Skip to main content
Erschienen in: Mechanics of Composite Materials 6/2017

08.01.2017

Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers

verfasst von: S. Mohammad Reza Khalili, Moslem Najafi, Reza Eslami-Farsani

Erschienen in: Mechanics of Composite Materials | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of the present work was to investigate the effect of thermal cycling on the tensile behavior of three types of polymer-matrix composites — a phenolic resin reinforced with woven basalt fibers, woven carbon fibers, and hybrid basalt and carbon fibers — in an ambient environment. For this purpose, tensile tests were performed on specimens previously subjected to a certain number of thermal cycles. The ultimate tensile strength of the specimen reinforced with woven basalt fibers had by 5% after thermal cycling, but the strength of the specimen with woven carbon fibers had reduced to a value by 11% higher than that before thermal cycling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. L. Brown, “The Effect of Long-Term Thermal Cycling on the Micro-cracking Behavior and Dimensional Stability of Composite Materials,” PhD thesis, Blacksburg, Virginia, USA, 1–6 (2000). T. L. Brown, “The Effect of Long-Term Thermal Cycling on the Micro-cracking Behavior and Dimensional Stability of Composite Materials,” PhD thesis, Blacksburg, Virginia, USA, 1–6 (2000).
2.
Zurück zum Zitat R. Y. Kim, A. S. Crasto, and G. A. Schoeppner, “Dimensional stability of composites in a space thermal environment,”, Compos. Sci. Technol, 60, 2601–2608 (1996).CrossRef R. Y. Kim, A. S. Crasto, and G. A. Schoeppner, “Dimensional stability of composites in a space thermal environment,”, Compos. Sci. Technol, 60, 2601–2608 (1996).CrossRef
3.
Zurück zum Zitat M. C. Lafarie-Frenot, S. Rouquie, N. Q. Ho, and V. Bellenger, “Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling,” Composites: Part A, 37, 662–671 (2006).CrossRef M. C. Lafarie-Frenot, S. Rouquie, N. Q. Ho, and V. Bellenger, “Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling,” Composites: Part A, 37, 662–671 (2006).CrossRef
4.
Zurück zum Zitat G. C. Papanicolaou, A. G. Xepapadaki, and G. D. Tagaris, “Effect of thermal shock cycling on the creep behavior of glass-epoxy composites,” Compos. Struct., 88, 436–442 ( 2009).CrossRef G. C. Papanicolaou, A. G. Xepapadaki, and G. D. Tagaris, “Effect of thermal shock cycling on the creep behavior of glass-epoxy composites,” Compos. Struct., 88, 436–442 ( 2009).CrossRef
5.
Zurück zum Zitat A. H. Nayfeh, “Thermomechanically induced interfacial stresses in fibrous composites,” Fiber Sci. Technol., 10, 195–209 (1977).CrossRef A. H. Nayfeh, “Thermomechanically induced interfacial stresses in fibrous composites,” Fiber Sci. Technol., 10, 195–209 (1977).CrossRef
6.
Zurück zum Zitat B. C. Ray, “Study of the influence of thermal shock on interfacial damage in thermosetting matrix aramid fiber composites,” J. Mater. Sci. Lett, 22, 201–202 (2003).CrossRef B. C. Ray, “Study of the influence of thermal shock on interfacial damage in thermosetting matrix aramid fiber composites,” J. Mater. Sci. Lett, 22, 201–202 (2003).CrossRef
7.
Zurück zum Zitat B. Z. Jang, “Advanced polymer composites- principles and applications,” Proc. ASM Int., Ohio, USA (1994). B. Z. Jang, “Advanced polymer composites- principles and applications,” Proc. ASM Int., Ohio, USA (1994).
8.
Zurück zum Zitat W. Shoukai and D. D. L. Chung, “Thermal fatigue in carbon fibre polymer-matrix composites, monitored in real time by electrical resistance measurements,” Polym. Polym. Compos., 9, 135–140 (2001). W. Shoukai and D. D. L. Chung, “Thermal fatigue in carbon fibre polymer-matrix composites, monitored in real time by electrical resistance measurements,” Polym. Polym. Compos., 9, 135–140 (2001).
9.
Zurück zum Zitat K. B. Shin, C. G. Kim, C. S. Hong, and H. H. Lee, “Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments,” Composites: Part B, 31, 223–235 (2000).CrossRef K. B. Shin, C. G. Kim, C. S. Hong, and H. H. Lee, “Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments,” Composites: Part B, 31, 223–235 (2000).CrossRef
