Skip to main content
Erschienen in: Natural Computing 3/2022

22.06.2022

A GIS-aided cellular automata system for monitoring and estimating graph-based spread of epidemics

verfasst von: Charilaos Kyriakou, Ioakeim G. Georgoudas, Nick P. Papanikolaou, Georgios Ch. Sirakoulis

Erschienen in: Natural Computing | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we introduce an application of a Cellular Automata (CA)-based system for monitoring and estimating the spread of epidemics in real world, considering the example of a Greek city. The proposed system combines cellular structure and graph representation to approach the connections among the area’s parts more realistically. The original design of the model is attributed to a classical SIR (Susceptible–Infected–Recovered) mathematical model. Aiming to upgrade the application’s effectiveness, we have enriched the model with parameters that advances its functionality to become self-adjusting and more efficient of approaching real situations. Thus, disease-related parameters have been introduced, while human interventions such as vaccination have been represented in algorithmic manner. The model incorporates actual geographical data (GIS, geographic information system) to upgrade its response. A methodology that allows the representation of any area with given population distribution and geographical data in a graph associated with the corresponding CA model for epidemic simulation has been developed. To validate the efficient operation of the proposed model and methodology of data display, the city of Eleftheroupoli, in Eastern Macedonia—Thrace, Greece, was selected as a testing platform (Eleftheroupoli, Kavala). Tests have been performed at both macroscopic and microscopic levels, and the results confirmed the successful operation of the system and verified the correctness of the proposed methodology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmed E, Agiza HN (1998) On modeling epidemics Including latency, incubation and variable susceptibility. Physica A 253(1–4):347–352CrossRef Ahmed E, Agiza HN (1998) On modeling epidemics Including latency, incubation and variable susceptibility. Physica A 253(1–4):347–352CrossRef
Zurück zum Zitat Barthélemy M, Barrat A, Pastor-Satorras R et al (2004) Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys Rev Lett 92(1):178701CrossRef Barthélemy M, Barrat A, Pastor-Satorras R et al (2004) Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys Rev Lett 92(1):178701CrossRef
Zurück zum Zitat Bo ZS, QuanYi H, DunJiang S (2009) Simulation of the spread of infectious diseases in a geographical environment. Sci China Ser D-Earth Sci 52(4):550–561CrossRef Bo ZS, QuanYi H, DunJiang S (2009) Simulation of the spread of infectious diseases in a geographical environment. Sci China Ser D-Earth Sci 52(4):550–561CrossRef
Zurück zum Zitat Boccara N, Cheong K (1993) Critical behaviour of a probabilistic automata network SIS model for the spread of an infectious disease in a population of moving individuals. J Phys A 26(5):3707–3717MathSciNetCrossRef Boccara N, Cheong K (1993) Critical behaviour of a probabilistic automata network SIS model for the spread of an infectious disease in a population of moving individuals. J Phys A 26(5):3707–3717MathSciNetCrossRef
Zurück zum Zitat Boccara N, Cheong K, Oram M (1994) A probabilistic automata network epidemic model with births and deaths exhibiting cyclic behaviour. J Phys A 27:1585–1597CrossRef Boccara N, Cheong K, Oram M (1994) A probabilistic automata network epidemic model with births and deaths exhibiting cyclic behaviour. J Phys A 27:1585–1597CrossRef
