Skip to main content
Erschienen in: Mechanics of Composite Materials 1/2017

06.03.2017

Closed-Form Solutions for Free Vibration Frequencies of Functionally Graded Euler-Bernoulli Beams

verfasst von: W. R. Chen, H. Chang

Erschienen in: Mechanics of Composite Materials | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The bending vibration of a functionally graded Euler–Bernoulli beam is investigated by the transformed-section method. The material properties of the functionally graded beam (FGB) are assumed to vary across its thickness according to a simple power law. Closed-form solutions for free vibration frequencies of FGBs with classical boundary conditions are derived. Some analytical results are compared with numerical results found in the published literature to verify the accuracy of the model presented, and a good agreement between them is observed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat S. Suresh, “Modeling and design of multi-layered and graded materials,” Prog. Mater. Sci., 42, 243-251 (1997).CrossRef S. Suresh, “Modeling and design of multi-layered and graded materials,” Prog. Mater. Sci., 42, 243-251 (1997).CrossRef
2.
Zurück zum Zitat Y. Miyamoto, W. A. Kaysser and B. H. Rabin, Functionally Graded Materials: Design, Processing and Applications, Dordrecht, Kluwer Academic Publishers (1999). Y. Miyamoto, W. A. Kaysser and B. H. Rabin, Functionally Graded Materials: Design, Processing and Applications, Dordrecht, Kluwer Academic Publishers (1999).
3.
Zurück zum Zitat V. Birman and L. W. Byrd, “Modeling and analysis of functionally graded materials and structures,” Appl. Mech. Rev., 60, 195-216 (2007).CrossRef V. Birman and L. W. Byrd, “Modeling and analysis of functionally graded materials and structures,” Appl. Mech. Rev., 60, 195-216 (2007).CrossRef
4.
Zurück zum Zitat M. Aydogdu and V. Taskin, “Free vibration analysis of functionally graded beams with simply supported edges,” Mat. Des., 28, 1651-1656 (2007).CrossRef M. Aydogdu and V. Taskin, “Free vibration analysis of functionally graded beams with simply supported edges,” Mat. Des., 28, 1651-1656 (2007).CrossRef
5.
Zurück zum Zitat X. F. Li, “A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams,” J. Sound Vib., 318, 1210-1229 (2008).CrossRef X. F. Li, “A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams,” J. Sound Vib., 318, 1210-1229 (2008).CrossRef
6.
Zurück zum Zitat S. Sina, H. M. Navazi and H. Haddadpour, “An analytical method for free vibration analysis of functionally graded beams,” Mat. Des., 30, 741-747 (2009).CrossRef S. Sina, H. M. Navazi and H. Haddadpour, “An analytical method for free vibration analysis of functionally graded beams,” Mat. Des., 30, 741-747 (2009).CrossRef
7.
Zurück zum Zitat M. T. Piovan and R. Sampaio, “A study on the dynamics of rotating beams with functionally graded properties,” J. Sound Vib., 327, 134–143 (2009). M. T. Piovan and R. Sampaio, “A study on the dynamics of rotating beams with functionally graded properties,” J. Sound Vib., 327, 134–143 (2009).
8.
Zurück zum Zitat M. Simsek, “Vibration analysis of a functionally graded beam under a moving mass by using different beam theories,” Compos. Struct., 92, 904-917 (2010).CrossRef M. Simsek, “Vibration analysis of a functionally graded beam under a moving mass by using different beam theories,” Compos. Struct., 92, 904-917 (2010).CrossRef
9.
Zurück zum Zitat M. Simsek, “Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories,” Nucl. Eng. Des., 240, 697-705 (2010).CrossRef M. Simsek, “Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories,” Nucl. Eng. Des., 240, 697-705 (2010).CrossRef
10.
Zurück zum Zitat A. E. Alshorbagy, M. A. Eltaher and F. F. Mahmoud, “Free vibration characteristics of a functionally graded beam by finite element method,” Appl. Math. Mod., 35, 412-425 (2011).CrossRef A. E. Alshorbagy, M. A. Eltaher and F. F. Mahmoud, “Free vibration characteristics of a functionally graded beam by finite element method,” Appl. Math. Mod., 35, 412-425 (2011).CrossRef
11.
Zurück zum Zitat S. C. Mohanty, R. R. Dash, and T. Rout, “Parametric instability of a functionally graded Timoshenko beam on Winkler’s foundation,” Nucl. Eng. Des., 241, 2698-2715 (2011).CrossRef S. C. Mohanty, R. R. Dash, and T. Rout, “Parametric instability of a functionally graded Timoshenko beam on Winkler’s foundation,” Nucl. Eng. Des., 241, 2698-2715 (2011).CrossRef
12.
