragmentation by impulse loads. Int J Numer Anal Methods Geomech 39(12):1304–1330 Lai X, Ren B, Fan H, Li S, Wu CT, Regueiro RA, Liu L (2015) Peridynamics simulations of geomaterial fragmentation by impulse loads. Int J Numer Anal Methods Geomech 39(12):1304–1330
34.
Zurück zum Zitat Fan H, Bergel GL, Li S (2016) A hybrid peridynamics–SPH simulation of soil fragmentation by blast loads of buried explosive. Int J Impact Eng 87:14–27 Fan H, Bergel GL, Li S (2016) A hybrid peridynamics–SPH simulation of soil fragmentation by blast loads of buried explosive. Int J Impact Eng 87:14–27
36.
Zurück zum Zitat Gerstle W, Sau N, Silling SA (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237(12–13):1250–1258 Gerstle W, Sau N, Silling SA (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237(12–13):1250–1258
37.
Zurück zum Zitat Prakash N, Seidel GD (2015) A novel two-parameter linear elastic constitutive model for bond based peridynamics. In: 56th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, pp 1–22 Prakash N, Seidel GD (2015) A novel two-parameter linear elastic constitutive model for bond based peridynamics. In: 56th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, pp 1–22
38.
Zurück zum Zitat Zhou XP, Shou YD (2016) Numerical simulation of failure of rock-like material subjected to compressive loads using improved peridynamic method. Int J Geomech 17(3):04016086 Zhou XP, Shou YD (2016) Numerical simulation of failure of rock-like material subjected to compressive loads using improved peridynamic method. Int J Geomech 17(3):04016086
39.
Zurück zum Zitat Wang Y, Zhou X, Wang Y, Shou Y (2018) A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids. Int J Solids Struct 134:89–115 Wang Y, Zhou X, Wang Y, Shou Y (2018) A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids. Int J Solids Struct 134:89–115
40.
Zurück zum Zitat Zhou X, Wang Y, Shou Y, Kou M (2018) A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads. Eng Fract Mech 188:151–183 Zhou X, Wang Y, Shou Y, Kou M (2018) A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads. Eng Fract Mech 188:151–183
41.
Zurück zum Zitat Zhu QZ, Ni T (2017) Peridynamic formulations enriched with bond rotation effects. Int J Eng Sci 121:118–129MathSciNetMATH Zhu QZ, Ni T (2017) Peridynamic formulations enriched with bond rotation effects. Int J Eng Sci 121:118–129MathSciNetMATH
42.
Zurück zum Zitat O’Grady J, Foster J (2014) Peridynamic beams: a non-ordinary, state-based model. Int J Solids Struct 51(18):3177–3183 O’Grady J, Foster J (2014) Peridynamic beams: a non-ordinary, state-based model. Int J Solids Struct 51(18):3177–3183
43.
Zurück zum Zitat Diyaroglu C, Oterkus E, Oterkus S, Madenci E (2015) Peridynamics for bending of beams and plates with transverse shear deformation. Int J Solids Struct 69:152–168 Diyaroglu C, Oterkus E, Oterkus S, Madenci E (2015) Peridynamics for bending of beams and plates with transverse shear deformation. Int J Solids Struct 69:152–168
44.
Zurück zum Zitat Hu YL, Madenci E (2016) Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence. Compos Struct 153:139–175 Hu YL, Madenci E (2016) Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence. Compos Struct 153:139–175
45.
Zurück zum Zitat Gu X, Zhang Q (2017) Progress in numerical simulation of dam failure under blast loading. J Hohai Univ 45:1–11 Gu X, Zhang Q (2017) Progress in numerical simulation of dam failure under blast loading. J Hohai Univ 45:1–11
46.
Zurück zum Zitat Yang G, Wang G, Lu W, Yan P, Chen M, Wu X (2017) A SPH-Lagrangian-Eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion. KSCE J Civ Eng 22(8):3085–3101 Yang G, Wang G, Lu W, Yan P, Chen M, Wu X (2017) A SPH-Lagrangian-Eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion. KSCE J Civ Eng 22(8):3085–3101
47.
Zurück zum Zitat Gong Y, Zhang WH, Jin XY (2009) Computer simulation of dynamic brittle damage process in arch dam due to blast load. In: Computer science and information engineering, 2009 WRI World Congress, pp 144–148 Gong Y, Zhang WH, Jin XY (2009) Computer simulation of dynamic brittle damage process in arch dam due to blast load. In: Computer science and information engineering, 2009 WRI World Congress, pp 144–148
48.