Zurück zum Zitat Bouaine A, Rachik M (2018) Modeling the impact of immigration and climatic conditions on the epidemic spreading based on cellular automata approach. Eco Inform 46:36–44CrossRef Bouaine A, Rachik M (2018) Modeling the impact of immigration and climatic conditions on the epidemic spreading based on cellular automata approach. Eco Inform 46:36–44CrossRef
Zurück zum Zitat del Rey A , Rodrıguez Sanchez G, Hoya White S (2006) A model based on cellular automata to simulate epidemic diseases. In: El Yacoubi S, Chopard B, Bandini S (eds) ACRI 2006, LNCS, vol 4173, pp 304–310 del Rey A , Rodrıguez Sanchez G, Hoya White S (2006) A model based on cellular automata to simulate epidemic diseases. In: El Yacoubi S, Chopard B, Bandini S (eds) ACRI 2006, LNCS, vol 4173, pp 304–310
Zurück zum Zitat del Rey AM, Rodrıguez Sanchez G, Hoya White S (2007) Modeling epidemics using cellular automata. Appl Math Comput 186:193–202MathSciNetMATH del Rey AM, Rodrıguez Sanchez G, Hoya White S (2007) Modeling epidemics using cellular automata. Appl Math Comput 186:193–202MathSciNetMATH
Zurück zum Zitat Diekmann O, Heesterbeek JAP (2001) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Int J Epidemiol 30(1):186MATH Diekmann O, Heesterbeek JAP (2001) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Int J Epidemiol 30(1):186MATH
Zurück zum Zitat Draief M (2006) Epidemic processes on complex networks: the effect of topology on the spread of epidemics. Physica A 363:120–131CrossRef Draief M (2006) Epidemic processes on complex networks: the effect of topology on the spread of epidemics. Physica A 363:120–131CrossRef
Zurück zum Zitat Duryea M, Caraco T, Gardner G, Maniatty W, Szymanski BK (1999) Population dispersion and equilibrium infection frequency in a spatial epidemic. Physica D 132(4):511–519CrossRef Duryea M, Caraco T, Gardner G, Maniatty W, Szymanski BK (1999) Population dispersion and equilibrium infection frequency in a spatial epidemic. Physica D 132(4):511–519CrossRef
Zurück zum Zitat Flache A, Hegselmann R (2001) Do irregular grids make a difference? Relaxing the spatial regularity assumption in cellular models of social dynamics. JASSS 4(4) Flache A, Hegselmann R (2001) Do irregular grids make a difference? Relaxing the spatial regularity assumption in cellular models of social dynamics. JASSS 4(4)
Zurück zum Zitat Fresnadillo MJ, Garcia E, García JE, Martin A, Rodriguez G (2009) A SIS epidemiological model based on cellular automata on graphs. In: Omatu S et al (eds) Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. IWANN 2009, vol 5518. Lecture notes in computer science. Springer, Berlin, Heidelberg Fresnadillo MJ, Garcia E, García JE, Martin A, Rodriguez G (2009) A SIS epidemiological model based on cellular automata on graphs. In: Omatu S et al (eds) Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. IWANN 2009, vol 5518. Lecture notes in computer science. Springer, Berlin, Heidelberg
Zurück zum Zitat Fu SC, Milne G (2003) Epidemic modelling using cellular automata. In: Abbass HA, Wiles J (eds) The Australian conference on artificial life ACAL (Canberra, ACT, Australia edn., vol N/A, UNSW Press, pp 43–57 Fu SC, Milne G (2003) Epidemic modelling using cellular automata. In: Abbass HA, Wiles J (eds) The Australian conference on artificial life ACAL (Canberra, ACT, Australia edn., vol N/A, UNSW Press, pp 43–57
Zurück zum Zitat Gwizdalla T (2020) Viral disease spreading in grouped population. Comput Methods Programs Biomed 197:105715CrossRef Gwizdalla T (2020) Viral disease spreading in grouped population. Comput Methods Programs Biomed 197:105715CrossRef
Zurück zum Zitat Jithesh PK (2021) A model based on cellular automata for investigating the impact of lockdown, migration and vaccination on COVID-19 dynamics. Comput Methods Programs Biomed 211:106402CrossRef Jithesh PK (2021) A model based on cellular automata for investigating the impact of lockdown, migration and vaccination on COVID-19 dynamics. Comput Methods Programs Biomed 211:106402CrossRef