10.
Zurück zum Zitat A. Paillous and C. Pailler, “Degradation of multiply polymer-matrix composites induced by space environment,” Composites, 25, 287–295 (1994).CrossRef A. Paillous and C. Pailler, “Degradation of multiply polymer-matrix composites induced by space environment,” Composites, 25, 287–295 (1994).CrossRef
11.
Zurück zum Zitat T. K. Tsotis, K. Keller, K. Lee, J. Bardis, and J. Bish, “Aging of polymeric composite specimens for 5000 hours at elevated pressure and temperature,” Compos. Sci. Technol., 61,75-86 (2001).CrossRef T. K. Tsotis, K. Keller, K. Lee, J. Bardis, and J. Bish, “Aging of polymeric composite specimens for 5000 hours at elevated pressure and temperature,” Compos. Sci. Technol., 61,75-86 (2001).CrossRef
12.
Zurück zum Zitat K. J. Bowles and A. Meyers, “Specimen geometry effects on graphite/pmr 15 composites during thermo-oxidative ageing,” Proc. 31st Int. SAMPE Symp., Los Angeles, USA (1986), 1285–1299. K. J. Bowles and A. Meyers, “Specimen geometry effects on graphite/pmr 15 composites during thermo-oxidative ageing,” Proc. 31st Int. SAMPE Symp., Los Angeles, USA (1986), 1285–1299.
13.
Zurück zum Zitat J. D. Nam and J. C. Seferis, “Anisotropic thermooxidative stability of carbon fibre reinforced polymeric composites,” SAMPE Q., 24, 10–18 (1992). J. D. Nam and J. C. Seferis, “Anisotropic thermooxidative stability of carbon fibre reinforced polymeric composites,” SAMPE Q., 24, 10–18 (1992).
14.
Zurück zum Zitat I. M. Salin and J. C. Seferis, “Anisotropic effects in thermogravimetry of polymeric composites”, J. Polym. Sci., Part B, 31, 1019–1027 (1993).CrossRef I. M. Salin and J. C. Seferis, “Anisotropic effects in thermogravimetry of polymeric composites”, J. Polym. Sci., Part B, 31, 1019–1027 (1993).CrossRef
15.
Zurück zum Zitat K. J. Bowles, M. S. Madhukar, D. S. Papadopoulos, L. Inghram, and L. McCorkle, “The effects of fiber surface modification and thermal aging on composite toughness and its measurement,” J. Compos. Mater., 31, 552–579 (1997).CrossRef K. J. Bowles, M. S. Madhukar, D. S. Papadopoulos, L. Inghram, and L. McCorkle, “The effects of fiber surface modification and thermal aging on composite toughness and its measurement,” J. Compos. Mater., 31, 552–579 (1997).CrossRef
16.
Zurück zum Zitat M. C. Lafarie-Frenot and S. Rouquie, “Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling,” Compos. Sci. Technol., 64, 1725–1735 (2004).CrossRef M. C. Lafarie-Frenot and S. Rouquie, “Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling,” Compos. Sci. Technol., 64, 1725–1735 (2004).CrossRef
17.
Zurück zum Zitat V. P. Sergeev, Y. U. Chuvashov, O. V. Galushchak, I. G. Pervak, and N. S. Fatikova, “Basalt fibers- a reinforcing filler for composites,” Powder Metall. Met. Ceram., 33, 555–557 (1994).CrossRef V. P. Sergeev, Y. U. Chuvashov, O. V. Galushchak, I. G. Pervak, and N. S. Fatikova, “Basalt fibers- a reinforcing filler for composites,” Powder Metall. Met. Ceram., 33, 555–557 (1994).CrossRef
18.
Zurück zum Zitat M. Bednar and M. Hajek, “Hitzeschutztextilien aus neuartigen Basalt-Filamentgarnen,” Technische Textilien, 43, 252–254 (2000). M. Bednar and M. Hajek, “Hitzeschutztextilien aus neuartigen Basalt-Filamentgarnen,” Technische Textilien, 43, 252254 (2000).
19.
Zurück zum Zitat A. Pegoretti, E. Fabbri, C. Migliaresi, and F. Pilatiet, “Intraply and interply hybrid composites based on E-glass and poly (vinyl alcohol) woven fabrics: tensile and impact properties,” Polym. Int., 53, 1290–1297 (2004).CrossRef A. Pegoretti, E. Fabbri, C. Migliaresi, and F. Pilatiet, “Intraply and interply hybrid composites based on E-glass and poly (vinyl alcohol) woven fabrics: tensile and impact properties,” Polym. Int., 53, 1290–1297 (2004).CrossRef
20.