Zurück zum Zitat K. S. Anandrao, R. K. Gupta, P. Ramachandran, and G. V. Rao, “Free vibration analysis of functionally graded beams,” Def. Sci. J., 62, 139-146 (2012).CrossRef K. S. Anandrao, R. K. Gupta, P. Ramachandran, and G. V. Rao, “Free vibration analysis of functionally graded beams,” Def. Sci. J., 62, 139-146 (2012).CrossRef
13.
Zurück zum Zitat H. T. Thai and T. P. Vo, “Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories,” Int. J. Mech. Sci., 62, 57–66 (2012). H. T. Thai and T. P. Vo, “Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories,” Int. J. Mech. Sci., 62, 57–66 (2012).
14.
Zurück zum Zitat N. Wattanasakulpong and V. Ungbhakorn, “Free vibration analysis of functionally graded beams with general elastically end constraints by DTM,” World J. Mech., 2, 297-310 (2102). N. Wattanasakulpong and V. Ungbhakorn, “Free vibration analysis of functionally graded beams with general elastically end constraints by DTM,” World J. Mech., 2, 297-310 (2102).
15.
Zurück zum Zitat H. Su, J. R. Banerjee, and C. W. Cheung, “Dynamic stiffness formulation and free vibration analysis of functionally graded beams,” Compos. Struct., 106, 854–862 (2013).CrossRef H. Su, J. R. Banerjee, and C. W. Cheung, “Dynamic stiffness formulation and free vibration analysis of functionally graded beams,” Compos. Struct., 106, 854–862 (2013).CrossRef
16.
Zurück zum Zitat T. K. Nguyen, T. P. Vo, and H. T. Thai, “Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory,” Compos.: Part B, 55, 147–157 (2013). T. K. Nguyen, T. P. Vo, and H. T. Thai, “Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory,” Compos.: Part B, 55, 147–157 (2013).
17.
Zurück zum Zitat K. K. Pradhan and S. Chakraverty, “Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method,” Compos.: Part B, 51, 175-184 (2013). K. K. Pradhan and S. Chakraverty, “Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method,” Compos.: Part B, 51, 175-184 (2013).
18.
Zurück zum Zitat K. K. Pradhan and S. Chakraverty, “Effects of different shear deformation theories on free vibration of functionally graded beams,” Int. J. Mech. Sci., 82, 149-160 (2014).CrossRef K. K. Pradhan and S. Chakraverty, “Effects of different shear deformation theories on free vibration of functionally graded beams,” Int. J. Mech. Sci., 82, 149-160 (2014).CrossRef
19.
Zurück zum Zitat M. Aydogdu, “Semi-inverse method for vibration and buckling of axially functionally graded beams,” J. Reinf. Plast. Compos., 27, 683-691 (2008).CrossRef M. Aydogdu, “Semi-inverse method for vibration and buckling of axially functionally graded beams,” J. Reinf. Plast. Compos., 27, 683-691 (2008).CrossRef
20.
Zurück zum Zitat Y. Huang and X. F. Li, “Bending and vibration of circular cylindrical beams with arbitrary radial non-homogeneity,” Int. J. Mech. Sci., 52, 595-601 (2010).CrossRef Y. Huang and X. F. Li, “Bending and vibration of circular cylindrical beams with arbitrary radial non-homogeneity,” Int. J. Mech. Sci., 52, 595-601 (2010).CrossRef
21.
Zurück zum Zitat J. Murin, M. Aminbaghai, and V. Kutis, “Exact solution of the bending vibration problem of FGM beams with variation of material properties,” Eng. Struct., 32, 1631-1640 (2010).CrossRef J. Murin, M. Aminbaghai, and V. Kutis, “Exact solution of the bending vibration problem of FGM beams with variation of material properties,” Eng. Struct., 32, 1631-1640 (2010).CrossRef
22.
Zurück zum Zitat A. Shahba, R. Attarnejad, and M. T. Marvi, “Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classic and non-classical boundary conditions,” Compos.: Part B, 42, 801-808 (2011). A. Shahba, R. Attarnejad, and M. T. Marvi, “Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classic and non-classical boundary conditions,” Compos.: Part B, 42, 801-808 (2011).
23.
Zurück zum Zitat X. F. Li, Y. A. Kang, and J. X. Wu, “Exact frequency equations of free vibration of exponentially functionally graded beams,” Appl. Acoust., 74, 413–420 (2013).CrossRef X. F. Li, Y. A. Kang, and J. X. Wu, “Exact frequency equations of free vibration of exponentially functionally graded beams,” Appl. Acoust., 74, 413–420 (2013).CrossRef
24.
Zurück zum Zitat M. Aminbaghai, J. Murin, and V. Kutis, “Modal analysis of the FGM-beams with continuous transversal symmetric and longitudinal variation of material properties with effect of large axial force,” Eng. Struct., 34, 314-329 (2012).CrossRef M. Aminbaghai, J. Murin, and V. Kutis, “Modal analysis of the FGM-beams with continuous transversal symmetric and longitudinal variation of material properties with effect of large axial force,” Eng. Struct., 34, 314-329 (2012).CrossRef