Zurück zum Zitat Johansen A (1996) A simple model of recurrent epidemics. J Theor Biol 178(1):45–51CrossRef Johansen A (1996) A simple model of recurrent epidemics. J Theor Biol 178(1):45–51CrossRef
Zurück zum Zitat Karamani R-E, Fyrigos I-A, Tsakalos K-A, Ntinas V, Tsompanas M-A, Sirakoulis C Ch (2021) Memristive learning cellular automata for edge detection. Chaos Solit Fractals 145:110700MathSciNetCrossRef Karamani R-E, Fyrigos I-A, Tsakalos K-A, Ntinas V, Tsompanas M-A, Sirakoulis C Ch (2021) Memristive learning cellular automata for edge detection. Chaos Solit Fractals 145:110700MathSciNetCrossRef
Zurück zum Zitat Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Lond B115:700–721MATH Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Lond B115:700–721MATH
Zurück zum Zitat Kleczkowski A, Gilligan CA, Bailey DJ (1997) Scaling and spatial dynamics in plant-pathogen systems: from individuals to populations. Proc R Soc B264:979–984CrossRef Kleczkowski A, Gilligan CA, Bailey DJ (1997) Scaling and spatial dynamics in plant-pathogen systems: from individuals to populations. Proc R Soc B264:979–984CrossRef
Zurück zum Zitat Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2015) Geographic information science and systems, 4th edn. Wiley, New York Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2015) Geographic information science and systems, 4th edn. Wiley, New York
Zurück zum Zitat Maniatty W, Szymanski B, Caraco T (1999) High-performance computing tools for modeling evolution in epidemics. In: Proceedings of the 32nd annual Hawaii international conference on systems sciences, HICSS-32. Abstracts and CD-ROM of Full Papers Maniatty W, Szymanski B, Caraco T (1999) High-performance computing tools for modeling evolution in epidemics. In: Proceedings of the 32nd annual Hawaii international conference on systems sciences, HICSS-32. Abstracts and CD-ROM of Full Papers
Zurück zum Zitat Martinez MJF, Merino EG, Sanchez EG, Sanchez JEG, del Rey AM, Sanchez GR (2012) A graph cellular automata model to study the spreading of an infectious disease. In: Batyrshin I, González Mendoza M (eds) Advances in artificial intelligence. MICAI 2012, vol 7629. Lecture notes in computer science. Springer, Berlin, Heidelberg (2013) Martinez MJF, Merino EG, Sanchez EG, Sanchez JEG, del Rey AM, Sanchez GR (2012) A graph cellular automata model to study the spreading of an infectious disease. In: Batyrshin I, González Mendoza M (eds) Advances in artificial intelligence. MICAI 2012, vol 7629. Lecture notes in computer science. Springer, Berlin, Heidelberg (2013)
Zurück zum Zitat Meyer NJ, Gattinoni L, Calfee CS (2021) Acute respiratory distress syndrome. Lancet 398(10300):622–637CrossRef Meyer NJ, Gattinoni L, Calfee CS (2021) Acute respiratory distress syndrome. Lancet 398(10300):622–637CrossRef
Zurück zum Zitat Monteiro LHA, Gandini DM, Schimit PHT (2020) The influence of immune individuals in disease spread evaluated by cellular automaton and genetic algorithm. Comput Method Programs Biomed 196:105707CrossRef Monteiro LHA, Gandini DM, Schimit PHT (2020) The influence of immune individuals in disease spread evaluated by cellular automaton and genetic algorithm. Comput Method Programs Biomed 196:105707CrossRef
Zurück zum Zitat Moreno N, Menard A, Marceau DJ (2008) VecGCA: an vector-based geographic cellular automata model allowing geometric transformations of objects. Environ Plann B 35(4):647–665CrossRef Moreno N, Menard A, Marceau DJ (2008) VecGCA: an vector-based geographic cellular automata model allowing geometric transformations of objects. Environ Plann B 35(4):647–665CrossRef
