Skip to main content
Erschienen in: Measurement Techniques 1/2016

30.04.2016 | LINEAR AND ANGULAR MEASUREMENTS

An Optoelectronic Method of Contactless Measurement of the Profile of the Surface of Large Complexly Shaped Objects

verfasst von: S. V. Dvoinishnikov, Yu. A. Anikin, I. K. Kabardin, D. V. Kulikov, V. G. Meledin

Erschienen in: Measurement Techniques | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new optoelectronic method of contactless measurement of the profile of the surface of large complexly shaped objects distinguished by a high degree of reliability and resistance to variations in the optical properties of the surface of objects over a broad range and to additive noise in the images is proposed. The method utilizes structurized illumination, phase triangulation, and identification of phase images with stepwise shift.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. I. Etingof, “Optoelectronic devices for linear measurements,” Metrologiya, No. 6, 3–9 (2013). M. I. Etingof, “Optoelectronic devices for linear measurements,” Metrologiya, No. 6, 3–9 (2013).
2.
Zurück zum Zitat S. Zhang, “Recent progress on real-time 3D-shape measurement using digital fringe projection techniques,” Opt. Laser Eng., 48, No. 2, 149–158 (2010).ADSCrossRef S. Zhang, “Recent progress on real-time 3D-shape measurement using digital fringe projection techniques,” Opt. Laser Eng., 48, No. 2, 149–158 (2010).ADSCrossRef
3.
Zurück zum Zitat F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng., 39, No. 1, 10–22 (2000).ADSCrossRef F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng., 39, No. 1, 10–22 (2000).ADSCrossRef
4.
Zurück zum Zitat G. N. Vishnyakov, G. G. Levin, and A. A. Naumov, “Measurement of the surface of three-dimensional objects by means of a method of projection of interference bands,” Opt. Spektrosk., 85, No. 6, 1015–1017 (1998). G. N. Vishnyakov, G. G. Levin, and A. A. Naumov, “Measurement of the surface of three-dimensional objects by means of a method of projection of interference bands,” Opt. Spektrosk., 85, No. 6, 1015–1017 (1998).
5.
Zurück zum Zitat H. Du and Z. Wang, “Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilomery system,” Opt. Lett., 32, No. 16, 2438–2440 (2007).ADSCrossRef H. Du and Z. Wang, “Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilomery system,” Opt. Lett., 32, No. 16, 2438–2440 (2007).ADSCrossRef
6.
Zurück zum Zitat L. C. Chen, C. W. Liang, X. L. Nguyen, et al., “High-speed 3D surface profilometry employing trapezoidal phase-shifting method with multi-band calibration for colour surface reconstruction,” Meas. Sci. Technol., 21, No. 10, 105309–10 (2010).ADSCrossRef L. C. Chen, C. W. Liang, X. L. Nguyen, et al., “High-speed 3D surface profilometry employing trapezoidal phase-shifting method with multi-band calibration for colour surface reconstruction,” Meas. Sci. Technol., 21, No. 10, 105309–10 (2010).ADSCrossRef
7.
Zurück zum Zitat K. A. Sukhorukov, “Precision of reconstruction of three-dimensional surfaces by the method of Fourier synthesis,” Izmer. Tekhn., No. 5, 34–36 (2005). K. A. Sukhorukov, “Precision of reconstruction of three-dimensional surfaces by the method of Fourier synthesis,” Izmer. Tekhn., No. 5, 34–36 (2005).
8.
Zurück zum Zitat Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt., 35, No. 1, 51–60 (1996).ADSCrossRef Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt., 35, No. 1, 51–60 (1996).ADSCrossRef
9.
Zurück zum Zitat M. Gruber and G. Hausler, “Simple, Robust and accurate phase-measuring triangulation,” Optik, No, 3, 118–122 (1992). M. Gruber and G. Hausler, “Simple, Robust and accurate phase-measuring triangulation,” Optik, No, 3, 118–122 (1992).
10.
Zurück zum Zitat S. P. Il’inykh and V. I. Guzhov, “A generalized algorithm for the identification of interference patterns with step shift,” Avtometriya, 38, No. 3, 123–126 (2002). S. P. Il’inykh and V. I. Guzhov, “A generalized algorithm for the identification of interference patterns with step shift,” Avtometriya, 38, No. 3, 123–126 (2002).
11.
Zurück zum Zitat S. V. Dvoynishnikov, “A stable method of identification of interference patterns with step shift,” Komp. Optika, 31, No. 2, 21–25 (2007). S. V. Dvoynishnikov, “A stable method of identification of interference patterns with step shift,” Komp. Optika, 31, No. 2, 21–25 (2007).
12.
Zurück zum Zitat S. V. Dvoynishnikov, D. V. Kulikov, and V. G. Meledin, “An optoelectronic method of contactless reconstruction of the profile of the surface of three-dimensional complexly shaped objects,” Metrologiya, No. 4, 15–27 (2010). S. V. Dvoynishnikov, D. V. Kulikov, and V. G. Meledin, “An optoelectronic method of contactless reconstruction of the profile of the surface of three-dimensional complexly shaped objects,” Metrologiya, No. 4, 15–27 (2010).
13.
Zurück zum Zitat S. V. Dvoynishnikov, V. G. Meledin, and K. V. Shpolvind, “A method of compensation of the nonlinearity of an optical radiation source–detector path in 3D measurements based on phase triangulation,” Izmer. Tekhn., No. 2, 12–16 (2012). S. V. Dvoynishnikov, V. G. Meledin, and K. V. Shpolvind, “A method of compensation of the nonlinearity of an optical radiation source–detector path in 3D measurements based on phase triangulation,” Izmer. Tekhn., No. 2, 12–16 (2012).
14.
Zurück zum Zitat S. Y. Chen and Y. F. Li, “Self-recalibration of a color-encoded light system for automated three-dimensional measurements,” Meas. Sci. Technol., 14, No. 1, 33–40 (2003).ADSCrossRef S. Y. Chen and Y. F. Li, “Self-recalibration of a color-encoded light system for automated three-dimensional measurements,” Meas. Sci. Technol., 14, No. 1, 33–40 (2003).ADSCrossRef
15.
Zurück zum Zitat S. T. Huang and O. R. Mitchell, “Dynamic camera calibration,” Proc. Int. Symp. Comp. Vision, Floral Gabbs, Florida, USA (1995), pp. 169–174. S. T. Huang and O. R. Mitchell, “Dynamic camera calibration,” Proc. Int. Symp. Comp. Vision, Floral Gabbs, Florida, USA (1995), pp. 169–174.
Metadaten
Titel
An Optoelectronic Method of Contactless Measurement of the Profile of the Surface of Large Complexly Shaped Objects
verfasst von
S. V. Dvoinishnikov
Yu. A. Anikin
I. K. Kabardin
D. V. Kulikov
V. G. Meledin
Publikationsdatum
30.04.2016
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 1/2016
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-016-0910-8

Weitere Artikel der Ausgabe 1/2016

Measurement Techniques 1/2016 Zur Ausgabe