Zurück zum Zitat Gu X, Zhang Q, Xia X (2017) Voronoi-based peridynamics and cracking analysis with adaptive refinement. Int J Numer Methods Eng 112(13):2087–2109MathSciNet Gu X, Zhang Q, Xia X (2017) Voronoi-based peridynamics and cracking analysis with adaptive refinement. Int J Numer Methods Eng 112(13):2087–2109MathSciNet
49.
Zurück zum Zitat Huang D, Lu G, Qiao P (2015) An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int J Mech Sci 94:111–122 Huang D, Lu G, Qiao P (2015) An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int J Mech Sci 94:111–122
50.
Zurück zum Zitat Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Methods Eng 77(6):852–877MATH Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Methods Eng 77(6):852–877MATH
51.
Zurück zum Zitat Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2):229–244MATH Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2):229–244MATH
52.
Zurück zum Zitat Zhang Z, Chen Y (2014) Modeling nonlinear elastic solid with correlated lattice bond cell for dynamic fracture simulation. Comput Methods Appl Mech Eng 279:325–347ADSMathSciNetMATH Zhang Z, Chen Y (2014) Modeling nonlinear elastic solid with correlated lattice bond cell for dynamic fracture simulation. Comput Methods Appl Mech Eng 279:325–347ADSMathSciNetMATH
53.
Zurück zum Zitat Wolfram S (1992) Mathematica: a system for doing mathematics by computer—user’s guide for microsoft windows. Addison-Wesley, Boston Wolfram S (1992) Mathematica: a system for doing mathematics by computer—user’s guide for microsoft windows. Addison-Wesley, Boston
54.
Zurück zum Zitat Foster JT, Silling SA, Chen W (2011) An energy based failure criterion for use with peridynamic states. Int J Multiscale Comput Eng 9(6):675–688 Foster JT, Silling SA, Chen W (2011) An energy based failure criterion for use with peridynamic states. Int J Multiscale Comput Eng 9(6):675–688
55.
Zurück zum Zitat Kamensky D, Behzadinasab M, Foster JT, Bazilevs Y (2019) Peridynamic modeling of frictional contact. J Peridynamics Nonlocal Model 1:107–121 Kamensky D, Behzadinasab M, Foster JT, Bazilevs Y (2019) Peridynamic modeling of frictional contact. J Peridynamics Nonlocal Model 1:107–121
56.
Zurück zum Zitat Yu T (2009) Dynamical response simulation of concrete dam subjected to underwater contact explosion load. In: 2009 WRI world congress on computer science and information engineering, vol 1. IEEE, pp 769–774 Yu T (2009) Dynamical response simulation of concrete dam subjected to underwater contact explosion load. In: 2009 WRI world congress on computer science and information engineering, vol 1. IEEE, pp 769–774
57.
Zurück zum Zitat Chen J, Liu X, Xu Q (2017) Numerical simulation analysis of damage mode of concrete gravity dam under close-in explosion. KSCE J Civ Eng 21(1):397–407 Chen J, Liu X, Xu Q (2017) Numerical simulation analysis of damage mode of concrete gravity dam under close-in explosion. KSCE J Civ Eng 21(1):397–407
58.
Zurück zum Zitat Yang D, Dong W, Liu X, Yi S, He X (2018) Investigation on mode-I crack propagation in concrete using bond-based peridynamics with a new damage model. Eng Fract Mech 199:567–581 Yang D, Dong W, Liu X, Yi S, He X (2018) Investigation on mode-I crack propagation in concrete using bond-based peridynamics with a new damage model. Eng Fract Mech 199:567–581
59.
Zurück zum Zitat Zhang SR, Wang GH (2012) Study on the antiknock performance and measures of concrete gravity dam. J Hydraul Eng 43(10):1202–1213 Zhang SR, Wang GH (2012) Study on the antiknock performance and measures of concrete gravity dam. J Hydraul Eng 43(10):1202–1213
Metadaten
Titel
A modified conjugated bond-based peridynamic analysis for impact failure of concrete gravity dam
verfasst von
Xin Gu
Qing Zhang
Publikationsdatum
18.02.2020
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 3/2020
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-020-01138-w

Weitere Artikel der Ausgabe 3/2020

Meccanica 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.