Zurück zum Zitat Palacio MP, Sol D, Gonzalez J (2003) Graph-based knowledge representation for GIS data. In: Proceedings of the fourth Mexican international conference on computer science, 2003. ENC 2003, pp 117–124 Palacio MP, Sol D, Gonzalez J (2003) Graph-based knowledge representation for GIS data. In: Proceedings of the fourth Mexican international conference on computer science, 2003. ENC 2003, pp 117–124
Zurück zum Zitat Pereira FH, Schimit PHT, Bezerra FE (2021) A deep learning based surrogate model for the parameter identification problem in probabilistic cellular automaton epidemic models. Comput Methods Programs Biomed 205:106078CrossRef Pereira FH, Schimit PHT, Bezerra FE (2021) A deep learning based surrogate model for the parameter identification problem in probabilistic cellular automaton epidemic models. Comput Methods Programs Biomed 205:106078CrossRef
Zurück zum Zitat Seghir A, Marcou O, El Yacoubi S (2018) Shoreline evolution: GIS, remote sensing and cellular automata modelling. Nat Comput 17:569–583MathSciNetCrossRef Seghir A, Marcou O, El Yacoubi S (2018) Shoreline evolution: GIS, remote sensing and cellular automata modelling. Nat Comput 17:569–583MathSciNetCrossRef
Zurück zum Zitat Shirley MDF, Rushton SP (2005) The impacts of network topology on disease spread. Ecol Complex 2:287–299CrossRef Shirley MDF, Rushton SP (2005) The impacts of network topology on disease spread. Ecol Complex 2:287–299CrossRef
Zurück zum Zitat Sirakoulis G Ch, Karafyllidis I, Thanailakis A (2000) A cellular automaton model for the effects of population movement and vaccination on epidemic propagation movement and vaccination on epidemic propagation. Ecol Model 133:209–223CrossRef Sirakoulis G Ch, Karafyllidis I, Thanailakis A (2000) A cellular automaton model for the effects of population movement and vaccination on epidemic propagation movement and vaccination on epidemic propagation. Ecol Model 133:209–223CrossRef
Zurück zum Zitat Vlad MO, Schonfisch B, Lacoursière C (1996) Statistical-mechanical analogies for space-dependent epidemics. Physica A 229(3–4):365–401CrossRef Vlad MO, Schonfisch B, Lacoursière C (1996) Statistical-mechanical analogies for space-dependent epidemics. Physica A 229(3–4):365–401CrossRef
Zurück zum Zitat Wang XF (2002) Complex networks: topology, dynamics and synchronisation. Int J Bifurcat Chaos 12:885–916CrossRef Wang XF (2002) Complex networks: topology, dynamics and synchronisation. Int J Bifurcat Chaos 12:885–916CrossRef
Zurück zum Zitat Zaharia CN, Cristea A, Simionescu I (1996) The simultaneous utilisation of many techniques of the artificial intelligence in epidemics modelling. In: Bruzzone AG, Kerckhoffs, Chent EJH (eds) Proceedings of the eighth European simulation symposium simulation in industry, vol 2. SCS, Belgium, pp 142–146 Zaharia CN, Cristea A, Simionescu I (1996) The simultaneous utilisation of many techniques of the artificial intelligence in epidemics modelling. In: Bruzzone AG, Kerckhoffs, Chent EJH (eds) Proceedings of the eighth European simulation symposium simulation in industry, vol 2. SCS, Belgium, pp 142–146
Zurück zum Zitat Zandbergen PA (2020) Advanced python scripting for ArcGIS pro. Esri Press, Redlands, CA Zandbergen PA (2020) Advanced python scripting for ArcGIS pro. Esri Press, Redlands, CA
Metadaten
Titel
A GIS-aided cellular automata system for monitoring and estimating graph-based spread of epidemics
verfasst von
Charilaos Kyriakou
Ioakeim G. Georgoudas
Nick P. Papanikolaou
Georgios Ch. Sirakoulis
Publikationsdatum
22.06.2022
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 3/2022
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-022-09891-5

Weitere Artikel der Ausgabe 3/2022

Natural Computing 3/2022 Zur Ausgabe

EditorialNotes

Preface

Premium Partner