Skip to main content
Erschienen in: Meccanica 8/2021

07.04.2021

Impact of ion partitioning and double layer polarization on diffusiophoresis of a pH-regulated nanogel

verfasst von: Partha Sarathi Majee, Somnath Bhattacharyya

Erschienen in: Meccanica | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Diffusiophoresis of a charge regulated spherical polyelectrolyte nanogel (PE) due to an externally imposed ionic concentration gradient is considered. The immobile charge density of the nanogel develops through the association/dissociation reactions of their inorganic functional groups. The nanogel is ion and fluid permeable with dielectric permittivity different from that of the surrounding electrolyte medium. This difference in dielectric permittivity creates an ion partitioning due to the difference in self energy of ions. The Nernst–Planck equation for ion transport and the Poisson equation (PNP) for the electric field are modified to take into account the ion partitioning effects. The diffusiophoresis mechanism is governed by the electrophoresis generated by the induced electric field and chemiphoresis develops due to the mitigation of counterions across the double layer of the nanogel. In addition, the convection dominated double layer polarization and the counterion condensation as well as the electroosmotic flow created by the gel immobile charge play a role in the diffusiophoresis. All these effects are incorporated through the modified PNP equations coupled with the Navier–Stokes equations. The governing equations in their full form are solved numerically through a control volume approach. Present computed solutions for the limiting cases are in good agreement with the existing solutions based on the first-order perturbation analysis. In order to illustrate the diffusiophoresis mechanism we have measured the induced electric field and effective charge density of the PE and analyzed its dependence on several electrokinetic parameters. The contribution due to chemiphoresis is low for PE compared to a rigid colloid. For a highly permeable PE the diffusiophoretic velocity increases and approaches a saturation for higher range of the PE fixed charge density. The ion partitioning effect depletes counterions in PE to manifests its diffusiophoretic velocity. The diffusiophoretic velocity of PE for pH > IEP is higher than the case for which pH < IEP.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anderson JL (1989) Colloid transport by interfacial forces. Annu Rev Fluid Mech 21(1):61–99CrossRef Anderson JL (1989) Colloid transport by interfacial forces. Annu Rev Fluid Mech 21(1):61–99CrossRef
2.
Zurück zum Zitat Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454CrossRef Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454CrossRef
3.
Zurück zum Zitat Tsai S-C, Lee E (2019) Diffusiophoresis of a highly charged porous particle induced by diffusion potential. Langmuir 35(8):3143–3155CrossRef Tsai S-C, Lee E (2019) Diffusiophoresis of a highly charged porous particle induced by diffusion potential. Langmuir 35(8):3143–3155CrossRef
4.
Zurück zum Zitat Lee Y-F, Chang W-C, Yvonne W, Fan L, Lee E (2021) Diffusiophoresis of a highly charged soft particle in electrolyte solutions. Langmuir 37(4):1480–1492CrossRef Lee Y-F, Chang W-C, Yvonne W, Fan L, Lee E (2021) Diffusiophoresis of a highly charged soft particle in electrolyte solutions. Langmuir 37(4):1480–1492CrossRef
5.
Zurück zum Zitat Shin S (2020) Diffusiophoretic separation of colloids in microfluidic flows. Phys Fluids 32(10):101302CrossRef Shin S (2020) Diffusiophoretic separation of colloids in microfluidic flows. Phys Fluids 32(10):101302CrossRef
6.
Zurück zum Zitat Ankur G, Suin S, Stone Howard A (2020) Diffusiophoresis: from dilute to concentrated electrolytes. Soft Matter 16(30):6975–6984CrossRef Ankur G, Suin S, Stone Howard A (2020) Diffusiophoresis: from dilute to concentrated electrolytes. Soft Matter 16(30):6975–6984CrossRef
7.
Zurück zum Zitat Prieve DC, Anderson JL, Ebel JP, Lowell ME (1984) Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J Fluid Mech 148:247–269CrossRef Prieve DC, Anderson JL, Ebel JP, Lowell ME (1984) Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J Fluid Mech 148:247–269CrossRef
8.
Zurück zum Zitat Prieve DC, Roman R (1987) Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. J Chem Soc Faraday Trans 2 Mol Chem Phys 83(8):1287–1306 Prieve DC, Roman R (1987) Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. J Chem Soc Faraday Trans 2 Mol Chem Phys 83(8):1287–1306
9.
