Skip to main content
Erschienen in: Measurement Techniques 10/2022

10.03.2022 | STATE STANDARDS

Get 2-2021: State Primary Standard of the Unit of Length – the Meter

verfasst von: T. P. Akimova, Y. G. Zackharenko, N. A. Kononova, V. L. Fedorin, Z. V. Fomkina, K. V. Chekirda

Erschienen in: Measurement Techniques | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The principal stages in the process of improving the State Primary Standard of the unit of length – the meter are described. Results of investigations of the metrological characteristics of sources of standard radiation at wavelengths of 633 and 532 nm are presented. Investigations are conducted by means of an He–Ne/I2 laser stabilized by a saturated absorption line in molecular iodine-127, a plant for the measurement of the frequency difference of sources of laser radiation, and a complex of equipment for measurement of the frequency (wavelength in a vacuum) of lasers in the wavelength range 500–1050 nm based on an optical frequency comb generator. As a result of investigations, the basic sources and limits of the components of the nonexcluded systematic error, standard Type B uncertainty, and mean Type A standard deviation are determined. A comparative analysis of the metrological characteristics of GET 2-2010 and GET 2-2021 is also presented, demonstrating the implementation of specific problem in the course of improvement of the standard. Thus, it became possible to reproduce the unit of length at a wavelength of 633 nm with standard deviation 1.6·10–12 and at a wavelength of 532 nm with standard deviation 1.3·10–12 and expand the range of transmission of the unit of length to sources of laser radiation and other modern high-precision means of measurement. The metrological characteristics of the standard whicha re obtained are not inferior to the best international analogues. GET 2-2021, the State Primary Standard of the unit of length – the meter, successfully underwent testing and was approved by order of Rossstandart.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat V. S. Aleksandrov, Yu. G. Zakharenko, N. A. Kononova, et al., “GET 2-2010: State Primary Standard of the unit of length – the meter,” Izmer. Tekhn., No. 6, 3–7 (2012). V. S. Aleksandrov, Yu. G. Zakharenko, N. A. Kononova, et al., “GET 2-2010: State Primary Standard of the unit of length – the meter,” Izmer. Tekhn., No. 6, 3–7 (2012).
3.
Zurück zum Zitat N. A. Kononova, Yu. G. Zackharenko, V. L. Fedorin, and Z. V. Fomkina, “Investigations of metrological characteristics of the Winters Electro-Optics, Inc. iodine-stabilized He–Ne laser by the State Primary Standard of the Unit of Length – GET 2-2010,” 18th Int. Conf. on Laser Optics, ICLO 2018, St. Petersburg, p. 56. N. A. Kononova, Yu. G. Zackharenko, V. L. Fedorin, and Z. V. Fomkina, “Investigations of metrological characteristics of the Winters Electro-Optics, Inc. iodine-stabilized He–Ne laser by the State Primary Standard of the Unit of Length – GET 2-2010,” 18th Int. Conf. on Laser Optics, ICLO 2018, St. Petersburg, p. 56.
4.
Zurück zum Zitat V. I. Denisov, S. M. Ignatovich, N. L. Kvashnin, et al., “Precision modulation of laser radiation by an acousto-optical modulator for stabilization of an Nd:YAG laser relative to optical resonances in molecular iodine,” Kvant. Elektron., 46, No. 5, 464–467 (2016).ADSCrossRef V. I. Denisov, S. M. Ignatovich, N. L. Kvashnin, et al., “Precision modulation of laser radiation by an acousto-optical modulator for stabilization of an Nd:YAG laser relative to optical resonances in molecular iodine,” Kvant. Elektron., 46, No. 5, 464–467 (2016).ADSCrossRef
5.
Zurück zum Zitat M. N. Skvortsov, M. V. Okhapkin, A. Yu. Nevskii, and S. N. Bagayev, “Optical frequency standard based on Nd:YAG laser stabilized by the saturated absorption resonances in molecular iodine with the use of a secondary radiation harmonic,” Kvant. Elektron., 34, No. 12, 1101–1106 (2004).ADSCrossRef M. N. Skvortsov, M. V. Okhapkin, A. Yu. Nevskii, and S. N. Bagayev, “Optical frequency standard based on Nd:YAG laser stabilized by the saturated absorption resonances in molecular iodine with the use of a secondary radiation harmonic,” Kvant. Elektron., 34, No. 12, 1101–1106 (2004).ADSCrossRef
7.
Zurück zum Zitat R. Holzwarth, A. Yu. Nevsky, M. Zimmermann, et al., “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B, Lasers and Optics, 73, No. 3, 269–271 (2001).ADSCrossRef R. Holzwarth, A. Yu. Nevsky, M. Zimmermann, et al., “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B, Lasers and Optics, 73, No. 3, 269–271 (2001).ADSCrossRef
8.
Zurück zum Zitat S. M. Ignatovich, N. P. Kvashnin, and M. N. Skvortsov, “Shift of frequency of iodine optical frequency standard as a function of the magnitude of a test modulation of the radiation frequency, pressure, and temperature of the gas in the absorption cell,” Kvant. Elektron., 48, No. 10, 973–976 (2018).ADSCrossRef S. M. Ignatovich, N. P. Kvashnin, and M. N. Skvortsov, “Shift of frequency of iodine optical frequency standard as a function of the magnitude of a test modulation of the radiation frequency, pressure, and temperature of the gas in the absorption cell,” Kvant. Elektron., 48, No. 10, 973–976 (2018).ADSCrossRef
9.
Zurück zum Zitat Yu. G. Zakharenko, N. A. Kononova, Z. V. Fomkina, et al., “Development of applied software for complex of high-precision hardware for reproduction and transmission of the unit of length,” Pribory, No. 12(222), 42–47 (2018). Yu. G. Zakharenko, N. A. Kononova, Z. V. Fomkina, et al., “Development of applied software for complex of high-precision hardware for reproduction and transmission of the unit of length,” Pribory, No. 12(222), 42–47 (2018).
13.
Metadaten
Titel
Get 2-2021: State Primary Standard of the Unit of Length – the Meter
verfasst von
T. P. Akimova
Y. G. Zackharenko
N. A. Kononova
V. L. Fedorin
Z. V. Fomkina
K. V. Chekirda
Publikationsdatum
10.03.2022
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 10/2022
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-022-02005-8

Weitere Artikel der Ausgabe 10/2022

Measurement Techniques 10/2022 Zur Ausgabe