Skip to main content
Erschienen in: Mechanics of Composite Materials 2/2015

01.05.2015

Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

verfasst von: M. Knitter, M. Dobrzyńska-Mizera

Erschienen in: Mechanics of Composite Materials | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Bajer, H. Kaczmarek, and K. Bajer, “The structure and properties of different types of starch exposed to UV radiation: A comparative study,” Carbohydr. Polym. 89, No. 1, 477–482, (2013).CrossRef D. Bajer, H. Kaczmarek, and K. Bajer, “The structure and properties of different types of starch exposed to UV radiation: A comparative study,” Carbohydr. Polym. 89, No. 1, 477–482, (2013).CrossRef
2.
Zurück zum Zitat K. Bajer, A. Richert, D. Bajer, and J. Korol, “Biodegradation of plastified starch obtained by corotation twin-screw extrusion,” Polym. Eng. Sci., 52, No. 12, 2537–2542, (2013).CrossRef K. Bajer, A. Richert, D. Bajer, and J. Korol, “Biodegradation of plastified starch obtained by corotation twin-screw extrusion,” Polym. Eng. Sci., 52, No. 12, 2537–2542, (2013).CrossRef
3.
Zurück zum Zitat D. Żuchowska, D. Hlavata, R. Steller, W. Adamiak, and W. Meissner, “Physical structure of polyolefin-starch blends after ageing,” Polym. Degrad. Stabil., 64, 339–346, (1999).CrossRef D. Żuchowska, D. Hlavata, R. Steller, W. Adamiak, and W. Meissner, “Physical structure of polyolefin-starch blends after ageing,” Polym. Degrad. Stabil., 64, 339–346, (1999).CrossRef
4.
Zurück zum Zitat K. Walipiszewska and T. Spychaj, “Termoplastyfikacja skrobi na drodze wytłaczania w obecności plastyfikatorów”, Polimery, 51, No. 5, 325–404, (2006). K. Walipiszewska and T. Spychaj, “Termoplastyfikacja skrobi na drodze wytłaczania w obecności plastyfikatorów”, Polimery, 51, No. 5, 325–404, (2006).
5.
Zurück zum Zitat S. B. Roy, B. Ramaraj, S. C. Shit, and S. K. Nayak, “Polypropylene and Potato starch bicomposites: Physicomechanical and thermal properties,” J. Appl. Polym. Sci., 120, 3078–3086, (2011).CrossRef S. B. Roy, B. Ramaraj, S. C. Shit, and S. K. Nayak, “Polypropylene and Potato starch bicomposites: Physicomechanical and thermal properties,” J. Appl. Polym. Sci., 120, 3078–3086, (2011).CrossRef
6.
Zurück zum Zitat X. Ramis, A. Cadenato, J. M. Salla, J. M. Morancho, A. Valles, L. Contat, and A. Ribes, “Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability,” Polym. Degrad. Stabil., 86, 483–491, (2004).CrossRef X. Ramis, A. Cadenato, J. M. Salla, J. M. Morancho, A. Valles, L. Contat, and A. Ribes, “Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability,” Polym. Degrad. Stabil., 86, 483–491, (2004).CrossRef
7.
Zurück zum Zitat S. Hamdan, D. M. A. Hashim, M. Ahmad, and S. Embong, “Comapatibility studies of polypropylene (PP) – sago starch (SS) blends using DMTA,” J. Polym. Res., 7, No. 4, 237–244, (2000).CrossRef S. Hamdan, D. M. A. Hashim, M. Ahmad, and S. Embong, “Comapatibility studies of polypropylene (PP) – sago starch (SS) blends using DMTA,” J. Polym. Res., 7, No. 4, 237–244, (2000).CrossRef
8.
Zurück zum Zitat M. Kaseem and F. Deri, “Preparation and properties of blends of polypropylene and acrylonitril-butadiene-styrene with thermoplastic starch,” J. Basic Sci., 28, No. 1, 88–103, (2012). M. Kaseem and F. Deri, “Preparation and properties of blends of polypropylene and acrylonitril-butadiene-styrene with thermoplastic starch,” J. Basic Sci., 28, No. 1, 88–103, (2012).
9.
Zurück zum Zitat M. A. Perez R., B. L. Rivas Q., and S. Rodriguez-Llamazares, “Polypropylene/starch blends. Study of thermal and morphological properties,” J. Chil. Chem. Soc., 58, No. 1, 1643–1645, (2013).CrossRef M. A. Perez R., B. L. Rivas Q., and S. Rodriguez-Llamazares, “Polypropylene/starch blends. Study of thermal and morphological properties,” J. Chil. Chem. Soc., 58, No. 1, 1643–1645, (2013).CrossRef
10.
Zurück zum Zitat L. Mościcki, L. P. B. M. Janssen, and M. Mitrus, “Przetwórstwo skrobi termoplastycznej na cele opakowaniowe,” Inżynieria Rolnicza, 6, 65–72, (2006). L. Mościcki, L. P. B. M. Janssen, and M. Mitrus, “Przetwórstwo skrobi termoplastycznej na cele opakowaniowe,” Inżynieria Rolnicza, 6, 65–72, (2006).