Zurück zum Zitat Hsu J-P, Hsu W-L, Ming-Hong K, Chen Z-S, Tseng S (2010) Diffusiophoresis of a sphere along the axis of a cylindrical pore. J Colloid Interface Sci 342(2):598–606CrossRef Hsu J-P, Hsu W-L, Ming-Hong K, Chen Z-S, Tseng S (2010) Diffusiophoresis of a sphere along the axis of a cylindrical pore. J Colloid Interface Sci 342(2):598–606CrossRef
10.
Zurück zum Zitat Chiu YC, Keh HJ (2018) Diffusiophoresis of a charged particle in a charged cavity with arbitrary electric double layer thickness. Microfluid Nanofluid 22(8):84CrossRef Chiu YC, Keh HJ (2018) Diffusiophoresis of a charged particle in a charged cavity with arbitrary electric double layer thickness. Microfluid Nanofluid 22(8):84CrossRef
11.
Zurück zum Zitat Chiang T-Y, Velegol D (2014) Multi-ion diffusiophoresis. J Colloid Interface Sci 424:120–123CrossRef Chiang T-Y, Velegol D (2014) Multi-ion diffusiophoresis. J Colloid Interface Sci 424:120–123CrossRef
12.
Zurück zum Zitat Velegol D, Garg A, Guha R, Kar A, Kumar M (2016) Origins of concentration gradients for diffusiophoresis. Soft Matter 12(21):4686–4703CrossRef Velegol D, Garg A, Guha R, Kar A, Kumar M (2016) Origins of concentration gradients for diffusiophoresis. Soft Matter 12(21):4686–4703CrossRef
13.
Zurück zum Zitat Prieve DC, Malone SM, Khair AS, Stout RF, Kanj MY (2019) Diffusiophoresis of charged colloidal particles in the limit of very high salinity. Proc Natl Acad Sci 116(37):18257–18262CrossRef Prieve DC, Malone SM, Khair AS, Stout RF, Kanj MY (2019) Diffusiophoresis of charged colloidal particles in the limit of very high salinity. Proc Natl Acad Sci 116(37):18257–18262CrossRef
14.
Zurück zum Zitat Yeh L-H, Liu K-L, Hsu J-P (2012) Importance of ionic polarization effect on the electrophoretic behavior of polyelectrolyte nanoparticles in aqueous electrolyte solutions. J Phys Chem C 116(1):367–373CrossRef Yeh L-H, Liu K-L, Hsu J-P (2012) Importance of ionic polarization effect on the electrophoretic behavior of polyelectrolyte nanoparticles in aqueous electrolyte solutions. J Phys Chem C 116(1):367–373CrossRef
15.
Zurück zum Zitat Xin W, Huang W, Wen-Hao W, Xue B, Xiang D, Li Y, Qin M, Sun F, Wang W, Zhang W-B et al (2018) Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res 11(10):5556–5565CrossRef Xin W, Huang W, Wen-Hao W, Xue B, Xiang D, Li Y, Qin M, Sun F, Wang W, Zhang W-B et al (2018) Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res 11(10):5556–5565CrossRef
16.
Zurück zum Zitat Wang H, Heilshorn SC (2015) Adaptable hydrogels: adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater 27(25):3710CrossRef Wang H, Heilshorn SC (2015) Adaptable hydrogels: adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater 27(25):3710CrossRef
17.
Zurück zum Zitat Raemdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5(4):707–715CrossRef Raemdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5(4):707–715CrossRef
18.
Zurück zum Zitat Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II et al (2019) Nanogels and microgels: from model colloids to applications, recent developments, and future trends. Langmuir 35(19):6231–6255CrossRef Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II et al (2019) Nanogels and microgels: from model colloids to applications, recent developments, and future trends. Langmuir 35(19):6231–6255CrossRef
19.
Zurück zum Zitat Hoagland DA, Arvanitidou E, Welch C (1999) Capillary electrophoresis measurements of the free solution mobility for several model polyelectrolyte systems. Macromolecules 32(19):6180–6190CrossRef Hoagland DA, Arvanitidou E, Welch C (1999) Capillary electrophoresis measurements of the free solution mobility for several model polyelectrolyte systems. Macromolecules 32(19):6180–6190CrossRef
20.