25.
Zurück zum Zitat J. Murin, M. Aminbaghai, V. Kutis, and J. Hrabovsky, “Modal analysis of the FGM beams with effect of axial force under longitudinal variable elastic Winkler foundation,” Eng. Struct., 49, 234-247 (2013).CrossRef J. Murin, M. Aminbaghai, V. Kutis, and J. Hrabovsky, “Modal analysis of the FGM beams with effect of axial force under longitudinal variable elastic Winkler foundation,” Eng. Struct., 49, 234-247 (2013).CrossRef
26.
Zurück zum Zitat J. Murin, M. Aminbaghai, J. Hrabovsky, V. Kutis, and St. Kugler, “Modal analysis of the FGM beams with effect of the shear correction function,” Compos.: Part B, 45, 1575–1582 (2013). J. Murin, M. Aminbaghai, J. Hrabovsky, V. Kutis, and St. Kugler, “Modal analysis of the FGM beams with effect of the shear correction function,” Compos.: Part B, 45, 1575–1582 (2013).
27.
Zurück zum Zitat J. Murin, M. Aminbaghai, J. Hrabovsky, V. Kutis, J. Paulech, and S. Kugler, “A new 3D FGM beam finite element for modal analysis,” Proceedings of the 11th world congress on computational mechanics (WCCM XI), 5th European conference on computational mechanics (ECCM V), 6th European conference on computational fluid dynamics (ECFD VI). Barcelona, Spain (2014). J. Murin, M. Aminbaghai, J. Hrabovsky, V. Kutis, J. Paulech, and S. Kugler, “A new 3D FGM beam finite element for modal analysis,” Proceedings of the 11th world congress on computational mechanics (WCCM XI), 5th European conference on computational mechanics (ECCM V), 6th European conference on computational fluid dynamics (ECFD VI). Barcelona, Spain (2014).
28.
Zurück zum Zitat A. C. Ugural, Mechanical Design: An Integrated Approach, Singapore, McGrow-Hill Company (2004). A. C. Ugural, Mechanical Design: An Integrated Approach, Singapore, McGrow-Hill Company (2004).
29.
Zurück zum Zitat W. Weaver, S. P. Timoshenko, and D. H. Young, Vibration Problems in Engineering, 5th ed., John Wiley & Sons, Inc. (1990). W. Weaver, S. P. Timoshenko, and D. H. Young, Vibration Problems in Engineering, 5th ed., John Wiley & Sons, Inc. (1990).
30.
Zurück zum Zitat S. S. Rao, Mechanical Vibrations, 3rd ed., Addison-Wesley Publishing Company (1995). S. S. Rao, Mechanical Vibrations, 3rd ed., Addison-Wesley Publishing Company (1995).
31.
Zurück zum Zitat L. Meirovitch, Fundamentals of Vibrations, International Edition, McGraw-Hill (2001). L. Meirovitch, Fundamentals of Vibrations, International Edition, McGraw-Hill (2001).
32.
Zurück zum Zitat S. B. Coşkun, M. T. Atay, and B. Öztürk, “Transverse vibration analysis of Euler-Bernoulli beams using analytical approximate techniques,” Advances in Vibration Analysis Research, Dr. Farzad Ebrahimi (Ed.), ISBN: 978-953-307-209-8, InTech (2011). S. B. Coşkun, M. T. Atay, and B. Öztürk, “Transverse vibration analysis of Euler-Bernoulli beams using analytical approximate techniques,” Advances in Vibration Analysis Research, Dr. Farzad Ebrahimi (Ed.), ISBN: 978-953-307-209-8, InTech (2011).
33.
Zurück zum Zitat M. Simsek and T. Kocatürk, “Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load,” Compos. Struct., 90, 465-473 (2009). M. Simsek and T. Kocatürk, “Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load,” Compos. Struct., 90, 465-473 (2009).
34.
Zurück zum Zitat S. Natarajan, P. M. Baiz, S. Bordas, T. Rabczuk, and P. Kerfriden, “Natural frequencies of cracked functionally graded material plates by the extended finite element method,” Compos. Struct., 93, 3082-3092 (2011).CrossRef S. Natarajan, P. M. Baiz, S. Bordas, T. Rabczuk, and P. Kerfriden, “Natural frequencies of cracked functionally graded material plates by the extended finite element method,” Compos. Struct., 93, 3082-3092 (2011).CrossRef
35.
Zurück zum Zitat X. Zhao and K. M. Liew, “Free vibration analysis of functionally graded conical shell panels by a meshless method,” Compos. Struct., 93, 649-664 (2011).CrossRef X. Zhao and K. M. Liew, “Free vibration analysis of functionally graded conical shell panels by a meshless method,” Compos. Struct., 93, 649-664 (2011).CrossRef
Metadaten
Titel
Closed-Form Solutions for Free Vibration Frequencies of Functionally Graded Euler-Bernoulli Beams
verfasst von
W. R. Chen
H. Chang
Publikationsdatum
06.03.2017
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 1/2017
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-017-9642-3

Weitere Artikel der Ausgabe 1/2017

Mechanics of Composite Materials 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.