11.
Zurück zum Zitat D. Czarnecka-Komorowska, T. Sterzyński, and J. Andrzejewski, “Evaluation of structure and thermomechanical properties of polyoxymethylene modified with polyhedral oligomeric silsesquioxanes (POSS),” Przem. Chem., 92, No. 11, 2129–2132, (2013). D. Czarnecka-Komorowska, T. Sterzyński, and J. Andrzejewski, “Evaluation of structure and thermomechanical properties of polyoxymethylene modified with polyhedral oligomeric silsesquioxanes (POSS),” Przem. Chem., 92, No. 11, 2129–2132, (2013).
12.
Zurück zum Zitat D. Chmielewska, M. Pacyna, and T. Sterzyński, “Właściwości termomechaniczne kompozytów epoksydowych wysoko napełnionych barytem białym,” Przem. Chem., 93, No. 1, 90–92, (2014). D. Chmielewska, M. Pacyna, and T. Sterzyński, “Właściwości termomechaniczne kompozytów epoksydowych wysoko napełnionych barytem białym,” Przem. Chem., 93, No. 1, 90–92, (2014).
13.
Zurück zum Zitat K. Bula and T. Jesionowski, “Effect of polyethylene functionalization on mechanical properties and morphology of PE/SiO2 composites,” Compos. Interfaces, 17, No. 5–7, 603–614, (2010).CrossRef K. Bula and T. Jesionowski, “Effect of polyethylene functionalization on mechanical properties and morphology of PE/SiO2 composites,” Compos. Interfaces, 17, No. 5–7, 603–614, (2010).CrossRef
14.
Zurück zum Zitat M. F. Koenig and S. J. Huang, “Biodegradable blends and composites of polycaprolactone and starch derivatives,” Polymer, 39, No. 9, 1877–1882, (1995).CrossRef M. F. Koenig and S. J. Huang, “Biodegradable blends and composites of polycaprolactone and starch derivatives,” Polymer, 39, No. 9, 1877–1882, (1995).CrossRef
15.
Zurück zum Zitat D. Paukszta, M. Szostak, and M. Rogacz, “Mechanical properties of polypropylene copolymers composites filled with rapeseed straw,” Polimery, 59, No. 2, 165–169, (2014).CrossRef D. Paukszta, M. Szostak, and M. Rogacz, “Mechanical properties of polypropylene copolymers composites filled with rapeseed straw,” Polimery, 59, No. 2, 165–169, (2014).CrossRef
16.
Zurück zum Zitat T. Spychaj, K. Kowalczyk, and G. Krala, “Thermoplastic starch modified with montmorillonite and waste polyurethane foam,” Polimery, 55, No. 10, 765–772, (2010). T. Spychaj, K. Kowalczyk, and G. Krala, “Thermoplastic starch modified with montmorillonite and waste polyurethane foam,” Polimery, 55, No. 10, 765–772, (2010).
17.
Zurück zum Zitat P. Jakubowska and A. Kloziński, “Parameters optimization in the modification of CaCO3 used as thermoplastic polymers filler,” Inż. Ap. Chem., 49, No. 5, 45–46, (2010). P. Jakubowska and A. Kloziński, “Parameters optimization in the modification of CaCO3 used as thermoplastic polymers filler,” Inż. Ap. Chem., 49, No. 5, 45–46, (2010).
18.
Zurück zum Zitat C. H. Azhari and S. F. Wong, “Morphology-mechanical property relationship of polypropylene/ starch blends,” Pak. J. Biol. Sci., 4, No. 6, 693–695, (2001).CrossRef C. H. Azhari and S. F. Wong, “Morphology-mechanical property relationship of polypropylene/ starch blends,” Pak. J. Biol. Sci., 4, No. 6, 693–695, (2001).CrossRef
19.
Zurück zum Zitat I. M. Thakur, S. Iyer, A. Desai, A. Lele, and S. Devi, “Morphology, thermomechanical properties and biodegradability of low density polyethylene/starch blends,” J. Appl. Polym. Sci., 74, 2791–2802, (1998).CrossRef I. M. Thakur, S. Iyer, A. Desai, A. Lele, and S. Devi, “Morphology, thermomechanical properties and biodegradability of low density polyethylene/starch blends,” J. Appl. Polym. Sci., 74, 2791–2802, (1998).CrossRef
Metadaten
Titel
Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch
verfasst von
M. Knitter
M. Dobrzyńska-Mizera
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 2/2015
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-015-9496-5

Weitere Artikel der Ausgabe 2/2015

Mechanics of Composite Materials 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.