Zurück zum Zitat Duval JFL, Slaveykova VI, Hosse M, Buffle J, Wilkinson KJ (2006) Electrohydrodynamic properties of succinoglycan as probed by fluorescence correlation spectroscopy, potentiometric titration and capillary electrophoresis. Biomacromol 7(10):2818–2826CrossRef Duval JFL, Slaveykova VI, Hosse M, Buffle J, Wilkinson KJ (2006) Electrohydrodynamic properties of succinoglycan as probed by fluorescence correlation spectroscopy, potentiometric titration and capillary electrophoresis. Biomacromol 7(10):2818–2826CrossRef
21.
Zurück zum Zitat Hermans JJ (1955) Sedimentation and electrophoresis of porous spheres. J Polym Sci 18(90):527–534CrossRef Hermans JJ (1955) Sedimentation and electrophoresis of porous spheres. J Polym Sci 18(90):527–534CrossRef
22.
Zurück zum Zitat Hermans JJ (1955) Electrophoresis of charged polymer molecules with partial free drainage. Koninkl Ned Akad Wetenschap Proc 58:182–187MATH Hermans JJ (1955) Electrophoresis of charged polymer molecules with partial free drainage. Koninkl Ned Akad Wetenschap Proc 58:182–187MATH
23.
Zurück zum Zitat Ohshima H (1995) Electrophoretic mobility of soft particles. Colloids Surf A 103(3):249–255CrossRef Ohshima H (1995) Electrophoretic mobility of soft particles. Colloids Surf A 103(3):249–255CrossRef
24.
Zurück zum Zitat Yeh L-H, Hsu J-P (2011) Effects of double-layer polarization and counterion condensation on the electrophoresis of polyelectrolytes. Soft Matter 7(2):396–411CrossRef Yeh L-H, Hsu J-P (2011) Effects of double-layer polarization and counterion condensation on the electrophoresis of polyelectrolytes. Soft Matter 7(2):396–411CrossRef
25.
Zurück zum Zitat Yeh L-H, Tai Y-H, Wang N, Hsu J-P, Qian S (2012) Electrokinetics of ph-regulated zwitterionic polyelectrolyte nanoparticles. Nanoscale 4(23):7575–7584CrossRef Yeh L-H, Tai Y-H, Wang N, Hsu J-P, Qian S (2012) Electrokinetics of ph-regulated zwitterionic polyelectrolyte nanoparticles. Nanoscale 4(23):7575–7584CrossRef
26.
Zurück zum Zitat Bhattacharyya S, Gopmandal PP (2013) Effects of electroosmosis and counterion penetration on electrophoresis of a positively charged spherical permeable particle. Soft Matter 9(6):1871–1884CrossRef Bhattacharyya S, Gopmandal PP (2013) Effects of electroosmosis and counterion penetration on electrophoresis of a positively charged spherical permeable particle. Soft Matter 9(6):1871–1884CrossRef
27.
Zurück zum Zitat Majee PS, Bhattacharyya S, Dutta P (2019) On electrophoresis of a ph-regulated nanogel with ion partitioning effects. Electrophoresis 40(5):699–709CrossRef Majee PS, Bhattacharyya S, Dutta P (2019) On electrophoresis of a ph-regulated nanogel with ion partitioning effects. Electrophoresis 40(5):699–709CrossRef
28.
Zurück zum Zitat Wei Yeu K, Keh Huan J (2004) Diffusiophoretic mobility of charged porous spheres in electrolyte gradients. Journal of colloid and interface science, 269(1):240–250, Wei Yeu K, Keh Huan J (2004) Diffusiophoretic mobility of charged porous spheres in electrolyte gradients. Journal of colloid and interface science, 269(1):240–250,
29.
Zurück zum Zitat Yeh L-H, Liu K-L, Hsu J-P (2011) Importance of ionic polarization effect on the electrophoretic behavior of polyelectrolyte nanoparticles in aqueous electrolyte solutions. J Phys Chem C 116(1):367–373CrossRef Yeh L-H, Liu K-L, Hsu J-P (2011) Importance of ionic polarization effect on the electrophoretic behavior of polyelectrolyte nanoparticles in aqueous electrolyte solutions. J Phys Chem C 116(1):367–373CrossRef
30.
Zurück zum Zitat Fang W, Lee E (2015) Diffusiophoretic motion of an isolated charged porous sphere. J Colloid Interface Sci 459:273–283CrossRef Fang W, Lee E (2015) Diffusiophoretic motion of an isolated charged porous sphere. J Colloid Interface Sci 459:273–283CrossRef
31.