Zurück zum Zitat A. Bakar, A. Hariharan, and H. P. S. Abdul Khalil, “Lignocellulose-based hybrid bilayer laminate composite: Part I- studies on tensile and impact behavior of oil palm fiber-glass fiber-reinforced epoxy resin,” J. Compos. Mater., 39, 663–684 (2005).CrossRef A. Bakar, A. Hariharan, and H. P. S. Abdul Khalil, “Lignocellulose-based hybrid bilayer laminate composite: Part I- studies on tensile and impact behavior of oil palm fiber-glass fiber-reinforced epoxy resin,” J. Compos. Mater., 39, 663–684 (2005).CrossRef
21.
Zurück zum Zitat K. Chung, J. C. Seferis, and J. D. Nam, “Investigation of thermal degradation behavior of polymeric composites: prediction of thermal cycling effect from isothermal data,” Composites: Part A, 31, 945–957 (2000).CrossRef K. Chung, J. C. Seferis, and J. D. Nam, “Investigation of thermal degradation behavior of polymeric composites: prediction of thermal cycling effect from isothermal data,” Composites: Part A, 31, 945–957 (2000).CrossRef
22.
Zurück zum Zitat R. Griffiths and A. Ball, “An assessment of the properties and degradation behaviour of glass-fibre-reinforced polyester polymer concrete,” Compos. Sci. Technol., 60, 2747–2753 (2000).CrossRef R. Griffiths and A. Ball, “An assessment of the properties and degradation behaviour of glass-fibre-reinforced polyester polymer concrete,” Compos. Sci. Technol., 60, 2747–2753 (2000).CrossRef
23.
Zurück zum Zitat F. Segovia, C. Ferrer, M. D. Salvador, and V. Amigo, “Influence of processing variables on mechanical characteristics of sunlight aged polyester-glass fibre composites,” Polym. Degrad. Stab., 71, 179–184 (2001).CrossRef F. Segovia, C. Ferrer, M. D. Salvador, and V. Amigo, “Influence of processing variables on mechanical characteristics of sunlight aged polyester-glass fibre composites,” Polym. Degrad. Stab., 71, 179–184 (2001).CrossRef
24.
Zurück zum Zitat M. D. Golder and B. Mulholland, “Improved UV stabilization expands uses for polyester elastomers,” Plast. Eng., 46, 43–44 (1990). M. D. Golder and B. Mulholland, “Improved UV stabilization expands uses for polyester elastomers,” Plast. Eng., 46, 43–44 (1990).
25.
Zurück zum Zitat A. W. Signor, M. R. Vanlandingham, and J. W. Chin, “Effects of ultraviolet radiation exposure on vinyl ester resins: characterization of chemical, physical and mechanical damage,” Polym. Degrad. Stab., 79, 359–368 (2002).CrossRef A. W. Signor, M. R. Vanlandingham, and J. W. Chin, “Effects of ultraviolet radiation exposure on vinyl ester resins: characterization of chemical, physical and mechanical damage,” Polym. Degrad. Stab., 79, 359–368 (2002).CrossRef
26.
Zurück zum Zitat W. Sakai, T. Sadakane, W. Nishimoto, M. Nagata, and N. Tsutsumi, “Photosensitised degradation and cross-linking of linear aliphatic polyesters studied by GPC and ESR,” Polymer, 43, 6231–6238 (2002).CrossRef W. Sakai, T. Sadakane, W. Nishimoto, M. Nagata, and N. Tsutsumi, “Photosensitised degradation and cross-linking of linear aliphatic polyesters studied by GPC and ESR,” Polymer, 43, 6231–6238 (2002).CrossRef
27.
Zurück zum Zitat G. Li, N. Pourmohamadian, A. Cygan, J. Peck, J. E. Helms, and S. S. Pang, “Fast repair of laminated beams using UV curing composites,” Compos. Struct., 60, 73–81 (2003).CrossRef G. Li, N. Pourmohamadian, A. Cygan, J. Peck, J. E. Helms, and S. S. Pang, “Fast repair of laminated beams using UV curing composites,” Compos. Struct., 60, 73–81 (2003).CrossRef
28.
Zurück zum Zitat E. Grossman and I. Gouzman, “Space environment effects on polymers in low earth orbit,” Nucl. Instrum. Methods Phys. Res., Sect. B., 208, 48–57 (2003).CrossRef E. Grossman and I. Gouzman, “Space environment effects on polymers in low earth orbit,” Nucl. Instrum. Methods Phys. Res., Sect. B., 208, 48–57 (2003).CrossRef
Metadaten
Titel
Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers
verfasst von
S. Mohammad Reza Khalili
Moslem Najafi
Reza Eslami-Farsani
Publikationsdatum
08.01.2017
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 6/2017
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-017-9632-5

Weitere Artikel der Ausgabe 6/2017

Mechanics of Composite Materials 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.