Zurück zum Zitat Li WC, Keh HJ (2016) Diffusiophoretic mobility of charge-regulating porous particles. Electrophoresis 37(15–16):2139–2146CrossRef Li WC, Keh HJ (2016) Diffusiophoretic mobility of charge-regulating porous particles. Electrophoresis 37(15–16):2139–2146CrossRef
32.
Zurück zum Zitat Eric L (2019) Diffusiophoresis of porous particles. Interface Science and Technology, vol 26. Elsevier, Amsterdam, pp 385–409 Eric L (2019) Diffusiophoresis of porous particles. Interface Science and Technology, vol 26. Elsevier, Amsterdam, pp 385–409
33.
Zurück zum Zitat Ganjizade A, Ashrafizadeh SN, Sadeghi A (2019) Significant alteration in dna electrophoretic translocation velocity through soft nanopores by ion partitioning. Anal Chim Acta 1080:66–74CrossRef Ganjizade A, Ashrafizadeh SN, Sadeghi A (2019) Significant alteration in dna electrophoretic translocation velocity through soft nanopores by ion partitioning. Anal Chim Acta 1080:66–74CrossRef
34.
Zurück zum Zitat Poddar A, Maity D, Bandopadhyay A, Chakraborty S (2016) Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter 12(27):5968–5978CrossRef Poddar A, Maity D, Bandopadhyay A, Chakraborty S (2016) Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter 12(27):5968–5978CrossRef
35.
Zurück zum Zitat Israelachvili JN (2011) Intermolecular and surface forces. Academic Press, London Israelachvili JN (2011) Intermolecular and surface forces. Academic Press, London
36.
Zurück zum Zitat López-Garcia JJ, Horno J, Grosse C (2003) Suspended particles surrounded by an inhomogeneously charged permeable membrane, solution of the Poisson-Boltzmann equation by means of the network method. J Colloid Interface Sci 268(2):371–379CrossRef López-Garcia JJ, Horno J, Grosse C (2003) Suspended particles surrounded by an inhomogeneously charged permeable membrane, solution of the Poisson-Boltzmann equation by means of the network method. J Colloid Interface Sci 268(2):371–379CrossRef
37.
Zurück zum Zitat Maurya SK, Gopmandal PP, Bhattacharyya S, Ohshima H (2018) Ion partitioning effect on the electrophoresis of a soft particle with hydrophobic core. Phys Rev E 98(2):023103CrossRef Maurya SK, Gopmandal PP, Bhattacharyya S, Ohshima H (2018) Ion partitioning effect on the electrophoresis of a soft particle with hydrophobic core. Phys Rev E 98(2):023103CrossRef
38.
Zurück zum Zitat López-Garcıa JJ, Grosse C, Horno J (2003) Numerical study of colloidal suspensions of soft spherical particles using the network method: 1. DC electrophoretic mobility. J Colloid Interface Sci 265(2):327–340CrossRef López-Garcıa JJ, Grosse C, Horno J (2003) Numerical study of colloidal suspensions of soft spherical particles using the network method: 1. DC electrophoretic mobility. J Colloid Interface Sci 265(2):327–340CrossRef
39.
Zurück zum Zitat Neale G, Epstein N, Nader W (1973) Creeping flow relative to permeable spheres. Chem Eng Sci 28(10):1865–1874CrossRef Neale G, Epstein N, Nader W (1973) Creeping flow relative to permeable spheres. Chem Eng Sci 28(10):1865–1874CrossRef
41.
Zurück zum Zitat Ohshima H, Healy TW, White LR, O’Brien RW (1984) Sedimentation velocity and potential in a dilute suspension of charged spherical colloidal particles. J Chem Soc Faraday Trans 2 Mol Chem Phys 80(10):1299–1317 Ohshima H, Healy TW, White LR, O’Brien RW (1984) Sedimentation velocity and potential in a dilute suspension of charged spherical colloidal particles. J Chem Soc Faraday Trans 2 Mol Chem Phys 80(10):1299–1317
Metadaten
Titel
Impact of ion partitioning and double layer polarization on diffusiophoresis of a pH-regulated nanogel
verfasst von
Partha Sarathi Majee
Somnath Bhattacharyya
Publikationsdatum
07.04.2021
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 8/2021
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-021-01346-y

Weitere Artikel der Ausgabe 8/2021

Meccanica 8/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.